
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

17

Comparative Analysis of Lossless Text

Compression Techniques

Nathanael Jacob
Department of E & TC

VIT, Pune.
Maharashtra.India-411037.

Priyanka Somvanshi
Department of E & TC

VIT, Pune.
Maharashtra.India-411037.

Rupali Tornekar
Department of E & TC

VIT, Pune.
Maharashtra.India-411037.

ABSTRACT

Data compression is an effective means for saving storage

space and channel bandwidth. There are two main types of

compression lossy and lossless. This paper will deal with

lossless compression techniques named Huffman, Arithmetic,

LZ-78 and Golomb coding. The paper attempts to do

comparative analysis in terms of their compression efficiency

and speed. The test files used for this include English text

files, Log files, Sorted word list and geometrically distributed

data text file. The implementation results of these

compression algorithms suggest the efficient algorithm to be

used for a certain type of file to be compressed taking into

consideration both the compression ratio and speed of

operation. In terms of compression ratios, Golomb is best

suited for very low frequency Text files, arithmetic for

moderate and high frequency. Implementation is done using

MATLAB software.

General Terms

Text Compression.

Keywords

Huffman, Arithmetic, LZ-78, Golomb, compression ratio.

1. INTRODUCTION
Compression is a process of reducing the amount of data

needed for storage or transmission of a given piece of

information (text, graphics, video, sound, etc.) typically by

use of encoding techniques. Data compression is used in a

computer system to store data in a format that occupies less

space than the original form. In order to effect data

compression special software packages are required to

compress the data and to reopen it to its original size. Data

compression is characterized as either lossy or lossless. The

compression process is said to be lossless if the recovered data

are assured to be identical to the source; otherwise it is said to

be lossy. Lossless compression techniques are requisite for the

applications involving textual data, since losing a single

character can be in the worst case make the text dangerously

misleading.

In general, the input stream, generated from a data source, is

fed into an encoder. The encoder then codes the stream of

symbols and compresses data. If the compression is effective,

the resulting stream of codes will be smaller than the original

symbols. The decision to output a certain code for a certain

symbol is based on a model. A notion of model is useful in

understanding how the encoder works. The model defines the

parameters that need to be used by the compression algorithm.

For example, in Huffman coding, the probability of characters

is used for coding. To regenerate original data from the

compressed data, decoder is used. The decoder applies the

reverse algorithm of that used by the encoder. Moreover, the

decoder has some prior knowledge as to how the data is being

encoded. This is how the standard compression algorithm

works. The performance parameter compression ratio is given

by ratio of uncompressed file size to the compressed file size.

In the next section, the related work is briefed. In Section 3,

the compression techniques used to manipulate compressed

data are discussed. Section 4 contains a preliminary

performance analysis. We offer our conclusions in Section 5.

2. RELATED WORK
Singla et al. [1] gives the comparative analysis between

Huffman and Arithmetic, concluding arithmetic coding is

superior to Huffman. As arithmetic accommodates adaptive

models easily and provide separation between model and

coding. In arithmetic coding there is no need to translate each

symbol into an integral number of bits, but it involves the

large computation on the data like multiplication and division.

The disadvantage of arithmetic coding is that it runs slowly,

complicated to implement and it does not produce prefix code.

Arithmetic Compression [2] is more suitable for small text

when compared with Huffman compression and for large text

Huffman compression is suitable.

When the size of the dictionary is unlimited the LZ78

compression [3] is optimal since the text file is large. Patterns

in the dictionary may not be repeating patterns, and

furthermore all parents of patterns are also included in the

dictionary. The dictionary will diverge if these non-repeating

patterns and pattern’s parents are not handled properly.

Hence, pruning the dictionary after each modified, LZ78

iteration is essential to have a convergent dictionary, thus

enabling easier extraction of repeating patterns [4].

Kodituwakku et. al. [5] compares various lossless algorithms

tested on different types of files, conclude that Shannon-Fano

algorithm can be considered as the most efficient algorithm

among the selected ones and RLE is suited for the text file

having more number of repeating runs.

In our paper we compared the lossless data compression

algorithms Huffman, Arithmetic, Golomb, LZ-78 in terms of

their compression ratio, time required for coding. Also we

suggest the efficient algorithm to be used for a certain type of

file to be compressed taking into consideration both the

compression ratio and compressed file size.

3. IMPLEMENTATION

3.1 Huffman Coding
Huffman Coding was developed by David A. Huffman while

he was a Ph.D. student at MIT, and published in the 1952.

paper "A Method for the Construction of Minimum-

Redundancy Codes" [1]. Huffman coding is an entropy

encoding algorithm used for lossless data compression. The

term refers to the use of a variable-length code table for

encoding a source symbol where the variable-length code

table has been derived in a particular way based on the

estimated probability of occurrence for each possible value of

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

18

the source symbol. Huffman coding uses a specific method for

choosing the representation for each symbol, resulting in

a prefix code that expresses the most common source symbols

using shorter strings of bits than are used for less common

source symbols.

Algorithm

For Encoding

1. Read Text File.

2. Get the probabilities of every character in the file.

3. Sort the characters in descending order according to

their probabilities

4. Generate the binary tree from left to right until you

have just one symbol left.

5. Read the tree from right to left assigning different

bits to different branches.

6. Store the final Huffman dictionary.

7. Encode every character in the file by referring to the

dictionary.

8. Transmit the encoded code along with the dictionary

For Decoding

1. Read the encoded code bitwise.

2. Look for the code in the dictionary

3. If there is a match gets, its corresponding symbol

else read the next bit and repeat Steps 3 & 4

4. Write the decoded text in a file

3.2 Arithmetic Coding
In lossless compression the problem is to decompose a data

set into a sequence of events, then to encode the events using

as few bits as possible. The basic idea of arithmetic is to

assign short codeword to more probable events and longer

codeword to less probable events. Data can be compressed

whenever some events are more likely than others. Arithmetic

coding provides an effective mechanism for removing

redundancy in the encoding of data. The older and better-

known Huffman codes [2] are optimal only among

instantaneous codes, that is, those in which the encoding of

one event can be decoded before encoding has begun for the

next event. In arithmetic coding an interval is assigned to each

symbol. Starting with the interval [0, 1), each interval is

divided in several subintervals, which sizes are proportional to

the current probability of the corresponding symbols of the

alphabet. The subinterval from the coded symbol is then taken

as the interval for the next symbol. The output is the interval

of the last symbol. Implementations write bits of this interval

sequence as soon as they are certain. Arithmetic codes assign

one codeword to each possible data set and the codeword

length approximately equals to -log2p(s) where p(s) is the

probability of the source sequence s. The shorter codes

correspond to larger subintervals and thus more probable

input data sets. In practice, the subinterval is refined

incrementally using the probabilities of the individual events

and is encoded with bits being output as soon as they are

known. Arithmetic coding is different from other coding

methods for which we know the exact relationship between

the coded symbols and the actual bits that are written to a file.

It encodes one data symbol at a time, and assigns to each

symbol a real-valued number of bits. For highly skewed

probability arithmetic coding is efficient coding method.

Algorithm

The algorithm for encoding a file using arithmetic coding

works conceptually as follows:

1. Calculate the probability of each symbol.

2. Calculate its cumulative probability Pc.

3. Begin with a current interval [L, H) initialized to

[0, 1)

4. For each event in the file, we perform two steps.

 a. We subdivide the current interval into subintervals, one

for each possible event. The size of a event's subinterval is

proportional to the estimated probability that the event will be

the next event in the file, according to the model of the input.

 b. We select the subinterval corresponding to the event

that actually occurs next, making it the new current interval.

 Lower interval L = L+ Pc* (H-L)*L;

 Higher interval H = L+ Pc*(H-L)*H;

5. Assign a unique identical tag for the message.

For decoding, the tag value is taken; the new tag value is

calculated using formula:

 Tag= (Tag – L(s)) / Pc(s)

The corresponding lower interval and cumulative probability

of symbol s is taken to decode the tag value. The process

continues till the end of text file.

As the length of the source sequence increases, the length of

the subinterval specified by the sequence decreases, and more

bits are required to precisely identify the subinterval.

Implementation of arithmetic coding uses a scaling strategy a

rounding strategy. In Scaling, it magnifies each subinterval

prior to partitioning so that its length is always close to 1. The

length of the current interval is doubled so that it reflects only

the unknown part of the final interval, while in rounding it

uses a fixed bit length (b-bit) (finite precision) arithmetic to

measure the subinterval and perform the partitioning.

Consider the following example:

- If new subinterval is not entirely within one of the intervals

[0, 1/2), [1/4, 3/4) or [1/2, 1) we stop iterating and return.

- If the new subinterval lies entirely within [0,1/2), we output

0 and any 1s left over from previous symbols; then we double

the size of the interval [0,1/2) and expand toward the right.

 - If the new subinterval lies entirely within [1/2, 1) we output

1 and 0s left over from previous symbols; then we double the

size of the interval [1/2, 1) expanding toward the left.

- If the new subinterval lies entirely within [1/4, 3/4) we keep

track of this fact for future output; then we double the size of

the interval [1/4, 3/4) expanding in both directions away from

the input.

3.3 LZ-78
One year after publishing LZ77 Jacob Ziv and Abraham

Lempel had introduced another compression method [3].

Accordingly this procedure is called LZ78. LZ78 is based on

a dictionary that will be created dynamically at runtime. Both

the encoding and the decoding process use the same rules to

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

19

ensure that an identical dictionary is available. This dictionary

contains any sequence already used to build the former

contents. The compressed data have the general form:

1. Index (I) addressing an entry of the dictionary

2. First deviating symbol (S)

In contrast to LZ77 no combination of address and sequence

length is used. Instead only the index to the dictionary is

stored. The mechanism to add the first deviating symbol

remains from LZ77.

Also instead of having carte blanche access to all the symbol

strings in the preceding text, a dictionary of strings is built a

single character at a time. The first time the string “Mark” is

seen, for example, the string “Ma” is added to the dictionary.

The next time, “Mar” is added. If “Mark” is seen again, it is

added to the dictionary. This incremental procedure works

very well at isolating frequently used strings and adding them

to the table.

An important theoretical property of LZ78 is that when

the input text is generated by a stationary, ergodic

source, compression is asymptotically optimal as the size

of the input increases. That is, LZ78 will code an

indefinitely long string in the minimum size dictated by

the entropy of the source. Very few compression methods

enjoy this property. A source is ergodic if any sequence it

produces becomes entirely representative of the source as its

length grows longer and longer. Since this is a fairly mild

assumption, it would appear that LZ78 is the solution to

the text compression problem. The optimality, however,

occurs as the size of the input tends to infinity, and most

texts are considerably shorter than this! It relies on the

size of the explicit character being significantly less than

the size of the phrase code. Since the former is about 8

bits, it will still be consuming 20% of the output when

240 phrases have been constructed. Even if a continuous

input were available, we would run out of memory long

before compression became optimal.

The real issue is how fast LZ78 converges toward this limit.

In practice, convergence is relatively slow, and

performance is comparable to that of LZ77. The reason

why LZ techniques enjoy so much popularity in practice is

not because they are asymptotically optimal but for a

much more prosaic reason-some variants lend themselves

to highly efficient implementation.

Algorithm

For Encoding

1. Initially the dictionary and P are empty.

2. Read the input character string one by one.

3. Check whether the input character is present in the

dictionary or not.

4. If it is not present in the dictionary then mark it as

new index entry.

5. For each character of the input stream, the dictionary

is searched for a match.

6. If a match is found, then last matching index is set to

the index of the matching entry, and nothing is

output.

7. If a match is not found, then a new dictionary entry is

created.

8. Once the dictionary is full, no more entries are

added. When the end of the input stream is reached,

the algorithm outputs last matching index.

For Decoding

1. Initially dictionary is empty

2. Read the codeword consisting index (I) and symbol

(S)

3. Output the original input character string using these

codewords; simultaneously the dictionary is also

updated.

The process goes on till the end of encoded codewords.

3.4 Golomb Coding
Golomb coding is a lossless data compression method using a

family of data compression codes invented by Solomon W.

Golomb in the 1960s. Golomb code gives an optimal prefix

code where alphabets are geometrically distributed. This

makes Golomb coding highly suitable for situations in which

the occurrence of small values in the input stream is

significantly more likely than large values. Golomb code is

run-length based coding method. In machine code files,

facsimile Data, video signals the Run Length Encoding (RLE)

is used. Golomb coding is a practical and powerful

implementation of RLE of binary streams. In RLE instead of

sending long runs of ‘0’s or ‘1’s, it sends only how many are

in the run. We propose two methods for Golomb coding; one

is symbol encoding using absolute value and another using

index integer value. In symbol encoding using absolute value

the symbols are encoded in terms of ASCII values while in

index method index integer values are assigned to the

symbols.

Algorithm

1. Represent each subsequence of identical symbols by a pair

(L,a) where L is the length of the subsequence, and ‘a’ is

the recurring symbol in the subsequence. For e.g.:

‘aaabbbbaaaa’ is coded as (3,a) (4,b) (4,a)

2. The encoding of symbol is done by any method using

absolute value or index integer value. Calculate the

number of zero’s. From that fix the parameter as

 M= ┌-1/log2┐ P to an integer value.

 3. For N, the number to be encoded, find

 i. Quotient = q =

 ii. Remainder = r = N modulo M

 4. Generate Codeword as in format:

 <Quotient Code> <Remainder Code>,

 i. Quotient Code (in unary coding)

 a. Write a q-length string of 1 bits

 b. Write a 0 bit

 ii. Remainder Code

 a. If M is power of 2, code remainder as binary

format. So log2M bits are needed.

 b. If M is not a power of 2, set b= ┌log2 M┐

If r < (2b – M) code r as plain binary using b-1

bits.

 If r ≥ (2b – M) code the number (r + 2b- M) in

plain binary representation using b bits.

4. Results
For the comparative analysis of data compression algorithms

different types of test text files are taken which includes

English text files, Log files, Sorted word list and

geometrically distributed data text file, the sample files are

shown in Fig.1. The algorithms are executed on Intel(R)

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

20

Core(TM)2 Duo CPU T6600 @ 2.20GHz, 2.20Ghz with

RAM: 4.00GB (3.50 GB usable), Windows 7 (64bit).

For the Test1 file consisting English text the arithmetic and

Huffman gives compression ratio of 1.738, 1.721 respectively

which is good one, while LZ-78, Golomb does not perform

well. For the small variations in the text files the Golomb fails

to compress the file so its compression ratio is less than 1 for

all test files except Test4. The time required for encoding is

very large for arithmetic i.e. speed of encoding is very slow,

as it has great computational complexity. If the file size is

large the dictionary based LZ-78 fails to compress much more

compared to Huffman and arithmetic. The test files are shown

in Fig. 1 and result in

RESULT TABLE I

File

Name

Encoding

Time(sec)

Decoding

Time(sec)

Original

Size(Byte

s)

Compresse

d

Size(Bytes)

Compr

ession

Ratio
 A. Huffman Coding

Test1 5.19364304 57.8890950 18036 10475.250

2

1.7217

7
Test2 0.18720108 6.91170801 1953 1291.375 1.5123

4
Test3 0.15442160 0.64738037 231 115.12500 2.0065

1
Test4 0.16503020 0.1004763 116 19.875 5.8364

7

B. Arithmetic Coding

Test1 269.595014 57.4358269 18036 10376.875 1.7380

9
Test2 6.64236644 1.87559584 1953 1282.625 1.5226

5
Test3 0.3081655 0.09852928 231 115.375 2.0021

6
Test4 0.058989 0.048297 116 14.87 7.7983

1

C. LZ-78 Coding

Test1 18.4466144 1.32978234 18036 12375.879

7

1.4573

5
Test2 0.53048965 0.16914965 1953 1477.2500

5

1.3220

5
Test3 0.03739823 0.03395197 231 163.99974

4

1.4085

3
Test4 0.010867 0.014461 116 38 3.0526

3

D. Golomb (Absolute) Coding

Test1 607.48828

8

702.6754 18036 24768 0.7282

Test2 6.976569 11.627427 1953 2608.3 0.7488

Test3 0.820101 0.944019 231 358.5 0.6444

Test4 1.630964 0.182628 116 18.25 6.3562

E. Golomb (Index) Coding

Test1 415.69843

3

786.4765 18036 19746 0.9134

Test2 5.544032 9.544212 1953 2119.1 0.9216

Test3 1.135808 1.630463 231 209 1.1053

Test4 0.293351 0.150408 116 11.625 9.9785

5. CONCLUSION
On the basis of results we conclude that Huffman coding is

optimal when the probability of each input symbol is a

negative power of two. Huffman fails to compress the data in

large amount when the symbols have skewed probability and

long runs as compared to Arithmetic and RLE based Golomb

coding respectively. For the text containing highly skewed

probability symbols, the arithmetic coding performs very

well, though the computational complexity is very high and its

speed is less compared to Huffman.

LZ-78 gives good compression ratio for highly correlated

data. For the large file size, larger dictionary is required

causing higher efforts for addressing and administration both

at runtime. Also as the file size increases the compression

efficiency of the algorithm increases because of increase in

size of dictionary. The compression is optimal when the text

file is large as there are more chances to replace identified

words by using a small index number. Golomb coding is RLE

based coding method. It gives its best performance when the

data in text is highly geometrically distributed. In Golomb

coding when the runs are encoded using the index-integer

method, it gives better performance than the absolute valued.

Using the index method the compression ratio and speed is

increased as compared to absolute valued method as it

requires more number of bits to encode the symbol in ASCII

value. The disadvantage of index method is that at decoder

side the index valued dictionary must be provided. Golomb

coding is highly dependent on the geometric distribution of

data.

6. REFERENCES
[1] Vikas Singla, Rakesh Singla and Sandeep Gupta, “Data

compression modelling: Huffman and Arithmetic”,

International Journal of The Computer, the Internet and

Management, Vol. 16 No.3, Page(s):64- 68.Sept-Dec,

2008

[2] O.Srinivasa Rao, Prof.S.Pallam Setty, “Comparative

Study of Arithmetic and Huffman Compression

Techniques for Enhancing Security and Effective

Bandwidth Utilization in the Context of ECC for Text”,

International Journal of Computer Applications, Vol. 29

No.6, Page(s):44-60, September 2011.

[3] Ahmed S. Musa, Ayman Al-Dmour, Mansour I. Irshid,

“An Efficient Text Compression Technique Based on

Using Bitwise Lempel-Ziv Algorithm”, Australian

Journal of Basic and Applied Sciences, 4(12),ISSN 1991-

8178, INSInet Publication, Page(s):6564-6569, 2010.

[4] Hsuan-Huei Shih, Shrikanth S. Narayanan and C.-C. Jay

Kuo; “A Dictionary Approach To Repetitive Pattern

Finding In Music”, IEEE International Conference on

Multimedia and Expo (ICME 2001) , Page(s): 397- 400.

[5] S.R. Kodituwakku, U. S.AMARASINGHE,

“Comparison of lossless data compression algorithms for

text data”, Indian Journal of Computer Science and

Engineering, ISSN : 0976-5166, Vol 1 No 4 416-425,

2010.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.3, October 2012

21

216.154.140.251-[03/Feb/2003:04:21:02+0100"GET

thumbn/cf104_r.jpg HTTP/1.1" 200 4559 "http://www.fighter-

planes.com/data5060.htm" "Mozilla/4.0 (compatible; MSIE 5.01;

Windows 95)"

216.154.140.251 - - [03/Feb/2003:04:21:07 +0100] "GET

/full/mig17.jpg HTTP/1.1" 200 11756 "http://www.fighter-

planes.com/data5060.htm" "Mozilla/4.0 (compatible; MSIE 5.01;

Windows 95)"

68.113.117.251 - - [03/Feb/2003:04:21:20 +0100] "GET /info/f16.htm

HTTP/1.1" 200 17687 "http://www.fighter-

planes.com/data7080.htm" "Mozilla/4.0 (compatible; MSIE 5.5; MSN

2.5; Windows 98)"

68.113.117.251 - - [03/Feb/2003:04:21:21 +0100] "GET

/thumbn/f16_r.jpg HTTP/1.1" 304 - "http://www.fighter-

planes.com/info/f16.htm" "Mozilla/4.0 (compatible; MSIE 5.5; MSN

2.5; Windows 98)"

galvanomagnetism

galvanometer

galvanometers

galvanometric

wwwwwwwwwwwwwwwwwwwwwwwwwwwww

wwwbbbbbbbbbbbbbwwwwwwwwwwwwwwww

wwbbbbwwwbbbbbbbbbbbbbbbbbbbwwwwwww

wwwwbbbbbbbwwwwwwwww

[6] Mamta Sharma, “Compression Using Huffman Coding”,

IJCSNS International Journal of Computer Science and

Network Security, Vol.10 No.5, Page(s):133-141, May

2010.

[7] David A. Huffman, “A Method for the Construction of

Minimum-Redundancy Codes”, Proceedings of the IRE,

Vol. 40, No. 9, Page(s): 1098-1101, September 1952.

[8] Jacob Ziv, Abraham Lempel, “Compression of

Individual Sequences via Variable-Rate Coding”, IEEE

Transactions on Information Theory, Vol.24, No.5,

Page(s):530-536, September 1978.

[9] Forrest Elliott and Manfred Huber, Learning Macros

with an Enhanced LZ78 Algorithm, Technical Report

CSE, The University of Texas at Arlington, 2005.

[10] David Salomon, Data Compression: The Complete

Reference, Third edition, Pgs 185-188. Springer, 2004.

ENGLISH TEXT (Test1)

LOG FILE (Test2)

SORTED WORD LIST (Test3)

GEOMETRICALLY DISTRIBUTED (Test4)

Figure1. Input Text files

Mrs. Rachel Lynde lived just where the Avonlea main road dipped

down into a little hollow, fringed with alders and ladies' eardrops and

traversed by a brook that had its source away back in the woods of the

old Cuthbert place; it was reputed to be an intricate, headlong brook in

its earlier course through those woods, with dark secrets of pool and

cascade; but by the time it reached Lynde's Hollow it was a quiet,

well-conducted little stream, for not even a brook could run past Mrs.

Rachel Lynde's door without due regard for decency and decorum; it

probably was conscious that Mrs. Rachel was sitting at her window,

keeping a sharp eye on everything that passed, from brooks and

childrensustainable growth. Argentina's currency has traded at par

with the US dollar since April 1991, and inflation has fallen to its

lowest level in 20 years. Argentines have responded to the relative

price stability by repatriating flight capital and investing in domestic

industry. The economy registered an impressive 6% advance in 1994,

fueled largely by inflows of foreign capital and strong domestic

consumption spending.

