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ABSTRACT 

In this paper we have presented a transcoding algorithm to 

perform super-resolution of sub-sampled images.  First of all 

we used 1D case in the fourier domain (DFT). Then we 

extended the same approach for the 2D case. After presenting 

the results for this we looked at the possibility of improving 

the performance of our algorithm. This was done by removing 

the need to perform matrix inversions (highly computation 

expensive operation). To map the operation to the DCT 

domain, we began by exploring the relationship between the 

DFT coefficients of a sequence with the DCT coefficients. 

Once the relationships were established we were able to 

extend our DFT approach to the DCT domain as well.  

General Terms 

DFT, DCT, MPEG 

1. INTRODUCTION 

With the expansion of digital media, digital images and videos 

are widely available for use and editing. Video compression 

algorithms are being used to compress digital video for a wide 

variety of applications, including video delivery over the 

internet, advanced television broadcasting, as well as video 

storage and editing. The performance of modern compression 

algorithms such as MPEG is quite impressive -- raw video data 

rates often can be reduced by factors of 15-80 without 

considerable loss in reconstructed video quality. However, the 

use of these compression algorithms often makes other 

processing tasks quite difficult. For example, many operations 

once considered simple, such as splicing and downscaling, are 

much more complicated when applied to compressed video 

streams. The goal of transcoding is to process one standards-

compliant video stream into another standards-compliant video 

stream that has properties better suited for a particular 

application. This is useful for a number of applications. For 

example, a video server transmitting video over the internet may 

be restricted by stringent bandwidth requirements. In this 

scenario, a high-quality compressed bit-stream may need to be 

transcoded to a lower-rate compressed bit-stream prior to 

transmission; this can be achieved by lowering the spatial or 

temporal resolution of the video or by re-quantizing the MPEG 

data. Another important problem that arises in visual 

communications is the need to create an enhanced-resolution 

video image sequence from a lower resolution input video 

stream. 

There are a number of methods for creating high-quality video 

or images from a lower-quality video. This can be done by 

either increasing the frame rate (by inserting number of frames 

in between two frames), called Temporal domain or be 

improving the frame resolution (by inserting more pixel points 

in the given frame), called Spatial domain .The latter involves 

prediction using the information of adjacent frames and then 

motion compensating a number of video frames to produce the 

desired video. These methods are formulated in space domain 

and require the input to be expressed in that format. We propose 

a motion-compensated transform-domain super-resolution 

procedure for creating high-quality video that directly 

incorporates the transform-domain quantization information by 

working with compressed bit stream [1], [2]. 

2. PROPOSED METHODOLOGY 

We propose a motion-compensated transform-domain super-

resolution procedure for creating high-quality video [3] that 

directly incorporates the transform-domain quantization 

information by working with compressed bit stream. 

3. PROBLEM DEFINITION  

Given: M frames each with sampling frequency F = (Fx, Fy) 

To Generate: 1-Super resolution frame with sampling 

frequency F’ = (M1Fx, M2Fy) 

To define super–resolution more precisely, let’s consider 1D 

case. Let x[n] be the given original sequence. Now we down-

sample it by a factor of M and get M sub-sampled sequences. 

The kth such sub-sampled sequence, yk[n], is defined as 

yk[n] = x[Mn+k]  where k =0,1,....,M-1 

So the problem states that we are given these yk[n]’s and we 

have to reconstruct the super-resolution sequence, x[n], back 

from these sub-sampled sequences. 

4. INITIAL APPROACH  

Let x(t) be a continuous-time signal that is sampled uniformly at 

t = nT, generating the sequence x[n] where 

                x[n] = x(nT),    -∞ < n < ∞ 

where T being the sampling period. Now, the frequency-domain 

representation of x(t) is given by its continuous-time Fourier 

Transform (CTFT) X (jΩ), 






 dtetxjX tj)()(
 

whereas the frequency-domain representation of x[n] is given by 

its discrete-time  Fourier transform (DTFT) X(е jω), 
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It can be shown very easily that the relationship between X(jΩ) 

and X(е jω) is given by 
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Now if the continuous-time signal x(t) is sampled with down-

sampling factor M i.e. is sampled uniformly at t = nT’= nMT, 

then generated sequence y[n] will be  y[n] = x(nMT) = x[nM],   

-∞ < n < ∞.If Y(е jω) is the discrete-time Fourier 

Transform(DTFT) of sequence y[n] then 

Putting k = i +  p*M where   i = 0, 1 .. M-1 and -∞ < p < ∞ 
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Now if sub-sampled sequences are yk[n] = x[Mn + k] i.e first 

shift the initial sequence x[n] and then sample it where k = 0, 

1… M-1, then we have 

So the problem statement is given Yk(е jω) values, we are 

trying to find out X(е jω) which when converting to x[n] will 

give the resolution M times increased. 

5. RELATION WITH DISCRETE  

     FOURIER TRANSFORM (DFT) 

5.1 One-dimension case 

In case of finite-length sequences x[n] , n = 0,1,…, MN-1 

only MN values of X(е jω), called the frequency samples, at 

MN distinct points ,ω = ωk,  k = 0,1, .., MN-1 are called 

Discrete Fourier Transform DFT. 
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Now the sub-sampled sequences yk[n] will have N points 

where k = 0, 1, .., M-1 
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or in matrix form 

 

Thus we have MN equations in MN variables. Solving which 

will give X[l] at MN equally spaced frequencies. Using the 

inverse Discrete Fourier transform (IDFT),  
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we will get x[n] with MN (M times more) points. 

 

5.2 Extension to two-dimension 

Now suppose the 2-D sequence is x[n1,n2] and the sub-

sampled sequences are yk1k2[n] = x[M1n1 + k1, M2n2 + k2] 

where k1 = 0,1 … , M1-1 ; k2 = 0,1 … , M2-1.Then the relation 

between DFT’s of yk1k2[n] and x[n1,n2] is given by 

     (    )
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Once again get X(l,m) at (M1N1, M2N2) frequency points. 

Calculate IDFT to get x[n1, n2] with (M1N1, M2N2) points in 

space and hence with increased resolution. 

5.3 Experimental results 

The algorithms we described above were experimented upon 

an image. The results are shown below. 

 

 

 

 

 

 

                  Fig 1: Original Image 
 

 

 

                                                                                                     

                                                     

 

                   (a)                                 (b) 

              

 

      (c )                                    (d) 

Fig 2: Sub-sampled images; (a) k1 = 0, k2 = 0, (b) k1 = 0, k2 

= 1, (c) k1 = 1, k2 = 0, (d) k1= 1, k2 = 1 

5.4 Image reconstruction 

 

 

 

 

 

 
              (a)                                           (b) 

 

 

 

Fig 3: Image Reconstruction using DFT; (a) Original 

image, (b) Reconstructed image 
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5.5 Comparison with interpolation 
 
If instead of Super-Resolution, we do linear interpolation [4] 

i.e. insert the average values of pixel values in between two 

pixel both in horizontal direction as well as vertical direction, 

we get the following result, 

 

 

 

 

 

 

 

                                  

(a)                            (b) 
Fig4: Comparison with Interpolation; (a) Super-

Resolution image, (b) Interpolated image 

 

Clearly the one achieved from interpolation is blurred as 

compared to that from super-resolution 
 

5.6 Improvement in DFT approach 
 
The algorithm we purposed initially using DFT equation  

 

involves matrix inversion. So we suggest a new approach to 

the problem. This can be understood by an example. Suppose 

the original sequence x[n] was sub-sampled to two sequences 

y0[n] and y1[n] having N points (Fig (a) and (b) ). Now to get 

the sequence x[n] back, we need to do the following 

operations. 

a) Insert M-1(here M = 2) zeros between every two 

consecutive samples of y0[n] Fig (c)). So this new 

sequence y0ext[n] has MN points. 

b) Insert M-1 zeros between any two consecutive 

samples of y1[n] and then do circular shifting by one 

(Fig (d)). Again the new sequence y1ext[n] has MN 

points. 

c) Add the two sequences to get x[n] back (Fig (e)). 

The method was shown in time-domain. In DFT domain, the 

insertion of zeros means periodic extension and circular 

shifting means multiplication with exponential. So the relation 

between DFT’s of yk[n] and x[n] is given by 
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which can be easily extended to 2-D as 
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Using these relationships we implemented the algorithms for 

both 1-D and 2-D DFT’s. 

 

Fig 5:  Improved Approach (a) and (b) are sub-sampled 

images y0[n], y1[n] ;  (c) and (d) are extended sequences 

y0ext[n], y1ext[n] ;  (e) is re-constructed sequence x[n] 

5.7 Super-resolution using discrete cosine  

      transform (DCT) 

 
As we are going to work in transformed domain only and 

MPEG frames use DCT (Discrete Cosine Transform) domain 

for compression, we have to do this super-resolution in DCT 

domain. But there are no direct relationships in DCT domain, 

as we have in DFT domain, corresponding to the time domain 

operations like, 

1) Shifting  

2) Down-sampling with shifting 

So our next task is to establish relationships between DFT and 

DCT of two sequences, which will enable us to do the super-

resolution of the given sub-sampled images with DCT 

coefficients only. 

 
5.8 Relationships between DFT and DCT 
 
5.8.1 One-dimension case 
 
Given an N-length sequence 

x[n] = {x[0], x[1],….,x[N-2], x[N-1]} 

Its N-point DCT is given by 

  where (k) =  (1/N)  for k =0 

           (2/N) else 

Now consider a 2N length symmetric sequence given by 

y[n] = {x[N-1], x[N-2],…..,x[1], x[0], x[0], x[1],….,x[N-2], 

x[N-1]} 

If Y(k) is 2N- point DFT of y[n] then it can be shown that  

5.8.2 Extension to two-dimension 

 
Now consider a 2-D sequence x[m,n], m = 0,1…N1-1 ; n = 

0,1…N2-1; Its 2-D DCT is given by 
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where (k,l) =  (k) * (l) and (k) , (l) are defined as 

above 

.Following in the same manner as we did in 1D case, Consider 

symmetric extension sequence given by 
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y[m,n] = x[N1-1-m, N2-1-n] for  m = 0,1,..N1-1 ; n = 0,1,..N2-

1x[N1-1-m, n- N2]   for  m = 0,1,..N1-1 ; n = N2, N2+1,..2N2-

1x[m- N1,N2-1-n]    for  m = N1, N1+1,..2N1-1 ;   n = 0,1,..N2-

1 x[m- N1,n- N2] for m = N1, N1+1,..2N1-1;n = N2,N2+1,2N2-1 

If Y(k,l) is 2D-DFT of y[m,n] then again it can be shown that  

Y(k,l) =   (k,l)*C(k,l) 
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 Now if we sample the sequence x[n] and make the 

corresponding symmetric sequence y[n], it has no relationship 

with earlier symmetric extended sequence.  

x[n] = 

{1,2,3,4,5,6} 

      y[n]=                        

{6,5,4,3,2,1,1,2,3,4,5,6} 

 

xsamp = {1,3,5} 

 

      ysamp[n] = {5,3,1,1,3,5} 

 

So we can’t work with symmetric extended sequence y[n] !! 

 

x[n] = 

{1,2,3,4,5,6} 

 

  

           yl[n]=        

 {6,5,4,3,2,1,0,0,0,0,0,0} 

 

xsamp ={1,3,5} 

 

     ylsamp[n]={5,3,1,0,0,0} 

 

But we can work with left sided sequence yl[n] defined as, 

yl[n] =  {x[N-1], x[N-2],…..,x[1], x[0],0, 0,....,0} 

So the next task is to relate y[n] and yl[n]. 

The relationships between Yl(k) and Y(k) can be derived 

easily as, 
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or in matrix form,    
1x A b  

where  Yl(k) = a(k) + j b(k) ;Y(k) = a0(k) + j b0(k) 

This method involves inversion of a matrix. So we suggest a 

better approach in the next section. 

 

 

 

 

 

 

5.9 Improvement in DCT approach 
 

5.9.1 One-dimension case 

 

Fig 6: Time domain approach for DCT to DFT conversion. 

(a) original sequence x[n];(b) symmetrical extended 

sequence xext[n]; (c) windowing sequence w[n]; (d) left 

sided sequence y[n]; (e) output sequence y0[n] 

In time domain multiplication  

 y[n] = x[n] w[n]  

where     
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is circular convolution in DFT domain defined as 
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5.9.2 Extension to two-dimension 

Results can easily be extended to 2-D as 
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where WN1(k) and WN2(k) have their usual meanings. 

5.9.3 Experimental results 

As we have already said that super-resolution directly in DCT 

domain is not possible. So we approached to the problem by 

first converting the DCT’s of sub-sampled images to DFT of 

extended sequences. From there we got the super-resolution 

image in DFT domain using the earlier formulae. And then we 

converted back the DFT domain image to DCT domain which 

is super-resolution image of given DCT domain images. 

The results for 2-D DCT case are shown below: 
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              Fig 7: Original Image with 208 X 222 

 Input image (Fig 1.7) was sampled at  M1=2, M2=2 

 Four sub-sampled images were generated (Fig 1.8) 

 Using them Super- Resolution image is created 

 

(a)                                   (b) 

(c)                                   (d)                      

       Fig 8: Sub-sampled images with 104 X 111; (a) k1 = 0,      

        k2 = 0, (b) k1 = 0, k2 = 1, (c) k1 = 1, k2 = 0, (d) k1 = 1, k2  

        = 1 

 

5.10 IMAGE RECONSTRUCTION 

(a)                                                    

(b) 

Fig 9: Image Reconstruction using DCT; (a) Original 

image, (b) Reconstructed image 

6. CONCLUSION 

When we are making a super-resolution frame form M 

frames, it may be possible that you don’t have enough sub-

samples of a particular object. For example you are making 

one super-resolution frame using the inter-dependency of 

three frames. Then suppose we find an object, which is 

present in only one of these frames. So for that object you 

have to resize it by any arbitrary ratio L/M for the new super-

resolution frame. And once again we have to do it in the 

compressed domain i.e. DCT domain. So we have also 

implemented this feature in this paper.  

In this paper we have presented a transcoding algorithm 

which is used in video processing and communication [5] to 

perform super-resolution of sub-sampled images. As a first, 

we looked at the 1D case in the fourier domain (DFT). Then 

we extended the same approach for the 2D case. After 

presenting the results for this we looked at the possibility of 

improving the performance of our algorithm. This was done 

by removing the need to perform matrix inversions (highly 

computation expensive operation). To map the operation to 

the DCT domain, we began by exploring the relationship 

between the DFT coefficients of a sequence with the DCT 

coefficients. Once the relationships were established we were 

able to extend our DFT approach to the DCT domain as well. 

When we are making a super-resolution frame form M 

frames, it may be possible that you don’t have enough sub-

samples of a particular object. For example you are making 

one super-resolution frame using the inter-dependency of 

three frames. Then suppose you find an object, which is 

present in only one of these frames. So for that object you 

have to resize it by any arbitrary ratio L/M for the new super-

resolution frame. And once again we have to do it in the 

compressed domain i.e. DCT domain. So we have also 

implemented this feature in this paper.  

7. FUTURE WORK 

We can implement an approach towards incorporating spatial 

filtering operations directly in the DCT domain. We can 

began with exploring the relationship between the DCT and 

DFT coefficients. The relationship used here is different from 

the one discussed in this paper and was aimed primarily at 

removing the redundancies that arise from double-side 

replication of the input sequence. We can present an approach 

to shift the input coefficients by a single sample, which can be 

generalized as shift by any amount can be looked upon as a 

series of one-sample shifts. We can present our extension to 

the 2D case on the basis of the argument that shifting 

operation is separable as well as the DCT is separable and 

hence the x and y shifts can be taken care of independently. 
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