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ABSTRACT 

Data compression is an effective means for saving storage 

space and channel bandwidth. There are two main types of 

compression lossy and lossless. This paper will deal with 

lossless compression techniques named Huffman, Arithmetic, 

LZ-78 and Golomb coding. The paper attempts to do 

comparative analysis in terms of their compression efficiency 

and speed. The test files used for this include English text 

files, Log files, Sorted word list and geometrically distributed 

data text file. The implementation results of these 

compression algorithms suggest the efficient algorithm to be 

used for a certain type of file to be compressed taking into 

consideration both the compression ratio and speed of 

operation. In terms of compression ratios, Golomb is best 

suited for very low frequency Text files, arithmetic for 

moderate and high frequency. Implementation is done using 

MATLAB software.   

General Terms 

Text Compression. 
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1. INTRODUCTION 
Compression is a process of reducing the amount of data 

needed for storage or transmission of a given piece of 

information (text, graphics, video, sound, etc.) typically by 

use of encoding techniques. Data compression is used in a 

computer system to store data in a format that occupies less 

space than the original form. In order to effect data 

compression special software packages are required to 

compress the data and to reopen it to its original size. Data 

compression is characterized as either lossy or lossless. The 

compression process is said to be lossless if the recovered data 

are assured to be identical to the source; otherwise it is said to 

be lossy. Lossless compression techniques are requisite for the 

applications involving textual data, since losing a single 

character can be in the worst case make the text dangerously 

misleading.  

In general, the input stream, generated from a data source, is 

fed into an encoder. The encoder then codes the stream of 

symbols and compresses data. If the compression is effective, 

the resulting stream of codes will be smaller than the original 

symbols. The decision to output a certain code for a certain 

symbol is based on a model. A notion of model is useful in 

understanding how the encoder works. The model defines the 

parameters that need to be used by the compression algorithm. 

For example, in Huffman coding, the probability of characters 

is used for coding. To regenerate original data from the 

compressed data, decoder is used. The decoder applies the 

reverse algorithm of that used by the encoder. Moreover, the 

decoder has some prior knowledge as to how the data is being 

encoded. This is how the standard compression algorithm 

works. The performance parameter compression ratio is given 

by ratio of uncompressed file size to the compressed file size. 

In the next section, the related work is briefed. In Section 3, 

the compression techniques used to manipulate compressed 

data are discussed. Section 4 contains a preliminary 

performance analysis. We offer our conclusions in Section 5. 

2. RELATED WORK 
Singla et al. [1] gives the comparative analysis between 

Huffman and Arithmetic, concluding arithmetic coding is 

superior to Huffman. As arithmetic accommodates adaptive 

models easily and provide separation between model and 

coding. In arithmetic coding there is no need to translate each 

symbol into an integral number of bits, but it involves the 

large computation on the data like multiplication and division. 

The disadvantage of arithmetic coding is that it runs slowly, 

complicated to implement and it does not produce prefix code. 

Arithmetic Compression [2] is more suitable for small text 

when compared with Huffman compression and for large text 

Huffman compression is suitable. 

When the size of the dictionary is unlimited the LZ78 

compression [3] is optimal since the text file is large. Patterns 

in the dictionary may not be repeating patterns, and 

furthermore all parents of patterns are also included in the 

dictionary. The dictionary will diverge if these non-repeating 

patterns and pattern’s parents are not handled properly. 

Hence, pruning the dictionary after each modified, LZ78 

iteration is essential to have a convergent dictionary, thus 

enabling easier extraction of repeating patterns [4]. 

Kodituwakku et. al. [5] compares various lossless algorithms 

tested on different types of files, conclude that Shannon-Fano 

algorithm can be considered as the most efficient algorithm 

among the selected ones and RLE is suited for the text file 

having more number of repeating runs. 

In our paper we compared the lossless data compression 

algorithms Huffman, Arithmetic, Golomb, LZ-78 in terms of 

their compression ratio, time required for coding. Also we 

suggest the efficient algorithm to be used for a certain type of 

file to be compressed taking into consideration both the 

compression ratio and compressed file size. 

3. IMPLEMENTATION 

3.1 Huffman Coding 
Huffman Coding was developed by David A. Huffman while 

he was a Ph.D. student at MIT, and published in the 1952. 

paper "A Method for the Construction of Minimum-

Redundancy Codes" [1]. Huffman coding is an entropy 

encoding algorithm used for lossless data compression. The 

term refers to the use of a variable-length code table for 

encoding a source symbol where the variable-length code 

table has been derived in a particular way based on the 

estimated probability of occurrence for each possible value of 
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the source symbol. Huffman coding uses a specific method for 

choosing the representation for each symbol, resulting in 

a prefix code that expresses the most common source symbols 

using shorter strings of bits than are used for less common 

source symbols. 

Algorithm 

For Encoding 

1.  Read Text File. 

2.  Get the probabilities of every character in the file. 

3.  Sort the characters in descending order according to 

their probabilities 

4.  Generate the binary tree from left to right until you 

have just one symbol left. 

5.  Read the tree from right to left assigning different 

bits to different branches. 

6.  Store the final Huffman dictionary. 

7. Encode every character in the file by referring to the     

dictionary. 

8.  Transmit the encoded code along with the dictionary 

For Decoding 

1.  Read the encoded code bitwise. 

2.  Look for the code in the dictionary 

3.  If there is a match gets, its corresponding symbol 

else read the next bit and repeat Steps 3 & 4 

4.  Write the decoded text in a file 

3.2 Arithmetic Coding 
In lossless compression the problem is to decompose a data 

set into a sequence of events, then to encode the events using 

as few bits as possible. The basic idea of arithmetic is to 

assign short codeword to more probable events and longer 

codeword to less probable events. Data can be compressed 

whenever some events are more likely than others. Arithmetic 

coding provides an effective mechanism for removing 

redundancy in the encoding of data. The older and better-

known Huffman codes [2] are optimal only among 

instantaneous codes, that is, those in which the encoding of 

one event can be decoded before encoding has begun for the 

next event. In arithmetic coding an interval is assigned to each 

symbol. Starting with the interval [0, 1), each interval is 

divided in several subintervals, which sizes are proportional to 

the current probability of the corresponding symbols of the 

alphabet. The subinterval from the coded symbol is then taken 

as the interval for the next symbol. The output is the interval 

of the last symbol. Implementations write bits of this interval 

sequence as soon as they are certain. Arithmetic codes assign 

one codeword to each possible data set and the codeword 

length approximately equals to -log2p(s) where p(s) is the 

probability of the source sequence s. The shorter codes 

correspond to larger subintervals and thus more probable 

input data sets. In practice, the subinterval is refined 

incrementally using the probabilities of the individual events 

and is encoded with bits being output as soon as they are 

known. Arithmetic coding is different from other coding 

methods for which we know the exact relationship between 

the coded symbols and the actual bits that are written to a file. 

It encodes one data symbol at a time, and assigns to each 

symbol a real-valued number of bits.  For highly skewed 

probability arithmetic coding is efficient coding method.  

Algorithm 

The algorithm for encoding a file using arithmetic coding 

works conceptually as follows: 

1.  Calculate the probability of each symbol. 

2.  Calculate its cumulative probability Pc.  

3.  Begin with a current interval [L, H) initialized to 

[0, 1) 

4.  For each event in the file, we perform two steps. 

    a. We subdivide the current interval into subintervals, one 

for each possible event. The size of a event's subinterval is 

proportional to the estimated probability that the event will be 

the next event in the file, according to the model of the input.              

    b. We select the subinterval corresponding to the event      

that actually occurs next, making it the new current interval. 

         Lower interval L = L+ Pc* (H-L)*L; 

         Higher interval H = L+ Pc*(H-L)*H; 

5.  Assign a unique identical tag for the message. 

For decoding, the tag value is taken; the new tag value is 

calculated using formula: 

                     Tag= (Tag – L(s)) / Pc(s) 

The corresponding lower interval and cumulative probability 

of symbol s is taken to decode the tag value. The process 

continues till the end of text file. 

As the length of the source sequence increases, the length of 

the subinterval specified by the sequence decreases, and more 

bits are required to precisely identify the subinterval. 

Implementation of arithmetic coding uses a scaling strategy a 

rounding strategy. In Scaling, it magnifies each subinterval 

prior to partitioning so that its length is always close to 1. The 

length of the current interval is doubled so that it reflects only 

the unknown part of the final interval, while in rounding it 

uses a fixed bit length (b-bit) (finite precision) arithmetic to 

measure the subinterval and perform the partitioning. 

Consider the following example: 

-  If new subinterval is not entirely within one of the intervals 

[0, 1/2), [1/4, 3/4) or [1/2, 1) we stop iterating and return. 

- If the new subinterval lies entirely within [0,1/2), we output 

0 and any 1s left over from previous symbols; then we double 

the size of the interval [0,1/2) and expand toward the right. 

 - If the new subinterval lies entirely within [1/2, 1) we output 

1 and 0s left over from previous symbols; then we double the 

size of the interval [1/2, 1) expanding toward the left. 

- If the new subinterval lies entirely within [1/4, 3/4) we keep 

track of this fact for future output; then we double the size of 

the interval [1/4, 3/4) expanding in both directions away from 

the input. 

3.3 LZ-78 
One year after publishing LZ77 Jacob Ziv and Abraham 

Lempel had introduced another compression method [3]. 

Accordingly this procedure is called LZ78. LZ78 is based on 

a dictionary that will be created dynamically at runtime. Both 

the encoding and the decoding process use the same rules to 
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ensure that an identical dictionary is available. This dictionary 

contains any sequence already used to build the former 

contents. The compressed data have the general form: 

1. Index  (I) addressing an entry of the dictionary 

2. First deviating symbol (S) 

In contrast to LZ77 no combination of address and sequence 

length is used. Instead only the index to the dictionary is 

stored. The mechanism to add the first deviating symbol 

remains from LZ77. 

Also instead of having carte blanche access to all the symbol 

strings in the preceding text, a dictionary of strings is built a 

single character at a time. The first time the string “Mark” is 

seen, for example, the string “Ma” is added to the dictionary. 

The next time, “Mar” is added. If “Mark” is seen again, it is 

added to the dictionary. This incremental procedure works 

very well at isolating frequently used strings and adding them 

to the table.  

An  important  theoretical  property  of  LZ78  is  that  when  

the  input  text  is  generated  by  a  stationary,  ergodic  

source, compression  is  asymptotically  optimal  as the  size  

of  the  input  increases.  That  is, LZ78  will  code  an  

indefinitely  long  string in  the  minimum  size  dictated  by  

the  entropy  of  the  source. Very few compression methods 

enjoy this property. A source is ergodic if any sequence it 

produces becomes entirely  representative of the source as its 

length  grows  longer  and  longer.  Since  this is a fairly  mild  

assumption,  it  would  appear that  LZ78  is  the  solution  to  

the  text compression  problem.  The  optimality,  however,  

occurs  as  the  size  of  the  input  tends to  infinity,  and  most  

texts  are  considerably shorter  than  this!  It  relies  on  the  

size  of  the explicit  character  being  significantly  less than  

the  size  of  the  phrase  code.  Since  the former  is  about  8  

bits,  it  will  still  be  consuming  20%  of the  output  when  

240 phrases have  been  constructed. Even if a continuous 

input were available, we would run out of memory long 

before compression became optimal.  

The real issue is how fast LZ78 converges toward this limit. 

In  practice, convergence is  relatively  slow,  and 

performance  is  comparable  to  that  of  LZ77.  The reason  

why LZ  techniques  enjoy  so much  popularity  in practice  is  

not  because  they  are  asymptotically  optimal  but  for  a 

much  more  prosaic reason-some  variants  lend  themselves  

to highly  efficient  implementation. 

Algorithm 

For Encoding 

1. Initially the dictionary and P are empty. 

2. Read the input character string one by one. 

3. Check whether the input character is present in the 

dictionary or not. 

4. If it is not present in the dictionary then mark it as 

new index entry. 

5. For each character of the input stream, the dictionary 

is searched for a match. 

6. If a match is found, then last matching index is set to 

the index of the matching entry, and nothing is 

output.  

7. If a match is not found, then a new dictionary entry is 

created. 

8. Once the dictionary is full, no more entries are 

added. When the end of the input stream is reached, 

the algorithm outputs last matching index.  

For Decoding 

1. Initially dictionary is empty 

2. Read the codeword consisting index (I) and symbol 

(S) 

3. Output the original input character string using these 

codewords; simultaneously the dictionary is also 

updated. 

The process goes on till the end of encoded codewords. 

3.4 Golomb Coding 
Golomb coding is a lossless data compression method using a 

family of data compression codes invented by Solomon W. 

Golomb in the 1960s. Golomb code gives an optimal prefix 

code where alphabets are geometrically distributed. This 

makes Golomb coding highly suitable for situations in which 

the occurrence of small values in the input stream is 

significantly more likely than large values. Golomb code is 

run-length based coding method. In machine code files, 

facsimile Data, video signals the Run Length Encoding (RLE) 

is used. Golomb coding is a practical and powerful 

implementation of RLE of binary streams. In RLE instead of 

sending long runs of ‘0’s or ‘1’s, it sends only how many are 

in the run. We propose two methods for Golomb coding; one 

is symbol encoding using absolute value and another using 

index integer value. In symbol encoding using absolute value 

the symbols are encoded in terms of ASCII values while in 

index method index integer values are assigned to the 

symbols. 

Algorithm 

1. Represent each subsequence of identical symbols by a pair 

(L,a) where L is the length of the subsequence, and ‘a’ is 

the recurring symbol in the subsequence. For e.g.: 

‘aaabbbbaaaa’ is coded as (3,a) (4,b) (4,a)    

2. The encoding of symbol is done by any method using 

absolute value or index integer value. Calculate the 

number of zero’s. From that fix the parameter as  

      M= ┌-1/log2┐ P to an integer value. 

 3.  For N, the number to be encoded, find  

         i. Quotient = q =  

        ii. Remainder = r = N modulo M 

 4.  Generate Codeword as in format: 

          <Quotient Code> <Remainder Code>,  

         i. Quotient Code (in unary coding)  

              a. Write a q-length string of 1 bits 

              b. Write a 0 bit 

        ii. Remainder Code  

              a. If M is power of 2, code remainder as binary   

format. So log2M bits are needed. 

              b. If M is not a power of 2, set b= ┌log2 M┐ 

If r < (2b – M) code r as plain binary using b-1 

bits. 

                  If  r ≥ (2b – M) code the number (r + 2b- M) in 

plain binary representation using b bits. 

4. Results 
For the comparative analysis of data compression algorithms 

different types of test text files are taken which includes 

English text files, Log files, Sorted word list and 

geometrically distributed data text file, the sample files are 

shown in Fig.1. The algorithms are executed on Intel(R) 
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Core(TM)2 Duo CPU T6600 @ 2.20GHz, 2.20Ghz with 

RAM: 4.00GB (3.50 GB usable ), Windows 7 (64bit).  

 

For the Test1 file consisting English text the arithmetic and 

Huffman gives compression ratio of 1.738, 1.721 respectively 

which is good one, while LZ-78, Golomb does not perform 

well. For the small variations in the text files the Golomb fails 

to compress the file so its compression ratio is less than 1 for 

all test files except Test4. The time required for encoding is 

very large for arithmetic i.e. speed of encoding is very slow, 

as it has great computational complexity. If the file size is 

large the dictionary based LZ-78 fails to compress much more 

compared to Huffman and arithmetic. The test files are shown 

in Fig. 1 and result in  

RESULT TABLE I 

File 

Name 

Encoding 

Time(sec) 

Decoding 

Time(sec) 

Original 

Size(Byte

s) 

Compresse

d 

Size(Bytes) 

Compr

ession 

Ratio 
                                             A.  Huffman Coding 

Test1 5.19364304 57.8890950 18036 10475.250

2 

1.7217

7 
Test2 0.18720108 6.91170801 1953 1291.375 1.5123

4 
Test3 0.15442160 0.64738037 231 115.12500 2.0065

1 
Test4 0.16503020 0.1004763 116 19.875 5.8364

7 

B.  Arithmetic Coding 

Test1 269.595014 57.4358269 18036 10376.875 1.7380

9 
Test2 6.64236644 1.87559584 1953 1282.625 1.5226

5 
Test3 0.3081655 0.09852928 231 115.375 2.0021

6 
Test4 0.058989 0.048297 116 14.87 7.7983

1 

C.   LZ-78 Coding 

Test1 18.4466144 1.32978234 18036 12375.879

7 

1.4573

5 
Test2 0.53048965 0.16914965 1953 1477.2500

5 

1.3220

5 
Test3 0.03739823 0.03395197 231 163.99974

4 

1.4085

3 
Test4 0.010867 0.014461 116 38 3.0526

3 

D.  Golomb (Absolute) Coding 

Test1 607.48828

8 

702.6754 18036 24768 0.7282 

Test2 6.976569 11.627427 1953 2608.3 0.7488 

Test3 0.820101 0.944019 231 358.5 0.6444 

Test4 1.630964 0.182628 116 18.25 6.3562 

E.  Golomb (Index) Coding 

Test1 415.69843

3 

786.4765 18036 19746 0.9134 

Test2 5.544032 9.544212 1953 2119.1 0.9216 

Test3 1.135808 1.630463 231 209 1.1053 

Test4 0.293351 0.150408 116 11.625 9.9785 

5. CONCLUSION 
On the basis of results we conclude that Huffman coding is 

optimal when the probability of each input symbol is a 

negative power of two. Huffman fails to compress the data in 

large amount when the symbols have skewed probability and 

long runs as compared to Arithmetic and RLE based Golomb 

coding respectively. For the text containing highly skewed 

probability symbols, the arithmetic coding performs very 

well, though the computational complexity is very high and its 

speed is less compared to Huffman. 

 

LZ-78 gives good compression ratio for highly correlated 

data. For the large file size, larger dictionary is required 

causing higher efforts for addressing and administration both 

at runtime. Also as the file size increases the compression 

efficiency of the algorithm increases because of increase in 

size of dictionary. The compression is optimal when the text 

file is large as there are more chances to replace identified 

words by using a small index number. Golomb coding is RLE 

based coding method. It gives its best performance when the 

data in text is highly geometrically distributed. In Golomb 

coding when the runs are encoded using the index-integer 

method, it gives better performance than the absolute valued. 

Using the index method the compression ratio and speed is 

increased as compared to absolute valued method as it 

requires more number of bits to encode the symbol in ASCII 

value. The disadvantage of index method is that at decoder 

side the index valued dictionary must be provided. Golomb 

coding is highly dependent on the geometric distribution of 

data. 
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ENGLISH TEXT (Test1) 

 

LOG FILE (Test2) 

 

SORTED WORD LIST (Test3) 

 

GEOMETRICALLY DISTRIBUTED (Test4) 

Figure1. Input Text files 
 

Mrs. Rachel Lynde lived just where the Avonlea main road dipped 

down into a little hollow, fringed with alders and ladies' eardrops and 

traversed by a brook that had its source away back in the woods of the 

old Cuthbert place; it was reputed to be an intricate, headlong brook in 

its earlier course through those woods, with dark secrets of pool and 

cascade; but by the time it reached Lynde's Hollow it was a quiet, 

well-conducted little stream, for not even a brook could run past Mrs. 

Rachel Lynde's door without due regard for decency and decorum; it 

probably was conscious that Mrs. Rachel was sitting at her window, 

keeping a sharp eye on everything that passed, from brooks and 

childrensustainable growth. Argentina's currency has traded at par 

with the US dollar since April 1991, and inflation has fallen to its 

lowest level in 20 years. Argentines have responded to the relative 

price stability by repatriating flight capital and investing in domestic 

industry. The economy registered an impressive 6% advance in 1994, 

fueled largely by inflows of foreign capital and strong domestic 

consumption spending. 


