
International Journal of Computer Applications (0975 – 8887) 

Volume 56– No.18, October 2012 

16 

Real-Time Scheduling with DVS and 
Harvesting Energy Constraints 

 
Mona Kumari 

Assistant Professor 
Department of Information Technology 

Anand Engineering College, Agra 
                                                                                                                                                                      

                                       
                             

Ajitesh Kumar 
Assistant Professor 

Department of Information Technology 
Hindustan Institute of Technology 

and Managenment, Agra

ABSTRACT 
In real-time embedded   system, that   must carry their own   
power source and cannot depends on the power outlet on the 
wall, apart from feasibly schedule the set of tasks, power 
management is also the major issue because without power the 
system is useless. 

In this paper,   we propose a harvesting aware   real-time 
scheduling  algorithm with  variable  speed  assignment  scheme 
to set of periodic  tasks aims to reduce the energy consumption 
while  feasibly  schedule  the  set of periodic  tasks  within  their 
deadline. This can be done by DVS(Dynamic Voltage and 
frequency  Selection),  executing  the  task  with  the  speed  
such that   a  task   can  consume   as  much   energy   which  is  
quite sufficient to complete  it successfully within  its deadline. 
 
The example and simulation results shows that the propose 
approach is capable  of performing better  in terms  of average 
stored  remaining energy  of the  system  as well as acceptance 
ratio  of periodic  tasks  at lower periodic  load. 
 
Key Terms:  Real-Time Scheduling, DVS, Energy Harvesting, 
Periodic Tasks, Embedded System, Power Management. 

 
1. INTRODUCTION 

In real-time system to function correctly, the system must 

produce a correct result within a specified time called deadline 

for example the anti-lock breaks on a car are a simple example of 

a real time computing system, the real- time constraint in this 

system is the time in which the breaks must be released to 

prevent the wheel from locking. Whatever its category (hard, soft 

and firm), a real-time embedded system is said to achieve energy 

neutral operation if its execution requirements can be supported 

forever despite energy limitations [8-10]. 

 

Now a day’s most of the real-time embedded system executing 

on the platform that are mobile and carry their own power source 

in the form of battery and do not depend on power outlet on wall. 

Most of the time this mobile device remains beyond the scope of 

recharging their battery due to mobility or unavailability of 

recharging point, for example mobile video phone applications 

require light weight device movable across the globe [11, 13].  

 

Most of time these light weighted devices remains beyond the 

scope of recharges the battery. This may be due to unavailability 

of recharging point or time required for recharging due to 

mobility. Thus, for smooth functioning of this light weight 

mobile device one has to facilitate it either with large capacity 

battery or powerful power management technique to enlarge the 

battery back-up time. However in some applications, 

replacing/recharging a battery is either costly or impractical, 

wireless sensor net- work is one of such application, where the 

sensor nodes are deployed in a wide wild area for environment 

surveillance. Hence, ideally such a system should be designed to 

operate perpetually with the battery being the only energy source 

[1, 3]. 

 

With the advancement in battery technique harvesting feature is 

incorporated in battery [4-5]. Harvesting technique is the ideal 

substitution where recharging/replacing a battery is either 

costly or impractical. Energy harvesting (also known as energy 

scavenging) is the process of generating electrical energy from 

renewable energy sources available in environment. There exist 

a variety of different energy sources such as solar energy, 

kinetic energy thermal energy etc. Solar energy is certainly one 

of the most promising energy source and most of the typical 

applications have access to solar energy. Therefore, the energy 

generated by solar panels suffices to execute most common 

applications equipped with photovoltaic cells, due to which 

perpetual operation becomes possible without frequent 

recharging and replacement of the batteries [4]. 

 

1.1 Characteristics of energy harvesting real-

time      systems  
1. Ability to operate by lowest standby current to maximize            

storage of energy. 

2. Consume lowest possible energy when active. 

3. Ability to turn on and off instantaneously. 

4. Analog capability for sensor interfacing and measurement. 

5. Ability to operate with low voltage range. 

6. Lowest leakage current to maximize harvested energy.  

 

1.2 Limitations of energy harvesting real-time 

systems  
1. Renewable energy sources available in environment are 

unstable. 

2. Intensity of energy from renewable energy sources varies 

with time, for example in case of solar energy at day time 

the intensity of light is very high but during night it will be 

zero. 

3. Limited size of energy storage or battery. 

 

Apart from all these constraints, to maximize the possible 

numbers of tasks to be scheduled, an efficient power 

management technique is required. 

 

Present study focuses on scheduling periodic tasks with 

deadline, on a uniprocessor platform and variable speed system 

which is powered by renewable energy storage with limited 

capacity such as battery or a capacitor. 

 

The content of present study is summarized in different sections. 

Section-2 introduces the related research works. Section-3 

describes the motivational example. The energy harvesting 

system model and some assumptions are described in Section-4. 

Section-5 explains the proposed methodology with example. 
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Simulation results and discussions are present in Section-6. 

Finally Section-7 summarizes present study. 
 

2.  RELATED WORK 

Energy-aware real-time scheduling is the area of intensive 

research in present day scenario. Most of the works in this area 

focuses on either minimizing the energy consumption or 

maximizing the system performance such as the lifetime 

achieved under the energy constraints. In such cases, the 

recharge ability of the energy storage unit is always disregarded.  

Scheduling real-time tasks on a uniprocessor rechargeable 

system has gained a little attention. The question amounts to find 

a schedule which is able to execute all the tasks within the 

deadline and energy storage constraints i.e. without running out 

of energy. Moser et al. [12] focused on scheduling tasks with 

deadlines, periodic or not, that run on a uniprocessor system that 

is powered by a rechargeable storage unit.  

The source power is assumed to be predictable but time-varying. 

They proposed lazy scheduling algorithm (LSA) and proved it to 

be optimal in terms of deadline miss ratio. LSA is a variation of 

the famous earliest deadline first scheduler, the system starts 

executing a task only if the task is ready and has the earliest 

deadline among all ready  tasks  and  the  system  is  able  to  

keep  on  running at the maximum power until the deadline of 

the task.  

In that work, the consumption power of the computing system is 

characterized by some maximum value which implies that for 

every task, its total energy consumption is directly connected to 

its execution time through the constant power of the processing 

device.  

The main disadvantage of this work is that the LSA algorithm 

executes tasks at full power and therefore, future tasks will 

violate deadlines because of limited energy. Moreover, in 

practice, the total energy which can be consumed by a task is not 

necessarily proportional to its execution time. 

 

Author in [6-7] presented a scheduling algorithm, EDeg (Earlier  

Deadline  with  energy  guarantee) in  which  tasks are schedule 

according to an on-line algorithm that ignores the future energy 

production and the arrival time of tasks. It knows only the energy 

consumption of tasks that are released on the processor that takes 

into consideration the limits of both time and energy. EDeg relies 

on two basic concepts: slack time and slack energy. The main 

idea behind EDeg is to run tasks according to the earliest 

deadline first rule.  

 

However, before authorizing a task to execute, we must ensure 

that the energy storage is sufficient to execute all future 

occurring tasks. When this condition is not verified, the 

processor has to stay idle so that the storage unit recharges as 

much as possible. The problem with this approach is that task are 

executed with a fixed speed which will some time cause energy 

overflow, on the other hand some time results in the insufficient 

energy for the task set ready to execute. 

 

In  Allavena  et  al. [2]  describe  an  off-line  scheduler that  

uses  voltage  and  frequency  selection  (DVFS)  for  a frame 

based system. While they permit to reduce power consumption 

by slowing down task execution under deadline constraints, 

their approach relies on the unrealistic assumption that both the 

instantaneous consumption power and production power are 

constant. 

In [10], Liu et al. propose an energy aware dynamic voltage 

and frequency selection algorithm, called EA-DVFS, for 

periodic tasks. The purpose of EA-DVFS is to efficiently use 

the task slack and further reduce the deadline miss rate. In this 

algorithm, whether or not the system slows down the task 

execution for energy saving depends on the available energy. If 

the system has sufficient energy, the task is executed at its full 

speed; otherwise, it is stretched and executed at a lower speed. 

Unfortunately, this algorithm has limited impact since, in most 

embedded applications, the energy storage has a non constant 

recharging rate and every  task  is  characterized  by  its  own  

profile of  power consumption which can vary along time. 

 

3. MOTIVATIONAL EXAMPLE 
 
Suppose that there are three preemptive periodic tasks τ

1
(0, 2, 

10), τ2(0, 3, 15), τ
3
(1, 2, 6) that are required to schedule with 

energy and deadline constrain. And the system that we consider 

to schedule this set of periodic tasks is powered by a renewable 

energy source (eg. solar energy). The attribute of tasks τ
1, τ2 

and τ3   represent its release time, worst case execution time 

and deadline respectively. 

Here we assume that the renewable energy is harvesting with a 

constant rate(r) during day time and which is approximately 

equal to 1J/sec, and the processor that we consider for 

scheduling the  set  of  tasks  can  allow  three different 

frequency (or) speed levels s
low

, si, smax
. At s

low task consume 

1J of energy per second, at si task consume 3J/sec and at s
max 

task consume 8J/sec. And Suppose the total capacity of energy 

storage (or) battery(C) = 32J, and energy available in store at 

t=0, EC(t) = 30J. 

At t = 0, there are only two task τ
1 and τ2 is ready to execute and 

as the deadline of τ
1 is earlier than τ2. Therefore, according to 

EDF, priority of τ
1 

is higher than τ2. So, at t = 0 τ
1 start its 

execution. But before that, we can check is there sufficient 
energy available in store to execute the task τ

1 at its maximum 

speed until its completion. 

E
1
(s

max) = 8*2 = 16J < 30J = E
C
(t) 

As the energy requirement of τ
1 to complete its execution at s

max 
is less than the available energy, therefore τ

1 execute at smax 

until its completion. 

 

At t=1 another task τ
3  is released and as the deadline of τ3   is 

earlier than τ
1 , therefore τ3   preempt τ

1 .Execute τ3 , before that 

we will check for energy availability. 

 

E
C 

(t) = 30 - 8 + 1 = 23J 
 

And the energy requirement of τ
3 to complete its execution 

at s
max is 16J which is less than the available energy at store, 

therefore τ
3  execute at s

max  until its completion, and complete 

its execution at t = 3. Therefore, at t = 3 
 

E
C
(t) = 23 - 16 + 2 = 9J 

 
Here, τ

1 resume its execution, and its remaining energy 

requirement to complete its execution at s
max 

is 8J which is 

less than the available energy, therefore, τ
1  execute at s

max 

until its completion, and completed at t = 4. Therefore, at t = 4 
 

E
C
(t) = 9 - 8 + 1 = 2J 

 
Here, τ2 starts its execution, and as the energy requirement of τ2 
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at s
max is 24J, which is more than the available energy. 

Therefore, τ2   execute at s
low. And at s

low, τ2 takes 12s to 

complete its execution, which is more than its deadline. 
 

 

4. SYSTEM MODEL AND 

ASSUMPTION 
 

System consists of a uniprocessor system with a set of 
independent preemptive periodic tasks τ

1, τ2, τ
3
 ......τn.  And 

each task τ
i has an attribute: 

  a
i = arrival time of task τ

i 

   e
i
(s

i
) = worst case execution time of task τ

i at speed s
i
 

             E
Source

(t1,t2) = (t
2 - t1)*r....................... (2) 

 
In this energy harvesting real time system it is considered that 

the rate of harvesting is approximately equals to 1J/sec and is 

constant though out the day, and at night time the harvesting 

rate equals to zero. 

4.2 Energy Storage 

Here, we assume a limited energy storage that may be charged 

up to its capacity C. If no tasks are executed and the stored 

energy has reaches its capacity leading to energy overflow. 

                      0 ≤ E
C
(t) ≤ C....................... (3) 

For executing the task, power P
D

(t) and the respective energy 

E
D

(t
1,t2) is drained from the storage to execute tasks. We have 

the following relation: 

             E
C
(t

2) ≤ E
C
(t

1) + E
source

(t
1,t2) - ED

(t
1,t2) ∀ t2 > t1 

Therefore, 

E
D

(t
1,t2) ≤ E

C (t
1) + E

source 
(t

1,t2) ∀ t2 > 

t1……………(4) 
 
 

4.3 Energy Drain 
Energy is the function of speed level s

i.The energy drain in 

time interval (t
1,t2)ED

(t
1t2)=∫PD

(s
i)   

   E
i
(s

i
) = Energy demand of task τ

i to complete its execution 

with 

              speed s
i 

d
i = deadline of task τ

i 

 

Here a dynamic priority scheduling algorithm i.e, earliest 

deadline first scheduling algorithm is considered for assigning 

the priority and scheduling the set of independent periodic tasks. 

The DVS processor that is capable of operating at three different 

voltage levels V
1
, V

2   and V
3 with the corresponding speed 

levels s
1
, s

2 and s
3 is considered in this system. The speed s

1 is 

the lowest operating speed level measured at voltage V
1 whereas 

the maximum speed s
3 at the voltage level V

3. Here the processor 

runs at any of the speed level between s
1 to s3

. Power or Energy 

consumption at the speed s
i is given as:  

                     P
i = C(si)

3............... (1) 

Response time of task τi at speed si is the sum of its own 

execution time requirement and the execution time of its higher 

priority tasks preempting it. 

 

The System modeled with energy source, energy storage, 

energy drain, DVS processor and real time periodic tasks as 

follow: 

4.1 Energy Source 

Harvesting source of energy is dependent on environmental 

factors. Such as solar, wind etc. They are highly varying with 

time. Where P
D

(si) is the power drain at speed level s
i 
. 

 

5.  PROPOSED METHODOLOGY 

In a battery-powered device, the typical power management 

design goal is to minimize the energy consumption (or) to 

maximize the lifetime achieved while meeting the required 

performance constraints. 

 

In this energy aware real time scheduling, idea is to save 

energy by slowing down the processor just enough to meet the 

deadline of a task and avoid energy overflow. In this work, we 

proposed a harvesting aware real-time scheduling algorithm 

which reduce the energy as well as timing over- head by 

utilizing speed in such a way that response time of task is less 

than or just equal to the existing approach even though on the 

cost of lesser energy consumption. Here the execution speed of 

a task is selected based on the stored energy as well as 

available energy through harvesting and deadline of a task. 

 

5.1 The proposed method 

• Presented an approach those judiciously balance the 

timing as well as energy constraints. 

• Here task is executed at minimum possible speed level 

which is just enough to meet the deadline of a task and it 

will be increased to next higher level if required to meet 

the deadline of a task or to avoid energy overflow due to 

recharging. 

• Tasks are executed at minimum energy consuming state 

even though the systems have enough energy to complete 

the task at maximum speed. 

Whenever any periodic task τ
i arrives there are two possible 

cases with respect of energy: 

 

Case-1: When task requirement at maximum speed is less than 
available energy E

C
(t), then we will calculate slack time for 

task and if slack (τ
i
) > 0, reserve a time slot from latest start 

time of a task to deadline, and energy equals to the energy 
required by τ

i to complete its  execution at maximum speed. 

 • Compute the lowest feasible speed for a task subjected to: 

            E
C
(a

i ) + E
H

(e
i
(s

i )) - Econsumption
(τ

i
(s

i ))) ≤ C ....(6) and 

 

                            e
i
(s

i
) ≤ d

i  .............................. (7) 

 
• After that execute the task at assigned speed up to 

completion     of  task (or) slack time whichever is earlier. 

 • If task has not finished before the latest start time of a task, 

then execute the remaining portion of task at full speed in 

reserve slot with reserve energy. 
 
 

Case-2:  If energy requirement of task at maximum speed is 

greater than total available energy E
C
(t), then again we will 

calculate lowest feasible speed for a task execute the task at 

assigned speed until its completion and arrival of some higher 

priority task whichever is earlier. 

 

5.2 Algorithm 1   

   Harvesting   Aware Real-Time Schedule (HA-RTS): 

    Input: A set of n real time periodic tasks τi   = τ
1 , τ2 , 

.........τ
n         and a  DVS based processor that support 

different frequency (or) speed levels. 

1. Initialize a ready queue Q. 

2. Initialize a reserve queue R. 

3. Enter tasks ready to execute in a ready queue Q. 
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4. Sort the tasks in Q on EDF basis. 

5. While (Q=NIL) do 

6. Process the task τ
i
 

7. While (E
C
(t) > 0 and E

i (smax
) ≤ E

C
(t)) do 

8. Calculate s
earliest and s

late of τ
i 

9. If (s
earliest - slate)> 0, then 

10. Enter task τ
i in reserve queue R 

11. Reserve time slot (s
late,di) for τ

i 

12. Reserve energy for τ
i , Ereserve

(τ
i
) = E

i
(s

max
) 

Therefore, E
avail

(t) = E
C
(t) - E

reserve
(τ

i
) 

13.  Compute a lowest feasible speed(s
i
) for τ

i  using 

            Algorithm 2. 

14. Execute() task τ
i with speed s

i until its completion 

15. if any other task τ
j arrive at time a

j < f
i
(τ

i
) and 

           d
j
< d

i 

16. Update ready queue Q 

17. τ
j preempt τ

i
 

18. Update E
avail

(t) 

      E
avail

(t) = E
avail

(t) - E
consume

(τ
i
(a

j
)) 

19. If (E
j
(s

max
)≤ E

avail
(t)) 

20. Go to step 8., else go to step 27. 

          end if 

21. Else τ
i continue its execution at (s

i ) 

22. If τ
i completes before s

late
, then 

23. Remove τ
i from Q and R 

24. Frees the reserve energy and time slot for τ
i 

      E
avail

(t)= E
avail

(t) + E
reserve

(τ
i
) 

25. Else remaining portion of τ
i executed at s

max and 

      E
avail

(t) = E
avail

(t) + (E
reserve

(τ
i
) - E

consume
(τ

i
) 

26. E
avail

(t) = E
C
(t) 

 

en

d if 

            end if  

          end if 

  end 

while 

27. While (E
C
(t) > 0 and E

i
(s

max
) > E

C
(t)) do 

28. Compute a lower feasible speed (s
i
)  for τ

i using 

          Algorithm 2. 

29. Execute() task τ
i with speed s

i until its completion  

     end while 

30. While (E
C
(t) ≤ 0) do 

31. Calculate common slack for all tasks ready to execute 

          in Q at time t when E
C
(t)=0 

32. While (E
C
(t)≤ E

max and slack(t)> 0) 

33. Wait and recharge the battery 

34. t = t + 1 

if a
k
= arrival time of task τ

k
, then insert τ

k  in Q and  

         update slack(t) 

     end if  

   end while  

  end while  

 end while 

 

5.3 Algorithm 2 

Speed Assignment algorithm: 

1. Prepare a list of all possible speed levels (or) frequency 

levels used in this case. 

 

 

 

 

2. Sort the speed levels in their increasing order. 

3. While (s
i  = s

n
) do 

4. if (E
C (ai

) + E
H (ei

(s
i
)) - E

consumption
(τ

i
(s

i
))) ≤ C    

     and e
i
(s

i
) ≤ d

i , then 

5. s
i
= s

i 
 

6. else s
i = s

i + 1 

7. Go to step 4. 

end if  

        end while 

 
Example:  In this section we explain the above approach with 

the help of an example, and the effectiveness of proposed 

approach should get highlighted from this. 

 

Suppose that there are three preemptive periodic tasks τ
1
(0, 2, 

10), τ2(0, 3, 15), τ
3
(1, 2, 6) that are required to schedule with 

energy and deadline constrain. And the system that we consider 

to schedule this set of periodic tasks is powered by a renewable 

energy source (eg. solar energy). The attribute of tasks τ
1
, τ2 and 

τ
3 represent its release time, worst case execution time and 

deadline respectively. 

 

Here we assume that the renewable energy is harvesting with a 

constant rate(r) during day time and which is approximately 

equal to 1J/sec, and the processor that we consider for scheduling 

the set of tasks can allow only three different frequency (or) 

speed levels s
low

, s
i and s

max
. At s

low task consume 1J of energy 

per second, at s
i task consume 3J/sec and at s

max task consume 

8J/sec. 

 

Suppose the total capacity of energy storage (or) battery, C =  

32J, and energy available in store at t=0, E
C
(t) = 30J.Therefore, 

at t = 0, there are only two task τ
1
and τ2 is ready to execute and 

as the  deadline of τ
1
is earlier than τ2 . Therefore, according to 

EDF, priority of τ
1 is higher than τ2. So, at t = 0, τ

1 start its 

execution. But, before that we can check is there sufficient 
energy available in store to execute the task τ

1 at its maximum 

speed until its completion. 
 

E
1
(s

max
) = 8*2 = 16J < 30J = E

C
(t) 

 

Therefore, we can say that there is sufficient energy available in 

store to execute the task τ
1 at its maximum speed until its 

completion, but we are not going to execute the task τ
1
at its 

maximum speed until there is slack available for τ
1
. Initially 

execute the task τ
1 at lowest possible speed until task completion 

(or) the slack of τ
1 becomes zero whichever is earlier. 

1. Calculate slack(τ
1
) = s

late 
- s

earliest
= 8 - 0 = 8 > 0 

2. Since there is slack available for task τ
1
, therefore we reserve 

the time slot from (s
late to d

1 ) and energy equals to 16J for τ
1 

and enter the τ
1 in reserve queue R. After reserving energy for τ

1 

we can assume that only 14J of energy is available for executing 

all the ready task in ready queue Q. 

 

E
avail

(t) = E
C
(t) - E

reserve
(τ

1
) = (30 - 16) = 14J 

 
3. Calculate a lowest feasible speed for τ

1
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             τ1                       d3                        d1                              d2 

s
max

 

s
i
 

s
low

 

 

 

         0     1         5   6       8   9   10   12   13     15         16 

   a1= a2=0 

 
Figure1. Schedule with deadline and energy constraint 

1. 
 
Now, start from lowest speed level s

low and check whether it is 

feasible to execute the τ
1 at this speed level (or) not. checking 

the feasibility of τ
1 at s

low 
and energy consumption              

 
              e

1
(s

low)= 8sec < d
1     

 

         E
consume

(τ
1 (slow)) = 8*1 = 8J< 14J = E

avail
(t) 

 

 

Also, Total available energy in store, E
C
(t) = 30 + 8 -8 = 30J < 

C     (checking for energy overflow) 

As both the condition is true i.e., at this speed task τ
1 completes 

its execution before its deadline also no energy overflow will 

occur. So, we can execute the task τ
1 with the lowest speed 

slow. 

4. Now execute the task τ
1  at s

low until its completion (or)  the  

arrival  of  some  higher  priority  task whichever is earlier till t 

= 8 = s
late 

(or) until slack =0.  

After that if, τ
1 remains incomplete, and then the remaining 

portion of τ
1 is executed at maximum speed (s

max) until d
1 i.e., 

t=10 (or) it completion whichever is earlier.  

1. At t=1 another task τ
3 is released and as the deadline of τ

3 is 

earlier than τ
1
, therefore τ

3 preempt τ
1 . 

2. Execute τ
3
, before check  for  energy  availability. 

        E
avail (t) = 14 + 1 - 1 = 14J and 

        E
3
(s

max
) = 16J>14J=Eavail(t) 

Here, the energy requirement of a task is more than the 

available. 

3. Calculate the lowest feasible speed for τ
3
, if τ

3 execute at 

speed s
low

, then time taken by τ
3 to complete its execution, 

e
3
(s

low
) = 8 sec and τ

3  released at t=1. Therefore, 

          f
3 = 8 + 1 = 9 > d

3 = 6 

So, if execute τ
3 with the speed s

low it will miss its deadline. 

Therefore s
low is not the feasible speed for τ

3 . 

      Now Will try the next higher speed level i.e., s
i
, if τ

3 execute        

with speed s
i
, then 

e
3
(s

i
) = 4sec and therefore, f

3 = 5 < d
3  = 6 , so at this speed 

level τ
3  will not miss its deadline. 

 

 

 

  τ1           τ3            d3                d1                                   d2 

 τ1   τ3           d3 τ1     τ1       d1        τ2        d2 
s

max
 

 Smax 
s

i Si
 

s
low

 

     Slow 

 
              0     1        5      6   9      10    12     13       15        16                                     0      1      5     6    8     9       10 12   13      15     16          
 a1=a2=0       a3=1 
 a1=a2=0 a3=1 
      f3                  f1                             f2    
                             f3 

 

Figure2. Schedule with deadline and energy constraint 2. 

 

                                          d1                            d2 

    τ1   τ3         d3     τ1      

Smax 

 

Si 

 

Slow 

 

   
               0    1       5    6               8    9    10  13   15    16

               
 

 
Figure4.  Schedule with deadline and energy constraint 4. 

 

requirement of τ2 at its maximum speed E
2
(s

max
) = 24J >E

C
(t). 

Therefore, select a lowest feasible speed for τ2  
3. Calculate lowest feasible speed for τ2. If τ2 execute at speed level 

s
low

, then time taken by τ2 to complete its execution, e2(slow) = 

12sec and as τ2  started its execution at t=9, therefore, f
3  = 9 + 12 = 

21 > d
2  = 15. 

So, if we execute τ2 at slow it will miss its deadline. Therefore, go for 

next higher speed level i.e si.

               a1=a2=0       a3=1 

Now, the time taken by τ2 to complete its execution a 

                            f3                          f1 

 

 

Figure3.    Schedule with deadline and energy constraint 3. 
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Now, Total available energy in store, E

C
(t) = 30 + 4 -12 = 22J < C , 

also no energy overflow occur at this speed level. Therefore, we can  
say  that  τ

3 can execute feasibly with the speed s
i . 

1. At t=5 τ
3 completes its execution, therefore E

avail
(t)=14 + 4 - 12=    

6J 

2. Now here at this point τ
1 resume it execution and continue its 

execution with the speed s
low 

up to t=8. Therefore, at t = 8 

1. E
avail

(t) = 6 + 3 - 3 = 6J 

2. Now at this point if τ
1 remain incomplete, then the remaining 

portion τ
1
is execute at maximum speed (s

max
) with reserved 

energy. 

3. At its maximum speed τ
1 completes its execution at t=9. Therefore,     

at t = 9 

1. E
avail

(t) = 6 + 1 + (16 - 8) = 15J = E
C
(t) 

2. Now at this point τ2 start its execution and as energy 

                si
, e

2
(s

i ) = 6sec and f3  = 9 + 6 = 15 = d2 also,  

             E
C
(t) = 15 + 6 - 18 = 3J 

Therefore, execute τ2 at speed s
i
, so that it can feasibly schedule 

before its deadline without energy overflow. 

 

Now by the above scheduling scheme we had feasibly schedule 

the tasks τ
1
, τ2 and τ

3 with energy and timing constrain, also 

without causing any energy wastage, and at the end we have left 

with 3J of energy that can be utilize to further schedule tasks 

coming in future. 

 

6. EXPERIMENTAL RESULTS AND 

DISCUSSION 
 
Here, we compare the performance of proposed approach 

Harvesting Aware Real-Time Scheduling(HA- RTS)algorithm 

with existing approach Energy Aware Dynamic Voltage and 

Frequency Selection(EA-DVFS)[16]. The key parameters for 

performance measurement are remaining energy and tasks 

acceptance ratio. In the following section we measure the effect of 

variation in periodic tasks load on the average energy 

consumption and acceptance ratio of task set. The effect of load 

on the remaining energy consumption can be seen from the figure 

6. 

Figure5.    Average remaining energy 

 
 

The storage capacity is to 2000J.  We  observe  from the  figure 6  

when  the  periodic  tasks  load  increases  the remaining energy 

will decreases. When we varies periodic load from 10%to 90% we 

observe from the figure as load increase remaining energy of the 

system decreases.  At lower periodic load (10% to 40%) our 

proposed approach have significant saving in energy almost store 

20% more energy  as  compared  to  existing  approach.  This  is  

due to, at lower periodic load our approach run the whole 

computation of task most of the time at slower speed and same 

speed level however, existing approach execute some portion at 

lower speed and remaining computation time at maximum speed 

level even there is no any higher priority tasks. Energy consumption 

of task at maximum speed level increases exponentially as compare 

to energy consumption at lower speed level.  However, at higher 

periodic load (70% to 90%) our proposed approach has slightly 

saving in energy.  Most  of  the  time  our  proposed  approach  as 

well as  existing approach, execute the  task at  maximum speed 

level at higher periodic load. This is due to that at higher periodic 

load in both approaches processor rarely has chance to slowdown 

the speed of task. 

 

Effect of load on acceptance ratio:  The effect of load on the 

acceptance ratio of set of periodic tasks can be seen from the figure 

7, compare the performance of existing approach and proposed 

approach. In this we set the storage capacity is to 2000J. We 

observe from the figure7 when the tasks load increases the 

acceptance ratio will decreases. At lower periodic load (10% to 

40%) our proposed approach have accept 10% more periodic tasks 

as compared to existing approach. This is due to that at lower tasks 

load our approach run the whole computation of task most of the 

time at slower speed and execute whole computation at same speed 

level however, existing approach execute some portion at lower 

speed and remaining computation time at maximum speed level 

even though there is no any other tasks. Thus, the future arriving 

task may miss their deadline due to the shortage 

 

Figure6.    Percentage of acceptance ratio of task set

 

 

of energy. However, at higher tasks load (70% to 90%) our 

proposed approach and existing approach both accept almost same 

number of periodic tasks. This is due to at higher tasks load both 

approaches execute task at maximum speed level most of the time. 

 

Reduction   in rejection ratio:   The effect of storage capacity on 

the rejection ratio of periodic tasks can be seen from the above 

figures. Our objective is concerning on the relative capacity savings 

achieved with our algorithms, we are especially interested in the 

smallest capacities C necessary to avoid any deadline violations due 

to the shortage of energy. We can observe from the figure when 

periodic load is 20%, 40%, 60% and 80% the proposed approach 

significantly reduces almost 50%, 30%, 20% and 10% on average 

respectively. We can also observe that the storage capacities saving 

are 48%, 40%, 10% and 5% at periodic load 20%, 40%, 60% and 

80% respectively. 
 

7.  CONCLUSION 
 
Here, a general scheduling algorithm that maximizes the utility of 

harvested energy for real time embedded system with voltage 

scalable processor is presented. The proposed approach judiciously 

decides operating speed that reduce the energy overhead as well as 

timing overhead due to the speed switching. 
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The examples and simulation studies shows that the proposed 

scheduling algorithm improves the overall aver- age remaining 

stored energy. The average remaining stored energy of the system is 

approximately 5% more than the existing approach when a load 

varied from 70% to 90% while 20% more energy will be stored at 

lower tasks load varied from 10% to 50%. When the tasks load is 

low say 10% to 50% our proposed approach accepts 8% more task 

than existing approach. However, at higher tasks load both 

approach Perform almost same. 

 

Thus, extensive simulation and illustrative example shows that our 

proposed approach is capable of performing better 

in terms of average stored remaining energy of the system as well 

as acceptance ratio of periodic tasks. 

 

8.  FUTURE SCOPE 

In present study, the problem of energy minimization was solved 

for periodic load. So, we can extend this work for aperiodic and 

sporadic load along with periodic load. 
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