
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

35

Implementation of High Speed Fixed Point

CORDIC Techniques

Sukhpreet Kaur
Assistant Professor

ECED, Chitkara University, Baddi, HP

Kulbir Singh
Associate Professor

ECED, Thapar University, Patiala, Punjab

ABSTRACT

Implementation of Original CORDIC, Control CORDIC and

Angle Recoding CORDIC of 16-bit, 24-bit and 32-bit fixed

point number have been done in this paper. VHDL is used to

modelled these architectures. Original CORDIC, Control

CORDIC and Angle Recoding CORDIC are synthesized and

targeted for Xilinx Virtex 5 FPGA and the results calculated

for 16-bit and 24-bit has shown satisfactory improvement in

speed.

General Terms

Original CORDIC, Control CORDIC and Angle Recoding

CORDIC.

Keywords

CORDIC algorithm, VHDL, Fixed Point representation.

1. INTRODUCTION
The CORDIC (Coordinate Rotation Digital Computer)

algorithm was introduced by Jack E. Volder [1] in 1959 and

further generalized by Walther [2] in 1971. It is a class of shift

and add algorithm for rotating vector in a plane, which is

usually used for the calculation of trigonometric functions,

multiplication, division and conversion between binary and

mixed radix number systems of DSP applications, such as

Fourier Transform. A fast and energy-efficient CORDIC for

the calculation of elementary function is always needed in

electronics systems i.e. DSP processors, image processing and

arithmetic units in microprocessors. On VLSI implementation

level, the area also becomes quite important as more area

means more system cost. The three parameters i.e. power,

speed and area are always traded off. For DSP processors area

and speed are the main ones. CORDIC algorithm is very

attractive for hardware implementation because it uses only

elementary shift-and-add operations to perform the vector

rotation. It only needs the use of 2 shifter and 3 adder

modules, so its power dissipation is very less and it is also

very compact. Therefore, it is frequently used in an array of

processing elements on VLSI chips.

However, the major disadvantage of the CORDIC algorithm

is its slow computational speed. For iterative CORDIC

structure, the speed and performance of CORDIC operation is

limited by the large iteration number, N which is generally

equal to the internal word length, W. One solution to such a

problem is to reduce the iteration count directly. Other

solution is to use bit parallel CORDIC algorithm or to use bit

parallel unrolled CORDIC. One other method is to use

Control CORDIC algorithm instead of Original CORDIC, in

which, delay is improved by eliminating the divergent

rotations [3]. For applications that require forward rotation

only, the Angle Recoding CORDIC can be used [4]. In Angle

Recoding CORDIC, iteration count is reduced by skipping

over some rotation angles. The maximum number of iterations

required by this method is N/2, with an average value of

approximately N/3 iterations. The associated CORDIC

method that makes use of the Angle Recoding method is

termed as Adaptive CORDIC [5]. The CORDIC algorithm

can be applied in two different modes (e.g., rotation mode and

vectoring mode) and three types (e.g., linear, circular and

hyperbolic mode) [6].

In this paper, Original CORDIC, Control CORDIC and Angle

Recoding CORDIC of 16-bit, 24-bit and 32-bit fixed point

number have been synthesized using Xilinx 13.1. A

comparison is made for 16-bit and 24-bit with the reference

paper [5]. To attain a generic design, VHDL hardware

description language was used to synthesize the entire

CORDIC units as it presents a tremendous productivity

improvement for circuit designers and descriptions of large

circuits can be written in a relatively compact and concise

form. Section 2 reviews the Original CORDIC algorithm.

Section 3 presents a review of Control CORDIC. Section 4

presents a review of Angle Recoding CORDIC which seeks to

reduce the high latency by reducing the number of iterations.

Section 5 describes 16-bit, 24-bit and 32-bit fixed point

number representation. Section 6 presents the results for the

Original CORDIC, the Control CORDIC and the Angle

Recoding CORDIC for 16 bit, 24 bit and 32 bit. Section 7

concludes the paper.

2. CORDIC ALGORITHM
The Volder’s algorithm was derived from the general

equations of vector rotation. CORDIC is highly useful

algorithm for the calculation of elementary function. The

main disadvantage of the CORDIC algorithm is the long

latency. A lot of work has been done by researcher to the

latency of the CORDIC algorithm. One way to improve the

latency is to reduce the number of iteration count. Ercegovac

and Lang [7] developed the Online CORDIC. Online

CORDIC is suitable for applications where input bits became

available serially. The Online CORDIC method replaces

variable shifters by more area-efficient delays. Online

CORDIC method could also compensate for the value of K

online. Duprat and Miller [8] used fast adders that are based

upon the use of redundant arithmetic to reduce the cycle time

of a CORDIC iteration.

The CORDIC algorithm is used to evaluate real time

calculation of the exponential and logarithmic functions using

the iterative rotation of the input vector. The rotation of a

given vector is realized by means of a sequence of rotations

with fixed angles which results in overall rotation through a

given angle or result in a final angular argument of zero.

CORDIC hardware is very simple, consisting only of 2

shifters and 3 adders, it is able to evaluate a wide variety of

elementary functions, and consequently it finds use in many

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

36

different engineering applications. The underlying method of

computing the rotation of a vector in a Cartesian coordinate

system and evaluating the length and angle of a vector was

developed by Volder [2].

The resulting vector , of the rotation of a

vector (, by an angle θ in Cartesian coordinates can

be computed by the following matrix operation:

 [

] [

] [

] (1)

Using the identity

√
 (2)

and factoring out equation (1) can be modified to

 [

]

√
[

] [

] (3)

In the CORDIC method, the rotation by an angle is

implemented as several micro rotations by a given step angle

 . Any angle can be represented to a certain accuracy by a

set of n step angle . Specifying a direction of rotation or

sign the sum of the step angles approximates a given

angle as follows

 ∑

 (4)

The sign of the difference between the angle and the partial

sum of step angles ∑

 controls the sign of the

step angle . To simplify the computation of the matrix

product (3), the step angles are chosen such that

represents a series of powers of 2:

An auxiliary variable is introduced that contains the

accumulated partial sum of step angles and can be used to

control the sign of the step angles.

The CORDIC method can be employed in two different

modes, known as the “rotation” mode and the “vectoring”

mode. In the rotation mode, the co-ordinate components of a

vector and an angle of rotation are given and the co-ordinate

components of the original vector, after rotation through a

given angle, are computed. In the vectoring mode, the co-

ordinate components of a vector are given and the magnitude

and angular argument of the original vector are computed.

In case of rotation mode:

Inputs:

Iteration equations:

 (5)

 (6)

 (7)

where

 {

 (8)

Outputs:

 where ∏ √
 (9)

is a scale factor, that represents the increase in magnitude of

the vector during the rotation process since the rotation is not

a pure rotation but a rotation-extension. When the number of

iterations/micro-rotations is fixed the scale factor is a constant

approaching the value of 1.647 as the number of iterations

goes to infinity.

2.1 Sine and Cosine Computation using the

CORDIC Method
The rotation mode of the CORDIC algorithm could be used to

compute sine and cosine of an angle . The computation of

 and is based on the rotation of an initial vector of

unit length, that is aligned with the abscissa
 .

Input values for n iterations:

Outputs after n micro-rotations:

 (9)

 (10)

 (11)

The magnitude of the initial vector increases by a factor

during the micro-rotations that constitute the rotation mode

and an operation of division is required at the end of the

rotation process in order to obtain the value of

 . One simple way to avoid the operation of

division is to compensate the scale factor by setting the initial

value ⁄ , since the scale factor is a constant for a

given number of iterations. Fig 1 shows the block diagram of

CORDIC algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

37

Figure 1: Block Diagram of CORDIC algorithm

2.2 Original CORDIC- Rotation
 In the CORDIC algorithm, for the calculation of sine and

cosine value of any angle, there is a set predefined angle

constants which are used to calculate of any desired angle.

These angle constants are added or subtracted depending upon

equation (8) to calculate the value of desired angle. These

angle constant can be stored in a table. For example: To

calculate the sine or cosine value of 30 degrees, all the angle

constants that are stored in a table are either added or

subtracted from the previous calculated value to approach to

an angle of 30 degree. Now if rotation is to be accomplished

in 16 numbers of iterations, then 16 predefined angle

constants are desired that are arranged in a sequence as shown

below:

In the Original CORDIC method, all the above 16 angles are

added or subtracted in sequence to approach to 30 degrees, as

shown in equation (12).

 (12)

In the equation (12), as a whole algorithm converges but there

are certain rotation that leads to divergent pseudorotation. For

example is a divergent pseudo-rotation.

3. CONTROL CORDIC ALGORITHM
The Control CORDIC method [4] used to a technique to

reduce the number of iterations for calculating the desired

rotation angle without affecting the desired precision but

Control CORDIC make use of ROM space for storing

different scaling factors. The technique was based upon the

observation that in the Original CORDIC algorithm, the

iteration variable does not always converge monotonically

to 0 – some of the iterations may actually result in divergent

micro-rotations, which do nothing to improve the convergence

towards the target vector. As shown above in section 2.2,

these divergent micro-rotations (seen at i = 3) in the Original

CORDIC algorithm.

In the Original CORDIC, the angle trajectory looks very

similar to the under-damped response of a second order

control system, with overshoot occurring, that is already seen

in section 2.2. The Control CORDIC method modifies the

angle trajectory so that it now resembles a critically damped

system, with no overshoot, resulting in faster convergence.

Now, divergent rotations can only occur when there is an

overshoot, so by eliminating completely eliminating the

overshoot, divergent micro-rotations are eliminated. But some

overshoots are also leads to convergent micro-rotation, that

are also eliminated.

For positive angles the rotation direction is restricted to

 as given below:

 |

Similarly for negative angles the rotation direction is

restricted to . This simple angle selection function

thus prevents any overshoot of the target position by the

moving vector.

The advantage of this method is that its angle selection

function is quite simple, and is easy to implement with only a

minimal effect on the cycle time, thus allowing its use in

dynamic situations where the angle of rotation can take any

value. However in return for the reduction in iteration count,

+/- +/-
+/-

>>i >>i

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

38

this method requires the use of a ROM to store the different

scaling factors.

3.1 Control CORDIC- Rotation
As seen in the section 3.2, for calculating the angle 30 degree,

Original CORDIC take 16 number of iterations. Now in case

of Original CORDIC, it again uses the predefined angle

constant as shown below, but out of these angle constants, the

angle constant which leads to the divergent micro-rotation are

eliminated. Predefined angle constants are shown below:

In the Control CORDIC method, the rotation through 30

degrees is carried out by the following sequence of angular

steps or pseudo-rotations, that add up to approximately 30

degrees, as shown in (13)

 (13)

As we seen in (13), in case of Control CORDIC, divergent

rotations are completely eliminated by eliminating overshoot.

4. ANGLE RECODING CORDIC
The Angle Recoding (AR) technique is suitable for

applications that use CORDIC algorithm in only forward

rotation mode (also known as vector rotation mode) [4]. In

Angle Recoding CORDIC, there is large number of reduction

in the iteration count as compared to Original CORDIC and

Control CORDIC as well angle precision is not affected by

the reduction in iteration count. In this case, the desired

rotation angle is calculated as a linear combination of very

few rotation angles. Each of these elementary rotation angles

takes one CORDIC iteration to compute. The fewer the

number of elementary rotation angles, the fewer the number

of iterations are required. Figure 2 shows the block diagram of

Angle Recoding CORDIC.

Figure 2: Block Diagram of Angle Recoding CORDIC

Angle Recoding uses a greedy algorithm to skip over some

rotation angles, and can reduce the number of iterations

required. The maximum number of iterations required by this

method is N/2, with an average value of approximately N/3

iterations. It is studied that this algorithm is able to reduce the

total number of required elementary rotation angles by at least

50% without affecting the computational accuracy.

 The AR algorithm proposed by Hu and Naganathan

[4] is software based algorithm due to which it used only for

very application. But this Angle Recoding Algorithm must be

modified, so it can be implemented in hardware also. By

implementing AR algorithm in hardware, it can be used to

find any desired rotation angle. This is done by replacing the

serial testing of the angle constants in the original algorithm

by a parallel test to be carried out in hardware in case of

Adaptive CORDIC [5]. It was done by completely eliminate

Shift Shift

Sign
- - - -

MINM

ADD/SUB ADD/SUB

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

39

the angle selection step from every iteration altogether.

Instead of using the current residual angle to determine the

angle constant for that iteration, it would be much more

efficient if all the angle constants could be identified in a

single step, using only the initial rotation angle as input.

In case of Angle Recoding, instead of choosing all the angle

constants stored in ROM, we make use of a technique in

which residual angle is compared with all the angle

constants stored in ROM and the angle constant with

minimum difference is chosen. The

corresponding angle constant with minimum difference is

chosen and the index i related to that angle constant is used

for the shift operations. After shifting operation, the process

of calculating the new X and Y coordinates of the vector is

done. The extra logic needed for the calculation of angle

constant with minimum difference will increase the cycle

time. Due which the reduction in iteration count will not

affect the latency of CORDIC algorithm and even we get

more latency for large value of N.

4.1 Angle Recoding CORDIC- Rotation
Consider the rotation of a vector from the x-axis through an

angle of, e.g. 30 degrees. Assuming that the rotation is to be

accomplished for 16 number of bits

 , the set Q of

predetermined angle constants that are used is as follows:

In AR CORDIC, the rotation through 30 degrees is carried out

by the following sequence of angular steps or pseudo-

rotations, that add up to approximately 30 degrees, as shown

on below:

) (14)

So we see in (14) that in case of AR CORDIC, we require

only 5 iterations instead of 16 iterations for 16 bit data. So,

number of iteration count is reduced but cycle time may be

either remain same or may be increase for large value of N.

5. Fixed Point Number Representation
In real life, we deal with real numbers -- numbers with

fractional part. Most modern computer have native (hardware)

support for floating point numbers. However, the use of

floating point is not necessarily the only way to represent

fractional numbers. This section describes the fixed point

representation of real numbers. The use of fixed point data

type is used widely in digital signal processing (DSP) and

game applications, where performance is sometimes more

important than precision. Fixed point arithmetic is much faster

than floating point arithmetic. In case of fixed point

representation, every word has the same number of digits and

the binary point is always fixed at the same position.

5.1 Signed Two’s Complement Fixed Point
In case of N-bit signed two’s complement fixed point number,

the most significant bit starts from the left. The most

significant bit represents the sign bit i.e. if it is 0, number is

positive and if it is 1, then number is negative. The remaining

N-1 bits are divided into m bit integer part and n bit fractional

part. The binary point is always fixed at the same position.

 N bits

Sign bit Integer part Fractional part

Figure 3: Signed Fixed point representation

Total bits, N = sign bit + Integer bits + Fractional bit

 = 1 + m + n

In this paper, 3 types of signed fixed point number

representation: 16-bit, 24-bit and 32-bit has been used.

Number of bits used for integer part and fractional part is

shown in the Table 1.

Table 1 Signed fixed point representation

Total number of bits 16-bit 24-bit 32-bit

Sign bit 1 bit 1 bit 1 bit

Number of integer bits 8 bits 8 bits 8 bits

Number of fractional bits 7 bits 15 bits 23 bits

6. RESULTS
VLSI implementation of Original CORDIC, Control CORDIC

and Angle Recoding CORDIC for 16-bit, 24-bit and 32-bit

have been successfully done on Xilinx Virtex 5.

In the figure 4 (a) – (c) the simulation result of the

16 bit, 24 bit and 32 bit signed fixed point Original CORDIC

or sine and cosine computation on Modelsim 6.3f are shown.

Figure 4 (a)

Figure 4 (b)

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

40

Figure 4 (c)

Figure 4 (a)-(c): Simulation results for generation of sine

and cosine using Original CORDIC for different numbers

of bits (a) 16 bit (b) 24 bit & (c) 32 bit

Synthesis Results on FPGA of Original CORDIC, Control

CORDIC and Angle Recoding CORDIC

Delay of 16-bit Original CORDIC, Control CORDIC and

Angle Recoding CORDIC is 1.90ns. Delay for 24-bit is

2.22ns and for 32-bit is 2.41ns. We see that the delay is

increased as we increase the number of bits. Number of slice

registers for various CORDIC and for different number of bits

is also calculated. All these results are shown in Table 2.

Table 2 Synthesis Report of Original CORDIC, Control

CORDIC and Angle Recoding CORDIC on Virtex 5

 16-bit 24-bit 32-bit

Minimum

period

1.88ns 2.22ns 2.41ns

Maximum

Frequency

525.91

MHz

448.69

MHz

414.81

MHz

No. of slice

registers in

Original

CORDIC

4602/51840

(8%)

8148/51840

(15%)

14212/51840

(27%)

No. of slice

registers in

Control

CORDIC

5942/51840

(11%)

12346/51840

(23%)

19608/51840

(37%)

No. of slice

registers in

AR

CORDIC

7652/51840

(14%)

19004/51840

(37%)

25012/51840

(49%)

Table 3 shows the comparison of delay for 16-bit and 24-bit

Original CORDIC, Control CORDIC, Angle Recoding

CORDIC with the reference paper [5]. Table 3 also shows the

percentage improvement in delay. Table 3 shows that for 16-

bit CORDIC algorithm the improvement in speed is 2.5% and

for 24-bit improvement in speed is 12.5%.

Table 3 Comparison of delay and percentage

improvement for 16-bit and 24-bit Original CORDIC,

Control CORDIC, Angle Recoding CORDIC

 16-bit 24-bit

DELAY Original Paper 1.88ns 2.22ns

 Reference Paper [5] 1.93ns 2.55ns

Percentage Improvement in

Speed

2.5% 12.95%

7. CONCLUSION
The implementation of Original CORDIC, Control CORDIC

and Angle Recoding based on 16 bit, 24 bit and 32 bit is

developed. Delay of Original CORDIC, Control CORDIC and

Angle Recoding CORDIC remain same for same number of

bits. The area required has been measured in terms of slice

register. These are basically synthesized to get high speed in

term of frequency. Delay comes out to be 1.88ns, 2.22ns and

2.41ns in case of 16-bit, 24-bit and 32-bit fixed point

CORDIC respectively. Frequency is 525.91MHz, 448.69MHz

and 414.81MHz in case of 16-bit, 24-bit and 32-bit fixed point

CORDIC respectively. Delay remains same for Original

CORDIC, Control CORDIC and Angle Recoding CORDIC

for same numbers of bits. But the iteration count is nearly half

in case of Angle Recoding CORDIC as compared to Original

and Control CORDIC. It has found that 3 adders/subtractors,

3 registers and 2 shifters are required and no multiplier is used

in CORDIC algorithm. Also Control CORDIC shows no

overshoot as compared to Original CORDIC. Number of

iteration is reduced to half in case of Angle Recoding

CORDIC, but delay remains same due to increase in cycle

time needed for angle selection process. Percentage

improvement in speed is 2.5% for 16-bit fixed point CORDIC

and 12.95%.

8. REFERENCES
[1] J. Volder, “The CORDIC Trigonometric Computing

Technique,” IRE Transactions on Electronic

Computers, vol. EC-8, no. 3, pp. 330-334, 1959.

[2] J. Walther, “A Unified Algorithm for Elementary

Functions,” Proceedings of Spring Joint Computer

Conference, vol. 38, pp. 379-385, 1971.

[3] S. Wang and E. Swartzlander, “Critically Damped

CORDIC Algorithm,” Proceedings of the 37th Midwest

Symposium on Circuits and Systems, vol. 1, pp. 236-

239, 1994.

[4] Y. Hu and S. Naganathan, “An Angle Recoding

Method for CORDIC Algorithm Implementation,”

IEEE Transactions on Computers, vol. 42, no. 1, pp.

99-102, 1993.

[5] T. Rodrigues and E. Swartzlander, “Adaptive

CORDIC: Using Parallel Angle Recoding to Accelerate

Rotations,” IEEE Transactions on Computers, vol. 59,

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

41

no. 4, pp. 522-531, 2010.

[6] R. Andraka, “A survey of CORDIC algorithm for

FPGA based computers,” International Symposium on

Field Programmable Gate Arrays, no. 2, pp. 191-200,

1998.

[7] M. Ercegovac and L. Tomas, “Redundant and On-Line

CORDIC: Application to Matrix Triangularization and

SVD,” IEEE Transactions on Computers, vol. 39, pp.

725-740, 1990.

[8] J. Duprat and J. Muller, “The CORDIC Algorithm:

New Results for Fast VLSI Implementation,” IEEE

Transactions on Computers, vol. 42, no. 2, pp. 168-178,

1993.

