
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

16

Real-Time Scheduling with DVS and
Harvesting Energy Constraints

Mona Kumari

Assistant Professor
Department of Information Technology

Anand Engineering College, Agra

Ajitesh Kumar
Assistant Professor

Department of Information Technology
Hindustan Institute of Technology

and Managenment, Agra

ABSTRACT
In real-time embedded system, that must carry their own
power source and cannot depends on the power outlet on the
wall, apart from feasibly schedule the set of tasks, power
management is also the major issue because without power the
system is useless.

In this paper, we propose a harvesting aware real-time
scheduling algorithm with variable speed assignment scheme
to set of periodic tasks aims to reduce the energy consumption
while feasibly schedule the set of periodic tasks within their
deadline. This can be done by DVS(Dynamic Voltage and
frequency Selection), executing the task with the speed
such that a task can consume as much energy which is
quite sufficient to complete it successfully within its deadline.

The example and simulation results shows that the propose
approach is capable of performing better in terms of average
stored remaining energy of the system as well as acceptance
ratio of periodic tasks at lower periodic load.

Key Terms: Real-Time Scheduling, DVS, Energy Harvesting,
Periodic Tasks, Embedded System, Power Management.

1. INTRODUCTION

In real-time system to function correctly, the system must

produce a correct result within a specified time called deadline

for example the anti-lock breaks on a car are a simple example of

a real time computing system, the real- time constraint in this

system is the time in which the breaks must be released to

prevent the wheel from locking. Whatever its category (hard, soft

and firm), a real-time embedded system is said to achieve energy

neutral operation if its execution requirements can be supported

forever despite energy limitations [8-10].

Now a day’s most of the real-time embedded system executing

on the platform that are mobile and carry their own power source

in the form of battery and do not depend on power outlet on wall.

Most of the time this mobile device remains beyond the scope of

recharging their battery due to mobility or unavailability of

recharging point, for example mobile video phone applications

require light weight device movable across the globe [11, 13].

Most of time these light weighted devices remains beyond the

scope of recharges the battery. This may be due to unavailability

of recharging point or time required for recharging due to

mobility. Thus, for smooth functioning of this light weight

mobile device one has to facilitate it either with large capacity

battery or powerful power management technique to enlarge the

battery back-up time. However in some applications,

replacing/recharging a battery is either costly or impractical,

wireless sensor net- work is one of such application, where the

sensor nodes are deployed in a wide wild area for environment

surveillance. Hence, ideally such a system should be designed to

operate perpetually with the battery being the only energy source

[1, 3].

With the advancement in battery technique harvesting feature is

incorporated in battery [4-5]. Harvesting technique is the ideal

substitution where recharging/replacing a battery is either

costly or impractical. Energy harvesting (also known as energy

scavenging) is the process of generating electrical energy from

renewable energy sources available in environment. There exist

a variety of different energy sources such as solar energy,

kinetic energy thermal energy etc. Solar energy is certainly one

of the most promising energy source and most of the typical

applications have access to solar energy. Therefore, the energy

generated by solar panels suffices to execute most common

applications equipped with photovoltaic cells, due to which

perpetual operation becomes possible without frequent

recharging and replacement of the batteries [4].

1.1 Characteristics of energy harvesting real-

time systems
1. Ability to operate by lowest standby current to maximize

storage of energy.

2. Consume lowest possible energy when active.

3. Ability to turn on and off instantaneously.

4. Analog capability for sensor interfacing and measurement.

5. Ability to operate with low voltage range.

6. Lowest leakage current to maximize harvested energy.

1.2 Limitations of energy harvesting real-time

systems
1. Renewable energy sources available in environment are

unstable.

2. Intensity of energy from renewable energy sources varies

with time, for example in case of solar energy at day time

the intensity of light is very high but during night it will be

zero.

3. Limited size of energy storage or battery.

Apart from all these constraints, to maximize the possible

numbers of tasks to be scheduled, an efficient power

management technique is required.

Present study focuses on scheduling periodic tasks with

deadline, on a uniprocessor platform and variable speed system

which is powered by renewable energy storage with limited

capacity such as battery or a capacitor.

The content of present study is summarized in different sections.

Section-2 introduces the related research works. Section-3

describes the motivational example. The energy harvesting

system model and some assumptions are described in Section-4.

Section-5 explains the proposed methodology with example.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

17

Simulation results and discussions are present in Section-6.

Finally Section-7 summarizes present study.

2. RELATED WORK

Energy-aware real-time scheduling is the area of intensive

research in present day scenario. Most of the works in this area

focuses on either minimizing the energy consumption or

maximizing the system performance such as the lifetime

achieved under the energy constraints. In such cases, the

recharge ability of the energy storage unit is always disregarded.

Scheduling real-time tasks on a uniprocessor rechargeable

system has gained a little attention. The question amounts to find

a schedule which is able to execute all the tasks within the

deadline and energy storage constraints i.e. without running out

of energy. Moser et al. [12] focused on scheduling tasks with

deadlines, periodic or not, that run on a uniprocessor system that

is powered by a rechargeable storage unit.

The source power is assumed to be predictable but time-varying.

They proposed lazy scheduling algorithm (LSA) and proved it to

be optimal in terms of deadline miss ratio. LSA is a variation of

the famous earliest deadline first scheduler, the system starts

executing a task only if the task is ready and has the earliest

deadline among all ready tasks and the system is able to

keep on running at the maximum power until the deadline of

the task.

In that work, the consumption power of the computing system is

characterized by some maximum value which implies that for

every task, its total energy consumption is directly connected to

its execution time through the constant power of the processing

device.

The main disadvantage of this work is that the LSA algorithm

executes tasks at full power and therefore, future tasks will

violate deadlines because of limited energy. Moreover, in

practice, the total energy which can be consumed by a task is not

necessarily proportional to its execution time.

Author in [6-7] presented a scheduling algorithm, EDeg (Earlier

Deadline with energy guarantee) in which tasks are schedule

according to an on-line algorithm that ignores the future energy

production and the arrival time of tasks. It knows only the energy

consumption of tasks that are released on the processor that takes

into consideration the limits of both time and energy. EDeg relies

on two basic concepts: slack time and slack energy. The main

idea behind EDeg is to run tasks according to the earliest

deadline first rule.

However, before authorizing a task to execute, we must ensure

that the energy storage is sufficient to execute all future

occurring tasks. When this condition is not verified, the

processor has to stay idle so that the storage unit recharges as

much as possible. The problem with this approach is that task are

executed with a fixed speed which will some time cause energy

overflow, on the other hand some time results in the insufficient

energy for the task set ready to execute.

In Allavena et al. [2] describe an off-line scheduler that

uses voltage and frequency selection (DVFS) for a frame

based system. While they permit to reduce power consumption

by slowing down task execution under deadline constraints,

their approach relies on the unrealistic assumption that both the

instantaneous consumption power and production power are

constant.

In [10], Liu et al. propose an energy aware dynamic voltage

and frequency selection algorithm, called EA-DVFS, for

periodic tasks. The purpose of EA-DVFS is to efficiently use

the task slack and further reduce the deadline miss rate. In this

algorithm, whether or not the system slows down the task

execution for energy saving depends on the available energy. If

the system has sufficient energy, the task is executed at its full

speed; otherwise, it is stretched and executed at a lower speed.

Unfortunately, this algorithm has limited impact since, in most

embedded applications, the energy storage has a non constant

recharging rate and every task is characterized by its own

profile of power consumption which can vary along time.

3. MOTIVATIONAL EXAMPLE

Suppose that there are three preemptive periodic tasks τ

1
(0, 2,

10), τ2(0, 3, 15), τ
3
(1, 2, 6) that are required to schedule with

energy and deadline constrain. And the system that we consider

to schedule this set of periodic tasks is powered by a renewable

energy source (eg. solar energy). The attribute of tasks τ
1, τ2

and τ3 represent its release time, worst case execution time

and deadline respectively.

Here we assume that the renewable energy is harvesting with a

constant rate(r) during day time and which is approximately

equal to 1J/sec, and the processor that we consider for

scheduling the set of tasks can allow three different

frequency (or) speed levels s
low

, si, smax
. At s

low task consume

1J of energy per second, at si task consume 3J/sec and at s
max

task consume 8J/sec. And Suppose the total capacity of energy

storage (or) battery(C) = 32J, and energy available in store at

t=0, EC(t) = 30J.

At t = 0, there are only two task τ
1 and τ2 is ready to execute and

as the deadline of τ
1 is earlier than τ2. Therefore, according to

EDF, priority of τ
1

is higher than τ2. So, at t = 0 τ
1 start its

execution. But before that, we can check is there sufficient
energy available in store to execute the task τ

1 at its maximum

speed until its completion.

E
1
(s

max) = 8*2 = 16J < 30J = E
C
(t)

As the energy requirement of τ
1 to complete its execution at s

max
is less than the available energy, therefore τ

1 execute at smax

until its completion.

At t=1 another task τ
3 is released and as the deadline of τ3 is

earlier than τ
1 , therefore τ3 preempt τ

1 .Execute τ3 , before that

we will check for energy availability.

E
C

(t) = 30 - 8 + 1 = 23J

And the energy requirement of τ
3 to complete its execution

at s
max is 16J which is less than the available energy at store,

therefore τ
3 execute at s

max until its completion, and complete

its execution at t = 3. Therefore, at t = 3

E
C
(t) = 23 - 16 + 2 = 9J

Here, τ

1 resume its execution, and its remaining energy

requirement to complete its execution at s
max

is 8J which is

less than the available energy, therefore, τ
1 execute at s

max

until its completion, and completed at t = 4. Therefore, at t = 4

E
C
(t) = 9 - 8 + 1 = 2J

Here, τ2 starts its execution, and as the energy requirement of τ2

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

18

at s
max is 24J, which is more than the available energy.

Therefore, τ2 execute at s
low. And at s

low, τ2 takes 12s to

complete its execution, which is more than its deadline.

4. SYSTEM MODEL AND

ASSUMPTION

System consists of a uniprocessor system with a set of
independent preemptive periodic tasks τ

1, τ2, τ
3
τn. And

each task τ
i has an attribute:

 a
i = arrival time of task τ

i

 e
i
(s

i
) = worst case execution time of task τ

i at speed s
i

 E
Source

(t1,t2) = (t
2 - t1)*r....................... (2)

In this energy harvesting real time system it is considered that

the rate of harvesting is approximately equals to 1J/sec and is

constant though out the day, and at night time the harvesting

rate equals to zero.

4.2 Energy Storage

Here, we assume a limited energy storage that may be charged

up to its capacity C. If no tasks are executed and the stored

energy has reaches its capacity leading to energy overflow.

 0 ≤ E
C
(t) ≤ C....................... (3)

For executing the task, power P
D

(t) and the respective energy

E
D

(t
1,t2) is drained from the storage to execute tasks. We have

the following relation:

 E
C
(t

2) ≤ E
C
(t

1) + E
source

(t
1,t2) - ED

(t
1,t2) ∀ t2 > t1

Therefore,

E
D

(t
1,t2) ≤ E

C (t
1) + E

source
(t

1,t2) ∀ t2 >

t1……………(4)

4.3 Energy Drain
Energy is the function of speed level s

i.The energy drain in

time interval (t
1,t2)ED

(t
1t2)=∫PD

(s
i)

 E
i
(s

i
) = Energy demand of task τ

i to complete its execution

with

 speed s
i

d
i = deadline of task τ

i

Here a dynamic priority scheduling algorithm i.e, earliest

deadline first scheduling algorithm is considered for assigning

the priority and scheduling the set of independent periodic tasks.

The DVS processor that is capable of operating at three different

voltage levels V
1
, V

2 and V
3 with the corresponding speed

levels s
1
, s

2 and s
3 is considered in this system. The speed s

1 is

the lowest operating speed level measured at voltage V
1 whereas

the maximum speed s
3 at the voltage level V

3. Here the processor

runs at any of the speed level between s
1 to s3

. Power or Energy

consumption at the speed s
i is given as:

 P
i = C(si)

3............... (1)

Response time of task τi at speed si is the sum of its own

execution time requirement and the execution time of its higher

priority tasks preempting it.

The System modeled with energy source, energy storage,

energy drain, DVS processor and real time periodic tasks as

follow:

4.1 Energy Source

Harvesting source of energy is dependent on environmental

factors. Such as solar, wind etc. They are highly varying with

time. Where P
D

(si) is the power drain at speed level s
i
.

5. PROPOSED METHODOLOGY

In a battery-powered device, the typical power management

design goal is to minimize the energy consumption (or) to

maximize the lifetime achieved while meeting the required

performance constraints.

In this energy aware real time scheduling, idea is to save

energy by slowing down the processor just enough to meet the

deadline of a task and avoid energy overflow. In this work, we

proposed a harvesting aware real-time scheduling algorithm

which reduce the energy as well as timing over- head by

utilizing speed in such a way that response time of task is less

than or just equal to the existing approach even though on the

cost of lesser energy consumption. Here the execution speed of

a task is selected based on the stored energy as well as

available energy through harvesting and deadline of a task.

5.1 The proposed method

• Presented an approach those judiciously balance the

timing as well as energy constraints.

• Here task is executed at minimum possible speed level

which is just enough to meet the deadline of a task and it

will be increased to next higher level if required to meet

the deadline of a task or to avoid energy overflow due to

recharging.

• Tasks are executed at minimum energy consuming state

even though the systems have enough energy to complete

the task at maximum speed.

Whenever any periodic task τ
i arrives there are two possible

cases with respect of energy:

Case-1: When task requirement at maximum speed is less than
available energy E

C
(t), then we will calculate slack time for

task and if slack (τ
i
) > 0, reserve a time slot from latest start

time of a task to deadline, and energy equals to the energy
required by τ

i to complete its execution at maximum speed.

 • Compute the lowest feasible speed for a task subjected to:

 E
C
(a

i) + E
H

(e
i
(s

i)) - Econsumption
(τ

i
(s

i))) ≤ C(6) and

 e
i
(s

i
) ≤ d

i (7)

• After that execute the task at assigned speed up to

completion of task (or) slack time whichever is earlier.

 • If task has not finished before the latest start time of a task,

then execute the remaining portion of task at full speed in

reserve slot with reserve energy.

Case-2: If energy requirement of task at maximum speed is

greater than total available energy E
C
(t), then again we will

calculate lowest feasible speed for a task execute the task at

assigned speed until its completion and arrival of some higher

priority task whichever is earlier.

5.2 Algorithm 1

 Harvesting Aware Real-Time Schedule (HA-RTS):

 Input: A set of n real time periodic tasks τi = τ
1 , τ2 ,

.........τ
n and a DVS based processor that support

different frequency (or) speed levels.

1. Initialize a ready queue Q.

2. Initialize a reserve queue R.

3. Enter tasks ready to execute in a ready queue Q.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

19

4. Sort the tasks in Q on EDF basis.

5. While (Q=NIL) do

6. Process the task τ
i

7. While (E
C
(t) > 0 and E

i (smax
) ≤ E

C
(t)) do

8. Calculate s
earliest and s

late of τ
i

9. If (s
earliest - slate)> 0, then

10. Enter task τ
i in reserve queue R

11. Reserve time slot (s
late,di) for τ

i

12. Reserve energy for τ
i , Ereserve

(τ
i
) = E

i
(s

max
)

Therefore, E
avail

(t) = E
C
(t) - E

reserve
(τ

i
)

13. Compute a lowest feasible speed(s
i
) for τ

i using

 Algorithm 2.

14. Execute() task τ
i with speed s

i until its completion

15. if any other task τ
j arrive at time a

j < f
i
(τ

i
) and

 d
j
< d

i

16. Update ready queue Q

17. τ
j preempt τ

i

18. Update E
avail

(t)

 E
avail

(t) = E
avail

(t) - E
consume

(τ
i
(a

j
))

19. If (E
j
(s

max
)≤ E

avail
(t))

20. Go to step 8., else go to step 27.

 end if

21. Else τ
i continue its execution at (s

i)

22. If τ
i completes before s

late
, then

23. Remove τ
i from Q and R

24. Frees the reserve energy and time slot for τ
i

 E
avail

(t)= E
avail

(t) + E
reserve

(τ
i
)

25. Else remaining portion of τ
i executed at s

max and

 E
avail

(t) = E
avail

(t) + (E
reserve

(τ
i
) - E

consume
(τ

i
)

26. E
avail

(t) = E
C
(t)

en

d if

 end if

 end if

 end

while

27. While (E
C
(t) > 0 and E

i
(s

max
) > E

C
(t)) do

28. Compute a lower feasible speed (s
i
) for τ

i using

 Algorithm 2.

29. Execute() task τ
i with speed s

i until its completion

 end while

30. While (E
C
(t) ≤ 0) do

31. Calculate common slack for all tasks ready to execute

 in Q at time t when E
C
(t)=0

32. While (E
C
(t)≤ E

max and slack(t)> 0)

33. Wait and recharge the battery

34. t = t + 1

if a
k
= arrival time of task τ

k
, then insert τ

k in Q and

 update slack(t)

 end if

 end while

 end while

 end while

5.3 Algorithm 2

Speed Assignment algorithm:

1. Prepare a list of all possible speed levels (or) frequency

levels used in this case.

2. Sort the speed levels in their increasing order.

3. While (s
i = s

n
) do

4. if (E
C (ai

) + E
H (ei

(s
i
)) - E

consumption
(τ

i
(s

i
))) ≤ C

 and e
i
(s

i
) ≤ d

i , then

5. s
i
= s

i

6. else s
i = s

i + 1

7. Go to step 4.

end if

 end while

Example: In this section we explain the above approach with

the help of an example, and the effectiveness of proposed

approach should get highlighted from this.

Suppose that there are three preemptive periodic tasks τ
1
(0, 2,

10), τ2(0, 3, 15), τ
3
(1, 2, 6) that are required to schedule with

energy and deadline constrain. And the system that we consider

to schedule this set of periodic tasks is powered by a renewable

energy source (eg. solar energy). The attribute of tasks τ
1
, τ2 and

τ
3 represent its release time, worst case execution time and

deadline respectively.

Here we assume that the renewable energy is harvesting with a

constant rate(r) during day time and which is approximately

equal to 1J/sec, and the processor that we consider for scheduling

the set of tasks can allow only three different frequency (or)

speed levels s
low

, s
i and s

max
. At s

low task consume 1J of energy

per second, at s
i task consume 3J/sec and at s

max task consume

8J/sec.

Suppose the total capacity of energy storage (or) battery, C =

32J, and energy available in store at t=0, E
C
(t) = 30J.Therefore,

at t = 0, there are only two task τ
1
and τ2 is ready to execute and

as the deadline of τ
1
is earlier than τ2 . Therefore, according to

EDF, priority of τ
1 is higher than τ2. So, at t = 0, τ

1 start its

execution. But, before that we can check is there sufficient
energy available in store to execute the task τ

1 at its maximum

speed until its completion.

E
1
(s

max
) = 8*2 = 16J < 30J = E

C
(t)

Therefore, we can say that there is sufficient energy available in

store to execute the task τ
1 at its maximum speed until its

completion, but we are not going to execute the task τ
1
at its

maximum speed until there is slack available for τ
1
. Initially

execute the task τ
1 at lowest possible speed until task completion

(or) the slack of τ
1 becomes zero whichever is earlier.

1. Calculate slack(τ
1
) = s

late
- s

earliest
= 8 - 0 = 8 > 0

2. Since there is slack available for task τ
1
, therefore we reserve

the time slot from (s
late to d

1) and energy equals to 16J for τ
1

and enter the τ
1 in reserve queue R. After reserving energy for τ

1

we can assume that only 14J of energy is available for executing

all the ready task in ready queue Q.

E
avail

(t) = E
C
(t) - E

reserve
(τ

1
) = (30 - 16) = 14J

3. Calculate a lowest feasible speed for τ

1

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

20

 τ1 d3 d1 d2

s
max

s
i

s
low

 0 1 5 6 8 9 10 12 13 15 16

 a1= a2=0

Figure1. Schedule with deadline and energy constraint

1.

Now, start from lowest speed level s

low and check whether it is

feasible to execute the τ
1 at this speed level (or) not. checking

the feasibility of τ
1 at s

low
and energy consumption

 e

1
(s

low)= 8sec < d
1

 E
consume

(τ
1 (slow)) = 8*1 = 8J< 14J = E

avail
(t)

Also, Total available energy in store, E
C
(t) = 30 + 8 -8 = 30J <

C (checking for energy overflow)

As both the condition is true i.e., at this speed task τ
1 completes

its execution before its deadline also no energy overflow will

occur. So, we can execute the task τ
1 with the lowest speed

slow.

4. Now execute the task τ
1 at s

low until its completion (or) the

arrival of some higher priority task whichever is earlier till t

= 8 = s
late

(or) until slack =0.

After that if, τ
1 remains incomplete, and then the remaining

portion of τ
1 is executed at maximum speed (s

max) until d
1 i.e.,

t=10 (or) it completion whichever is earlier.

1. At t=1 another task τ
3 is released and as the deadline of τ

3 is

earlier than τ
1
, therefore τ

3 preempt τ
1 .

2. Execute τ
3
, before check for energy availability.

 E
avail (t) = 14 + 1 - 1 = 14J and

 E
3
(s

max
) = 16J>14J=Eavail(t)

Here, the energy requirement of a task is more than the

available.

3. Calculate the lowest feasible speed for τ
3
, if τ

3 execute at

speed s
low

, then time taken by τ
3 to complete its execution,

e
3
(s

low
) = 8 sec and τ

3 released at t=1. Therefore,

 f
3 = 8 + 1 = 9 > d

3 = 6

So, if execute τ
3 with the speed s

low it will miss its deadline.

Therefore s
low is not the feasible speed for τ

3 .

 Now Will try the next higher speed level i.e., s
i
, if τ

3 execute

with speed s
i
, then

e
3
(s

i
) = 4sec and therefore, f

3 = 5 < d
3 = 6 , so at this speed

level τ
3 will not miss its deadline.

 τ1 τ3 d3 d1 d2

 τ1 τ3 d3 τ1 τ1 d1 τ2 d2
s

max

 Smax
s

i Si

s
low

 Slow

 0 1 5 6 9 10 12 13 15 16 0 1 5 6 8 9 10 12 13 15 16
 a1=a2=0 a3=1
 a1=a2=0 a3=1
 f3 f1 f2
 f3

Figure2. Schedule with deadline and energy constraint 2.

 d1 d2

 τ1 τ3 d3 τ1

Smax

Si

Slow

 0 1 5 6 8 9 10 13 15 16

Figure4. Schedule with deadline and energy constraint 4.

requirement of τ2 at its maximum speed E
2
(s

max
) = 24J >E

C
(t).

Therefore, select a lowest feasible speed for τ2
3. Calculate lowest feasible speed for τ2. If τ2 execute at speed level

s
low

, then time taken by τ2 to complete its execution, e2(slow) =

12sec and as τ2 started its execution at t=9, therefore, f
3 = 9 + 12 =

21 > d
2 = 15.

So, if we execute τ2 at slow it will miss its deadline. Therefore, go for

next higher speed level i.e si.

 a1=a2=0 a3=1

Now, the time taken by τ2 to complete its execution a

 f3 f1

Figure3. Schedule with deadline and energy constraint 3.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

21

Now, Total available energy in store, E

C
(t) = 30 + 4 -12 = 22J < C ,

also no energy overflow occur at this speed level. Therefore, we can
say that τ

3 can execute feasibly with the speed s
i .

1. At t=5 τ
3 completes its execution, therefore E

avail
(t)=14 + 4 - 12=

6J

2. Now here at this point τ
1 resume it execution and continue its

execution with the speed s
low

up to t=8. Therefore, at t = 8

1. E
avail

(t) = 6 + 3 - 3 = 6J

2. Now at this point if τ
1 remain incomplete, then the remaining

portion τ
1
is execute at maximum speed (s

max
) with reserved

energy.

3. At its maximum speed τ
1 completes its execution at t=9. Therefore,

at t = 9

1. E
avail

(t) = 6 + 1 + (16 - 8) = 15J = E
C
(t)

2. Now at this point τ2 start its execution and as energy

 si
, e

2
(s

i) = 6sec and f3 = 9 + 6 = 15 = d2 also,

 E
C
(t) = 15 + 6 - 18 = 3J

Therefore, execute τ2 at speed s
i
, so that it can feasibly schedule

before its deadline without energy overflow.

Now by the above scheduling scheme we had feasibly schedule

the tasks τ
1
, τ2 and τ

3 with energy and timing constrain, also

without causing any energy wastage, and at the end we have left

with 3J of energy that can be utilize to further schedule tasks

coming in future.

6. EXPERIMENTAL RESULTS AND

DISCUSSION

Here, we compare the performance of proposed approach

Harvesting Aware Real-Time Scheduling(HA- RTS)algorithm

with existing approach Energy Aware Dynamic Voltage and

Frequency Selection(EA-DVFS)[16]. The key parameters for

performance measurement are remaining energy and tasks

acceptance ratio. In the following section we measure the effect of

variation in periodic tasks load on the average energy

consumption and acceptance ratio of task set. The effect of load

on the remaining energy consumption can be seen from the figure

6.

Figure5. Average remaining energy

The storage capacity is to 2000J. We observe from the figure 6

when the periodic tasks load increases the remaining energy

will decreases. When we varies periodic load from 10%to 90% we

observe from the figure as load increase remaining energy of the

system decreases. At lower periodic load (10% to 40%) our

proposed approach have significant saving in energy almost store

20% more energy as compared to existing approach. This is

due to, at lower periodic load our approach run the whole

computation of task most of the time at slower speed and same

speed level however, existing approach execute some portion at

lower speed and remaining computation time at maximum speed

level even there is no any higher priority tasks. Energy consumption

of task at maximum speed level increases exponentially as compare

to energy consumption at lower speed level. However, at higher

periodic load (70% to 90%) our proposed approach has slightly

saving in energy. Most of the time our proposed approach as

well as existing approach, execute the task at maximum speed

level at higher periodic load. This is due to that at higher periodic

load in both approaches processor rarely has chance to slowdown

the speed of task.

Effect of load on acceptance ratio: The effect of load on the

acceptance ratio of set of periodic tasks can be seen from the figure

7, compare the performance of existing approach and proposed

approach. In this we set the storage capacity is to 2000J. We

observe from the figure7 when the tasks load increases the

acceptance ratio will decreases. At lower periodic load (10% to

40%) our proposed approach have accept 10% more periodic tasks

as compared to existing approach. This is due to that at lower tasks

load our approach run the whole computation of task most of the

time at slower speed and execute whole computation at same speed

level however, existing approach execute some portion at lower

speed and remaining computation time at maximum speed level

even though there is no any other tasks. Thus, the future arriving

task may miss their deadline due to the shortage

Figure6. Percentage of acceptance ratio of task set

of energy. However, at higher tasks load (70% to 90%) our

proposed approach and existing approach both accept almost same

number of periodic tasks. This is due to at higher tasks load both

approaches execute task at maximum speed level most of the time.

Reduction in rejection ratio: The effect of storage capacity on

the rejection ratio of periodic tasks can be seen from the above

figures. Our objective is concerning on the relative capacity savings

achieved with our algorithms, we are especially interested in the

smallest capacities C necessary to avoid any deadline violations due

to the shortage of energy. We can observe from the figure when

periodic load is 20%, 40%, 60% and 80% the proposed approach

significantly reduces almost 50%, 30%, 20% and 10% on average

respectively. We can also observe that the storage capacities saving

are 48%, 40%, 10% and 5% at periodic load 20%, 40%, 60% and

80% respectively.

7. CONCLUSION

Here, a general scheduling algorithm that maximizes the utility of

harvested energy for real time embedded system with voltage

scalable processor is presented. The proposed approach judiciously

decides operating speed that reduce the energy overhead as well as

timing overhead due to the speed switching.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

22

The examples and simulation studies shows that the proposed

scheduling algorithm improves the overall aver- age remaining

stored energy. The average remaining stored energy of the system is

approximately 5% more than the existing approach when a load

varied from 70% to 90% while 20% more energy will be stored at

lower tasks load varied from 10% to 50%. When the tasks load is

low say 10% to 50% our proposed approach accepts 8% more task

than existing approach. However, at higher tasks load both

approach Perform almost same.

Thus, extensive simulation and illustrative example shows that our

proposed approach is capable of performing better

in terms of average stored remaining energy of the system as well

as acceptance ratio of periodic tasks.

8. FUTURE SCOPE

In present study, the problem of energy minimization was solved

for periodic load. So, we can extend this work for aperiodic and

sporadic load along with periodic load.

9. REFERENCES
[1] Agrawal, S., Yadav, R. S. and Ranvijay, 2009. A Pre- emption

Control Approach for Energy Aware Fault Tolerant Real Time

System, International Journal of Recent Trends in Engineering,

381-386.

[2] Allavena, A. and Mosse, D., 2001. Scheduling of frame-based

embedded systems with rechargeable batteries, Workshop

Power Manage Real-time Embedded System.

[3] Bertogna, M. and Baruah, S., 2010. Limited Preemption EDF

Scheduling of Sporadic Task Systems, IEEE Transactions on

Industrial Informatics, 579 - 591.

[4] Chetto, M. and Zhang, H., 2010. Performance Evaluation of

Real- Time Scheduling Heuristics for Energy Harvesting

Systems, EEE/ACM Int’l Conference on Cyber, Physical and

Social Computing (CPSCom),Green Computing and

Communications (GreenCom), 398 - 403.

[5] Dehghan and Maryam, 2010. Adaptive checkpoint placement in

energy harvesting real-time systems , 18th Iranian

Conference on Electrical Engineering (ICEE), 932 - 937.

[6] Hussein, E. L. G., Chetto, M. and Chehade, R.H., 2011. EH-

EDF: An On-line Scheduler for Real-Time Energy Har-

vesting Systems, 18th IEEE International Conference on

Electronics Circuit and System (ICECS), 776-779.

[7] Hussein, E. L. G., Chetto, M. and Chehade, R.H., 2011. A real-

time scheduling framework for embedded systems with

environmental energy harvesting, Elsevier on Computers and

Electrical Engineering 37.

[8] Liu, S., Lu, J., Wu, Q. and Qiu, Q., 2011. Harvesting-Aware

Power Management for Real-Time Systems With Renewable

Energy, IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 1 - 14.

[9] Liu, S., Lu, J., Wu, Q. and Qiu, Q., 2010. Load-matching

adaptive task scheduling for energy efficiency in energy har-

vesting real-time embedded systems, ACM/IEEE International

Symposium on Low-Power Electronics and Design (ISLPED),

325 – 330.

[10] Liu, S., Qiu, Q. and Wu, Q., 2008. Energy Aware Dynamic

Voltage and Frequency Selection for Real-Time Systems with

Energy Harvesting, conference on Design, Automation and

Test in Europe, 236 - 241.

[11] Lu, J. and Qiu, Q. 2011. Scheduling and mapping of periodic

tasks on multi-core embedded systems with energy harvesting,

Journal, Computers and Electrical Engineering archive, 498 -

510.

[12] Moser, C., Brunelli, D., Thiele, L. and Benini, L., 2007. Real-

time scheduling for energy harvesting sensor nodes, Real-Time

Syst ; 37(3), 233-260.

[13] Moser, C., Thiele, L., Brunelli, D. and Benini, L., 2007.

Adaptive Power Management in Energy Harvesting Systems ,

Design, Automation and Test in Europe Conference and

Exhibition, 1 - 6.

[14] Niu, L. and Quan, G. 2006. System-Wide Dynamic Power Man-

agement for Portable Multimedia Devices, Eighth IEEE

International Symposium on Multimedia, 97 -104 .

[15] Niu, L. and Quan, G., 2006. Energy minimization for real-time

systems with (m,k)-guarantee, IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 717-729.

[16] Paul, A. A. and Pillai, A.S. B., 2011. Reducing the Number of

Con- text Switches in Real Time Systems, International

Conference on Process Automation, Control and Computing

(PACC), 1 - 6.

[17] Qadi, A., Goddard, S. and Farritor, S., 2003. A dynamic

voltage scaling algorithm for sporadic tasks , 24th IEEE

Conference on Real- Time Systems Symposium (RTSS), 52 -

62.

[18] Zhu, L., Tongquan, Wei, T., Yonghe, Guo., Xiaodao, Chen. and

Shiyan, Hu., 2010. Energy efficient fault-tolerance task

allocation scheme for real-time energy harvesting systems,

International Conference on Intelligent Control and Information

Processing (ICICIP), 589 - 594.

