
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

45

Survey of Fault Prediction Methods in Object
Oriented Systems

Rajkumar. N

SVS college of Engg
coimbatore
Tamilnadu

Viji.C
SVS college of Engg

coimbatore
Tamilnadu

Duraisamy.S
Sri Krishna college of Engg &

tech
coimbatore
Tamilnadu

ABSTRACT

Develop an efficient system is one of the main challenges for

software developers, who has been concerned with reliability

related issues as they build and deployed. This paper surveys

various fault prediction techniques and measuring quality

parameters in object oriented systems. The survey includes

traditional techniques like Fault tree analysis , Information

theoretic approach , coupling & cohesion measurement and

conceptual cohesion and coupling. The utility of each

technique based on structural and instructor information of

class. Each technique deals with various parameters for

predicting the software fault .The fault prediction improves

the software reliability and quality.

Keywords

Coupling, Cohesion, Fault Tree Analysis, Latent Semantic

Indexing, Information Theory Approach, Fault Prediction.

1. INTRODUCTION
To release an error free software is the dream of every

software developer. In order to achieve that zero defect

product companies spend 50 to 80% of their software

development effect on testing. Therefore reducing testing

effort may increase productivity, reduce costs and optimize

resources. Software design is the backbone of the software

development Lifecycle. Finding the faulty modules in earlier

phase give effective and efficient test plan execution. Object

oriented software from structured software in terms of its

concept and real world modelling concepts that take the form

of object oriented design ideas. A fundamental constraints of

object oriented modelling and design is the object, which

combines both data structure and behavior in a single entity.

Object oriented technology provides a product with higher

quality, reliability and lower cost. This quality is achieved by

predicting the fault in earlier phases.

In the paper there are several approaches to predicting the

fault in object oriented systems. Many methods using

structural information like attributes and methods, others are

using unstructured information like comment lines. The

structural metrics are mostly investigated category of

cohesion metrics and includes the lack of cohesion in methods

(LCOM), Conceptual Coupling between Object Classes

(CCBO). Other methodologies use failure cases and

information flow based metrics. The structural metrics are

based on the definition of the relationship between methods,

system representation and counting mechanism.

Conceptual cohesion and coupling use the comment line

argument and measure the coupling and cohesion of the class.

Coupling and cohesion use the structural information like

variable and methods. The Information theory approach uses

the flow graph for finding the coupling and cohesion.

Minimum coupling and higher cohesion give a good quality

product. Fault tree analysis uses the possible faulty cases of

each module. That will help to predict the fault.

2. FAULT PREDICTION USING

COUPLING AND COHESION OF

CLASSES
It is more important to maintain software quality, all related

attributes and relationship between the attributes. [1] Many

software metrics have been established in the past. In

structured design and programming the importance of

coupling and cohesion as main attributes related to the

goodness of decomposition has been well known, software

developers are trying to develop the system with low coupling

and high cohesion. That will make the product more reliable

and more maintainable. [15,6,7,18] Coupling and cohesion are

measured by using the structural information like methods and

attributes.

There are different types of coupling [1]:

Data coupling: communication via scalar parameters.

Stamp-Coupling: dependency induced by the type of

structured parameters.

Control Coupling: parameters are used to control the

behavior of a module.

Common Coupling: communication via shared global data.

Content Coupling: one module shares and/or changes the

meaning of another module.

For object oriented software, [20,17,16,10] the coupling has

not been considered with similar priorities. There are two

main reasons for this negligence:

1. In structured design, there is some semantic procedure

to decompose a system into small subsystem. Therefore

the syntactic aspect like coupling, size etc. Plays a

major role. At the same time in the object oriented

paradigm, the main principle for system decomposition

is the mapping of objects of the problem domain into

classes or subsystems in the analysis/design model, thus

reducing the relative importance of syntactic criteria.

2. Object oriented analysis and design trying to integrate

the data and related functionality into objects. This

policy reduces coupling between the objects. So the

control coupling is not important for a structured

design.

In object oriented mechanism it does not assure to achieve

minimum coupling. There is some reason to study coupling in

object-oriented systems: [7,9,11,14]

1. Sometimes data or operations do not assign to one or

another class, so the designer needs some additional

criteria for such assignment.

2. Introduction of classes as a powerful means for data

abstraction reduces the data flow between abstraction

units and therefore reduces also total coupling within a

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

46

system, the number of variants of interdependency rises

in comparison to conventional systems.

3. The principles of encapsulation and data abstraction,

although fundamental to object-orientation, may be

violated to different extents via the underlying

programming language.

 This leads to different strength of real coupling which should

be taken into account. Thus, coupling seems to be even more

important in object-oriented systems. Coupling of client

objects to a server object make a change in the dependencies.

The strong coupling, make a larger change in client whenever

a serious change in server, high coupling between the objects

makes harder to understand. Low coupling makes easy to

understand, maintainability of objects. High coupling

increases the possibility of remote effects, when errors in one

object also affect the related object. Low coupling makes

easier track and debug the errors and improves testability.

Coupling is one of the most important internal attributes of a

software, we must consider the cohesion because of the dual

nature of these two attributes. Trying to optimize a design

with respect to the coupling between abstractions (modules,

classes, subsystems...) Alone would trivially produce to a

single larger abstraction with no coupling at the given level of

abstraction.

Definition 1: (Object oriented concepts): A class provides the

definition of structure[1] (instance variables) and behavior

(methods) of similar kinds of entities, an object is an instance

of its respective class. Classes may be organized in

inheritance hierarchies as super and sub classes.

Definition2: Object coupling (OC) represents the coupling

resulting from state dependencies between objects during the

run-time of a system.

Definition3: Class coupling (CC) represents the coupling

resulting from implementation dependencies in a system.

2.1 COUPLING

Chidamber and Kemerer also define RFC (Response for a

Class) as the union of the protocol a class offers to its clients

and the protocols it requests from other classes. Measuring the

total communication potential, this measure is obviously

related to coupling and is not independent of coupling

between the class[1,18,20].

Strength 1: Accessing the interface of any server class SC,

provided SC is a stable class or features at least a stable

interface, the most harmless type of Class coupling occurs, as

no change dependencies are introduced.

Strength 2: Changing the interface of an SC method called

via an object local to one of the CC's methods, only this latter

method needs to be changed correspondingly. The same

argument applies to the case where SC is the type of a

parameter of a CC method.

Strength 3: Changing the interface of an SC method invoked

via a message sent to one of the CC's instance variables of

class SC, due to the class scope of instance variables,

potentially all methods of CC are affected. This is why this

case is less favourable than the above. Similarly, changing the

interface of a method of the super class SC of CC affects all

methods of CC are calling this super- class method. Thus,

again potentially all methods of CC may be affected. As a

global variable is accessible from all methods of a class, the

same argument applies for global variables, too.

Strengths 4 and 5: Following the same arguments as for

strengths 2 and 3 and noticing that change dependencies are

generally stronger when breaching the information hiding

principle, these assignment results.

2.2 COHESION

 Cohesion is an important attribute corresponding

to the quality of the abstraction caught by the class under

consideration. Good abstractions typically exhibit high

cohesion. The original object oriented cohesion metric as

given by Chidamber and Kemerer (and clarified by the same

authors) represents an inverse measure for cohesion. They

define Lack of Cohesion in Methods (LCOM) as the number

of pairs of methods operating on disjoint sets of instance

variables, reduced by the number of method pairs acting on

atleast one shared instance variable.

The definition given is reproduced below:

Consider a Class C1 with n methods M1, M2,.,.,Mn.

Let {Ij} = set of instance variables used by Method Mj.

There are n such sets {I1}... {In}

Let P = {(Ii, Ij) | Ii∩Ij= ø} and

Q = {(Ii, Ij) | Ii∩Ij≠ ø}. If all n sets {I1}... {In} are ø then let

P = ø. LCOM = |P| - |Q|.

If |P| > |Q| = 0 otherwise. So, LCOM is 2 - 1 = 1

Although the principle idea behind this definition seems very

sensible, the resulting cohesion metric exhibits several

anomalies with respect to the intuitive understanding of the

attribute, the most important of which will be explained

below.

The Lack of Cohesion in Methods metric calculations.

LCOM 1: Take each pair of methods in the class and

determine the set of fields they each access. If they have

disjointed sets of field accesses, the count R increases by one.

If they share at least one field access, S increases by one.

After considering each pair of methods: [1]

RESULT = (R > S) ? (R - S) : 0

A low value indicates high coupling between methods. This

also indicates the potentially high reliability and good class

design.

LCOM 2: This is an improved version of LCOM1. Say you

define the following items in a class:

me: Number of methods in a class

ac: Number of attributes in a class

meA: Number of methods that access the attribute a

sum(meA): Sum of all meA over all the attributes in the class

mPr: Number of private methods in a class

mPub: Number of public methods in a class mPro: Number

of protected methods in class

mPr+mPro): sum of all (mPr+mPro) over all the attributes in

the class

LCOM2 = 1- sum (meA) / (me*ac)

If the number of methods or variables in a class is zero (0),

LCOM2 is undefined as displayed as zero.

LCOM 3: This is another improvement on LCOM1 and

LCOM2 It is defined as follows: [1]

LCOM3=(me-sum (meA)/ac)/(me-1) where me, ac, meA, sum

(meA) are as defined in LCM2. The following points should

be noted about LCM3: The LCOM3 value varies between 0

and 2. LCOM3>1 indicates a lack of cohesion and is

considered a kind of alarm. If there is only one method in a

class, LCOM 3 is undefined and also if there are no attributes

in a class LCOM3 is also undefined and displayed as zero

(0).Each of these different measures of LCOM has a unique

way to calculate the value of LCOM. An extreme lack of

cohesion such as LCOM3>1 indicates that the particular class

should be split into two or more classes. If all the member

attributes of a class are only accessed outside of the class and

never accessed within the class, LCOM3 will show a high-

value.A slightly high value of LCOM means that you can

improve the design by either splitting the classes or

rearranging certain methods within a set of classes.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

47

LCOM 4: This is another improvement on LCOM, LCOM2

and LCOM3 It is defined as follows:

 LCOM4= (me – [sum (meA) –sum (mPr+mPro)]/ac) / (me-1)

Where me, ac, meA, sum (meA),mPr, mPub, mPro are as

defined in LCOM2.

LCOM5: This is another improvement on LCOM, LCOM2,

LCOM3 and LCOM4

It is defined as follows:

LCOM5={ [(1/a) (u(Aj))] – m}/(1 – m)

Where: a = No of attributes or instance variables

u(Aj)=number of Methods that access attribute Aj

m = No of Methods in the Class.
 u(Aj)is summed over all the attributes j = 1-- n

3.FAULT PREDICTION USING

CONCEPTUAL COUPLING AND

COHESION METRICS FOR OBJECT

ORIENTED SYSTEMS
Coupling and cohesion measures confine the degree of

interaction and relationships among source code elements,

like methods, and attributes in object-oriented (OO) software

systems [13][42][40][32]. In an object oriented system the

classes must have high cohesion and low coupling

them.[4][8][13] These properties makes easy to understand,

testing efforts, reuse, and maintainability. First we deal with

Conceptual Coupling between Object classes (CCBO)[32], is

based on the well-known CBO coupling metric, while the

other metric, Conceptual Lack of Cohesion in Methods

(CLCOM5), is based on the LCOM5 cohesion

metric.[26][28][42] The proposed new measure for the

cohesion & coupling of classes in OO software systems based

on the analysis of the unstructured information embedded in

the source code, such as comments and identifiers. The

measure, named the Conceptual Cohesion of Classes

(C3)[39], is used to measure textual coherence. C3 is based on

the analysis of textual information in the source code,

expressed in comments and identifiers. Latent Semantic

Indexing (LSI), to extract, represents, and analyzes the textual

information from the source code. Our measure of cohesion

can be interpreted as a measure of the textual coherence of a

class within the framework of the entire system.the comments

are created by the developer for future reference.

3.1 Latent Semantic Indexing

 LSI is a machine learning model, it

introduces representations of the meaning of words by

analyzing the relation between the words and documents. LSI

is a quantity based statistical method for suggest and

representing aspect of the meanings of words and passages

reflective of their usage in large bodies of text.[3,2,12] LSI is

based on the vector space model (VSM), it generates a real

valued description for documents of texts. Finally LSI

captures the meaning of the entire passage in the document.

The central concept of LSI is that the information about the

contexts in a particular word appears or does not appear

provides a set of mutual constraints that determines the

similarity of meaning of sets of words to each other.

 LSI was originally developed in the context of IR as

a way to solve problems with phrase and synonyms that

occurred with the vector space model. Some words appear in

the same contexts and an important part of word usage

patterns are accidentally unclear and insufficient. The method

used by LSI to capture the important semantic information is

dimension reduction, selecting the most important dimensions

of Co-occurrence matrix (words by context) decomposed

using singular value decomposition (SVD)[2]. Finally LSI

gives a similarity between two samples of text in an automatic

unsupervised way’s relies on an SVD of a matrix (word

context) divided from a corpus of natural text that pertains to

knowledge in the particular domain of interest. According to

the mathematical formulation of LSI, the term combinations

that occur less frequently in the given document collection

tend to be not allowed from the LSI subspace. LSI reduces

less frequently Co occurring terms, in the same way the most

frequent terms are also eliminated from the analysis. The

formalism behind SVD is rather complex and too lengthy to

be presented here Once the documents are represented in the

LSI subspace, the user can compute similarity measures

between documents by the cosine between their

corresponding vectors or by their length. These measures can

be used for clustering similar documents together to recognize

“concepts” and “topics” in the corpus. This type of usage is

typical for text analysis tasks.

3.2 Conceptual Cohesion & Coupling Metrics

 The definitions of the new conceptual cohesion

and coupling of classes .[3,5] The source code of the software

system is parsed and transformed into a corpus of textual

documents where each document corresponds to the

implementation of a method. The LSI technique takes the

corpus as an input and creates a term by document matrix,

which captures the dispersion and Co occurrence of terms in

class methods. SVD is used to construct a subspace, referred

to as the LSI subspace. All methods from this matrix are

represented as vectors in the LSI subspace. The cosine

similarity between two vectors is used as a measure of

conceptual similarity between the two methods and is

supposed to determine shared conceptual information between

two methods in the context of the entire software system. This

mechanism to capture conceptual similarity among documents

has been introduced before in the Conceptual Coupling of

Classes and Conceptual Cohesion of Classes measures. Some

of the definitions for the model CCBO, an CLOM5 have been

presented.

Principal Definitions

Definition 1: (System, Classes, Methods).

We define an OO system as a set of classes C = {c1, c2…cn}

with the number of classes in the system n = |C|. A class has a

set of methods. For each class c∈C, M(c)={m1, …, mt}

represents its set of methods, where t = |M(c)| is the number of

methods in a class c. The set of all the methods in the system

is denoted as M(C).

An OO system C can be also viewed as a set of connected

graphs GC = {G1,..,Gn} with Gi representing class ci. Each

class ci∈C is also represented by a graph Gi∈GC such that Gi

= (Vi, Ei),whereVi= M(ci) is a set of vertices corresponding to

the methods in class ci and Ei⊂Vi,Vi is a set of weighted

edges that connect pairs of methods from the class.

Definition 2: (Conceptual Similarity between Methods).

 The conceptual similarity between the methods

(CSM) mk∈M(C) and mj∈M(C), CSM (mk, mj), is computed

as the cosine amid two vectors vmk andvmj, representing mk

and mj in the[3] LSI semantic space:

CSM(mk,mj)=
vm kT vm j

 vm k 2 x vm j 2

As defined, the value of CSM(mk, mj) ∈ [-1, 1], as CSM is a

cosine similarity in the LSI space. In order to fulfil non-

negativity property of software metrics, we refine CSM as the

following:

CSM1(mK,mj)=
CSM mk, mj if CSM mk, mj > 0

𝑒𝑙𝑠𝑒 0

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

48

CSM1 has been used as a base for defining C3

[39]andCoCC[40] measures before.

Definition 3: (Parameterized Conceptual Similarity)

 In our work we define conceptual cohesion and

coupling metrics utilizing counting mechanisms, stemming

from existing structural metrics, which are sensitive to the

input information such as nodes and edges (e.g., methods and

attribute references). Thus, in this work we introduce a notion

of a parameterized conceptual similarity, which distinguishes

between significant and non-significant conceptual

interactions among methods of classes. [12,24]In particular,

we guess that it is possible to empirically derive a threshold

for a given software system to distinguish between strong and

weak conceptual similarities. More formally, we define

parameterized CSMP as:

CSMP(mk,mj,t)=
1 if CSM1 mk, mj > t

𝑒𝑙𝑠𝑒 0

The particular threshold t depends on the specific software

system. [3] In our previous experience, the absolute value of

the cosine similarity cannot be used as a reliable indicator of

the presence or absence of conceptual relationships among

pairs of methods as more comprehensive analysis of similarity

distributions is required. One of the main research questions

in our empirical evaluation is centered on empirically deriving

such a threshold and analysis of the impact on the choice of

threshold values on the resulting metrics.

3.3 Conceptual Lack of Cohesion in Classes

 CLCOM5[3] using CSMP as the foundation

for computing conceptual similarities among methods of

classes, however, in terms of counting mechanism we rely on

one of the ideas from previously defined structural metrics,

namely LCOM5, graph based cohesion metric. The main

difference between our metric, CLCOM5 and C3, conceptual

cohesion of classes metric, is that we define a parameterized

version of cohesion metric using a different counting

mechanism:

CLCOM 5(c, x) = NoCC(G),

Where NoCC identifies the number of connected components

in the graph GC= (M(c), E), c ∈C, E ∈ M(c), and (mk, mj) ∈

E if CSMP(mk, mj, t)=1.

3.4 Conceptual Coupling between Object Classes

The definition of CCBO depend on on

previous definitions for CoCC metric. [25]We provide these

definitions and explain how we adjusted them in the current

work.

Let ck∈ C and cj∈ C be two distinct (ck≠cj) classes in the

system. Each class has a set of methods {mk1, …,mkr},

where r = |M(ck)| and M(cj) = {mj1, …,mjt}, where t =

|M(cj)|. Between every pair of methods (mk, mj) there is a

similarity measure CSMP(mk, mj). We can similarly define

the conceptual similarity between two classes cj and ck, that is

CSCP , as follows:

CSCP(ck,cj,t)=
1 if CSC1 ck, cj ≥ 𝑡

𝑒𝑙𝑠𝑒 0

 The definition ensures that the conceptual similarity

between two classes is symmetrical, as CSC(ck, cj) = CSC(cj,

ck). In this case we use class granularity to build the corpus.

This is the main difference between computing CLCOM5[3]

[2] and CCBO metrics. We refine the conceptual similarity

for a class c as the following:

CCBO(c,t)= CSCP(c, ck, t)
ck ∈ C,c≠ck

This is the sum of the parameterized conceptual similarities

between a class c and all the other classes in the system.

4. FAULT TREE ANALYSIS
Fault Tree Analysis (FTA)[37,22] was introduced in the

1960s, it is a technique used for improving reliability, its

primary purpose for identifying circumstances that could

cause a system to reach a hazardous state. FTA is a powerful

static analysis tool to give a specific hazardous state, FTA

uses backward searching technique to identify conditions that

would cause the system to reach that state. FTA will search all

possible combinations of the conditions that force the system

to reach that state. It is a graphical analysis tool and it uses

both qualitative and quantitative techniques. Through the

qualitative technique, FTA is capable of identifying all the

possible combinations of conditions that would cause the

system. These combinations of conditions are referred to as a

cut set .A minimum cut set represents a minimum number of

conditions that need to be satisfied in order to force the

system in a hazardous state .

The quantitative approach uses probability

information associated with each condition in order to

calculate the probability of occurrence of that specific state.

FTA is the fact that all attention is paid to a specific hazardous

state and the identification of preconditions that need to be

satisfied in order to reach such a state. FTA initially applies to

hardware systems, but recently attempts have been made to

apply FTA to software. Software Fault Tree Analysis (SFTA)

is a road map to application of Fault Tree (FT) throughout the

development life cycle is presented.

4.1 Software Fault Tree Analysis

SFTA [36,33] is used at the code level, and the size

of the software (measured by lines of code) to which the

SFTA has been applied, is relatively small, approximately one

thousand lines of code. Leveson has generated a set of

templates that could be used in SFTA, where a specific

language construct (syntax) has been represented in the form

of fault tree. It is important to mention that when FTA is

applied to software, and specifically at the code level, we are

only addressing the qualitative analysis, since at this level

quantitative analysis does not make sense. Therefore, at

implementation (coding phase), the objective of using SFTA

is to identify the set of instructions that could possibly cause

the software to reach a hazardous state. Therefore, one could

use SFTA in combination with formal code inspection in

order to increase their confidence in the safety of the software

under investigation. Finally, SFTA shows some weaknesses

when there are loops involved in the code, but loops are

almost present in the software.

4.2 SFTA during software development life cycle

SFTA[27,22,34] at the code level is a very difficult

and need more human resource activity. It is a well- known

fact that defect detection and correction at the implementation

phase is much more costly than at the earlier stages of the

software development life cycle.SFTA is used during the

requirements and design phase to identify the critical

component of the software where safety and hazardous states

are the major concerns. Then SFTA may be applied at the

code level only for these critical components. The above

approach follows the principle of divide and conquer, which is

one of the important fundamental methods of solving

problems. The system components are separated into safety

critical components and not safety critical components. We

narrow the scope of the area in which FTA has been applied.

We give a special attention to the flagged components (i.e.,

Safety critical partition) during the development , verification

and validation activities.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

49

4.3 SFTA at requirements phase

The main objectives of applying SFTA[36] during the

requirement phase of software development are:

 Identify the weakness that exists in the requirement

specification. Weak requirement will either be

modified or additional requirement will be added in

order to eliminate this weakness.

 Identify all the requirements that have a direct effect on

the safety of the system.

This can be done either through the knowledge collected as

part of the requirements elicitation, or identifying the pattern

of use and the surrounding environment that could affect the

software, by forcing it to a hazardous state. Once the

requirements with safety considerations are identified, these

requirements will be traced throughout the development life

cycle. It is assumed that a requirement traceability matrix is

included in the software development artifacts to help with

this task.

4.4 SFTA at design phase

The main objectives of applying [31,34,35] SFTA

during the design phase are to:

Identify the weakness of the high level design in this stage

modification will be implemented in order to strengthen the

overall design.

Identify the components and subcomponents that have a direct

effect on software safety.

These modules and those implementing the requirements with

the safety consequences are identified. Then, special attention

may be given to the generation of their implementation, by

guaranteeing the elimination of design factors that could force

the system into a hazardous state.

4.5 SFTA at implementation phase

The main objective of applying FTA to code is to

identify critical code components that have a direct effect on

software safety. In this phase, fault trees will be generated for

all the modules previously identified (during the detailed

design phase) as critical modules affecting software safety.

The main objectives of applying SFTA [37] during the design

phase are

 Identifying a set of key instructions that have a direct

effect on software safety.

 Add appropriate safeguards to prevent the system from

faulty state.

One of the major advantages of the above approach is to avoid

generating fault trees unnecessarily for significant amounts of

code in the system. It limits the application of FT to small, but

critical portions of the code that affect the safety of the

software. Applying FTA to the entire system requirements

specification and the detailed design phase will be much more

efficient than broadly applying it at the code level. Another

advantage of this approach is that by applying SFTA at every

stage of development, safety issues are identified early in the

development life cycle and remedies can be implemented as

early as possible.

5. AN INFORMATION THEORY

APPROACH
Identification of components and their relationship is an

important one for high level software design. Graphs are often

used to represent various aspects of object oriented software

architecture[41,23]. A structural graph used to represent the

software hierarchy and their controls among the components.

An Information theory approach the structural graph to

measure the coupling cohesion for each module. In these

measures the coupling and cohesion are calculated by using

the attributes of object oriented design. [19,21,29] Coupling

and cohesion are the important quality factor of an object

oriented system. [30,38]For every system the coupling must

be low, it reduces the complexity, and the cohesion must be

high, it improves the quality and usability

5.1 Coupling

Definition: External interaction of the module with other

modules

Properties of coupling of a module

 Nonnegative. The coupling of a module is

nonnegative.

 Null value. The coupling of a module is null if it’s

set of inter module edges is empty.

 Monotonicity. Adding an inter module edge to a

module does not decrease its module coupling.

 Merging of modules. If two modules, ml and m2,

are merged to form a new module, mlU2that

replaces m1U2 is not greater than the sum of the

module couplings of ml and m2.

 Disjoint module additivity. If two modules, ml and

m2, which have no inter module edges between

nodes in ml and nodes in m2, are merged to form a

new module, mlu2, that replaces ml and m2, then

the module coupling of mlu2 is equal to the sum of

the module couplings of ml and m2.

5.2 Cohesion

Definition: Internal interaction of the module. Crisp

abstraction of purpose

Properties of cohesion of a module

 Nonnegativity and Normalization. The cohesion of

a module belongs to a specified interval, [0, Max].

 Null value. The cohesion of a module is null if its

set of intra module edges is empty.

 Monotonicity. Adding an intra module edge to a

module does not decrease its module cohesion.

 Merging of modules. If two unrelated modules, ml

and m2, are merged to form a new module, mlu2,

that replaces ml and m2, then the module cohesion

of mlu2 is not greater than the maximum of the

module cohesion of ml and m2.

In this information theory approach it uses control flow graph.

Definition1: (Modular system)

A modular system, MS, is a special case of a

software system represented by a graph , S, that has n nodes

partitioned into modules, mk k=1,2,….nM.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

50

Figure 1. Example of modular system

In this example each modules represented by a dotted box,

each module can have intra and intercommunication, intra

modules communication represented by weighted edge with

in the dotted box, inter modules communication represented

by weighted edge between the dotted box

Definition 2: (System graph)

Given a modular system, MS, with n nodes

partitioned into nM modules, its system graph, S, is all nodes

in MS and all its edges, plus a disconnected node representing

the system’s environment. Without loss of generality, index

the environment node as i = 0, and the nodes in MS si= 1, ...,

n. The system scope is defined by the given nodes and edges.

We explicitly represent the unspecified environment by a

single disconnected node. For measurement of coupling, we

make a further abstraction, an intermodule-edges graph,

which is a sub graph of S. Note that the properties of coupling

focus on intermodule edges.

Definition 3 (Intermodule-edges graph)

Given a modular system, MS, and its system graph, S, its

intermodule-edges graph, S*, consists of all nodes in S and all

its intermodule edges. It is not necessary for subgraph S* to

be a connected graph. For example, Figure 2 depicts the

intermodule edges subgraph, S*, for the modular system in

Figure 1.For measurement of cohesion, we make a further

abstraction, an intramodule-edges graph, which is a subgraph

of S. Note that the properties of cohesion focus on

intramodule edges.

Figure 2. Example inter-module edges graph

Figure 3. Example intra-module edges graph

Definition 4 (Intramodule-edges graph)

Given a modular system, MS, and its system graph,

S, its intramodule-edges graph, so, consists of all nodes in S

and all its intramodule edges. Similarly, it is not necessary for

sub graph so to be a connected graph. For example, Figure3

depicts the intramodule edges sub graph, so, for the modular

system in Figure 1. In order to analyze the patterns of

relationships in s* or So, we label each node with the set of

edges that are incident to it. Because the diagrams in software

engineering, such as structure charts, identify each node with

a component name, we choose an abstraction that maintains a

1
M1

0

2

3

4

M2

5
6

13

17

12

14 13

11

10
M4

14

16

15

9

9

6

8
7

5

M3

5

M3

8 10

12

4

2

11

1

2

3

4

M2

1
M1

12

14
13

11

10
M4

9

6

8
7

5

M3

5

M3

3

 5

7

4

2

11

1

2

3

4

M2

5
6

11

1

M1

11

13

17

12

14
13

11

10

M4

14

16

15

9

9

6

8
7

5

M3

5

M3

8 10

12

3

 5

7

0

Environment

Environment

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

51

distinct identity for each relationship, rather than considering

topology alone.

 A convenient representation of the graph is a nodes x

edges table where each cell indicates whether the node is an

end point of the edge, or not. A nodes x edges table fully

specifies an undirected graph. Each node’s label is encoded as

the binary pattern of values in a row of the table. Table 3

shows the nodes x edges table corresponding to Figure 2.

(Column pL(i) is e explained below.) The abstraction of a

nodes x edges table is an instance of an object-predicate table,

where nodes are objects and each predicate is of the form, “Is

this node related to another node by this edge?” Object-

predicate tables are useful for analysis of complex

relationships among objects. Because object-predicate tables

are suitable for relations in general, future research will

extend this to more general measurement protocols. In

summary, we begin with any protocol that results in a

graphical abstraction of a modular system; we make a further

abstraction to an intermodule-edges graph, S*, or an

intramodule-edges graph, so; and Then translate that sub

graph into a nodes x edges table.

Table1.Example intermodule edges graph

Table 2. Comparison between the methods for predicting the fault

Method

Property

Coupling & Cohesion
Conceptual Coupling

& Cohesion
Fault Tree Analysis

Information Theory

Approach

Concept
Structural Information

Gathering

Unstructured

Information Gathering

Identifying hazardous

state of a system
Structural graph

Algorithm used LCOM
Latent semantic

indexing
Fault tree Control Flow Graph

Applicable Phase Testing Testing

Requirement, design,

implementation,

Testing

Testing

Property Methods, Attributes Comments, Identifiers Failure Cases Methods, Attributes

Advantage Easy to use Easy to use

Easy to use

Graphical

representation

Easy to communicate

Easy to use

Graphical

representation

Easy to communicate

Disadvantage
External attributes are

not taken

Comment line is

created by the

developer

Need more

employers

Lack of software

reliability

Take more time

Lack of software

reliability

Efficiency High Moderate Moderate Low

6. CONCLUSION
The above methods predict the faults in an object oriented

system, it gives better quality, maintainability, and reusability.

Table 2 shows the comparison between the various

methodologies for prediction the fault. The fault prediction

using coupling and cohesion uses attributes and methods of a

class, it does not consider metrics like inheritance and data

abstraction, In this method the fault predicted after the coding

phase. The fault prediction using conceptual coupling and

cohesion uses comments and identifiers. It was created by the

developer for future references. If the developer does not

aware comments will produce lack of measurement. In this

method the fault predicted after the coding phase. In software

fault tree analysis the fault predicted in requirement, design

and implementation phases, but the fault predicted only using

approximated failure cases. In information theory approach

uses attributes and the relationship between the attributes. In

this method the fault predicted after the coding phase. The

fault prediction before the coding phase is more effective and

reduces the cost and time for testing.

7.References
[1]. Amol S.Dange ,Prof.Dr.S.D.Joshi ” Fault Prediction in

Object Oriented System Using the Coupling and

Cohesion of Classes, ” IJCSMS International Journal of

Computer Science and Management Studies, Vol. 11,

Issue 02,pp 48-51, Aug 2011.

[2]. AmolS.Dange , Prof.Dr.S.D.Joshi,” Fault Prediction in

Object Oriented System usingthe Conceptual Coupling

and Cohesion of Classes”, IJCST Vol. 2, Issue 3,

September 2011.

[3]. Andrian Marcus, Denys Poshyvanyk” Using the

Conceptual Cohesion of Classes for Fault Prediction in

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

52

Object-Oriented Systems,”IEEE TRANSACTIONSON

SOFTWARE ENGINEERING, VOL.34, NO.2, pp 287-

300, MARCH /APRIL2008.

[4]. Antoniol, G., Fiutem, R., and Cristoforetti, L., "Using

Metrics to Identify Design Patterns in Object-Oriented

Software", in Proc. of 5th IEEE METRICS'98, Bethesda,

MD, pp. 23 - 34., 1998.

[5]. Antoniol.G, Canfora.G, Casazza.G, De Lucia.A, and

Merlo.E, “Recovering Traceability Links between Code

and Documentation,” IEEE Trans. Software Eng., vol.

28, no. 10, pp. 970-983, Oct. 2002.

[6]. Antoniol.G, Canfora.G, Casazza.G, and De Lucia.A,

“Identifying the Starting Impact Set of a Maintenance

and Reengineering”, Proc. Fourth European Conf.

Software Maintenance, pp. 227-230.

[7]. Arisholm.E,Briand.L.C, and Foyen.A, “Dynamic

Coupling Measurement for Object-Oriented Software,”

IEEE Trans. Software Eng., vol. 30, no. 8, pp. 491-506,

Aug. 2004.

[8]. Bansiya.J and Davis.C.G, “A Hierarchical Model for

Object- Oriented Design Quality Assessment,” IEEE

Trans. Software Eng., vol. 28, no. 1, pp. 4-17, Jan. 2002.

[9]. Basili. V. R., Briand. L. C, and Melo. W. ”A validation

of object-oriented design metrics as quality

indicators”.IEEE Transactions on Software Engineering,

[10]. Berry.M.W., “Large Scale Singular Value

Computations,” Int’lJ Supercomputer Applications, vol.

6, pp. 13-49, 1992.

[11]. Bieman.J and Kang.B.K, “Cohesion and Reuse in an

Object- Oriented System,” Proc. Symp. Software

Reusability, pp. 259-262, Apr. 1995.

[12]. Briand, L. C., Wüst, J., Daly, J. W., and Porter, V. D.,

"Exploring the relationship between design measures

and software quality in object-oriented systems", Journal

of System and Software, vol. 51, no. 3, pp. 245-273.,

2000.

[13]. Briand, L., Wust, J., and Louinis, H., "Using Coupling

Measurement for Impact Analysis in OO Systems", in

IEEE ICSM'99, pp. 475-482., 1999.

[14]. Briand. L. C, Morasca.S, and Basili.V.R.,“Property

based software engineering measurement”. IEEE

Transactions on Software Engineering, 22(1):68-85,Jan.

1996.

[15]. Briand. L. C, Daly. J. W, and Wiist. J. K.“A unified

framework for coupling measurement in object oriented

systems”. IEEE Transactions on Software Engineering,

25(1):91-121, Jan. 1999.

[16]. Briand. L. C, Daly. J. W, and Wiist. J. K. “A unified

framework for cohesion measurement in object oriented

systems”, In Proceedings of the Fourth International

Symposium on Software Metrics, pages 43-53,

Albuquerque, NM USA, Nov. 1997. IEEE Computer

Society.

[17]. Briand. L.C, Daly. J.W, and Wu¨ st. J., “A Unified

Framework for Cohesion Measurement in Object-

Oriented Systems,” Empirical Software Eng., vol. 3, no.

1, pp. 65-117, 1998.

[18]. Briand. L.C, Daly. J.W, Porter. V, and Wu¨ st .V, “A

Comprehensive Empirical Validation of Design

Measures for Object-Oriented Systems”, Proc. Fifth

IEEE Int’l Software Metrics Symp, pp. 43-53, Nov1998.

[19]. Briand. L.C, Morasca.s, and Basili.V.R, “Property-Based

Software Engineering Measurements,” IEEE Trans.

Software Eng., vol. 22, no. 1, pp. 68-85, Jan. 1996.

[20]. Briand.L, Melo.W, and Wust.J, “Assessing the

Applicability of Fault- Proneness Models Across Object-

Oriented Software Projects,” IEEE Trans. Software Eng.,

vol. 28, no. 7, pp. 706-720, July 2002.

[21]. Chae .H.S. and Kwon.Y.R., “A cohesion measure for

classes in object-oriented systems”. In Proceedings Fifth

International Software Metrics Symposium, pages 158-

166, Bethesda, MD USA,IEEE Computer Society, Nov.

1998.

[22]. Dugan J.B., Sullivan, K. J., and D. Coppit, “Developing

a High-Quality Software Tool for Fault Tree Analysis”,

Transactions on Reliability, pp. 49-59 December 1999,.

[23]. Edward B. Allen, Taghi M. Khoshgoftaar, Ye

Chen,”Measuring Coupling and Cohesion of Software

Modules: An Information-Theory Approach”,IEEE 2001.

[24]. El-Emam, K. and Melo, K., "The Prediction of Faulty

Classes Using Object-Oriented Design Metrics",

NRC/ERB-1064, vol. NRC 43609, 1999.

[25]. Etzkorn.L and Delugach.H, “Towards a Semantic

Metrics Suite for Object-Oriented Design,” Proc. 34th

Int’l Conf. Technology of Object-Oriented Languages

and Systems, pp. 71-80, July 2000.

[26]. Ferenc.R, Besze´des.A, Tarkiainen.M, and Gyimo´

thy.T,“Columbus: Reverse Engineering Tool and Schema

for C++,”Proc. 18th IEEE Int’l Conf. Software

Maintenance, pp. 172-181, Oct.2002.

[27]. Frances maryModugno, Nancy G. Leveson, Jon D.

Reese, Kurt Partridge and Sean D. Sandys, “integrated

Safety Analysis of Requirements Specifications'', IEEE

International Symposium on Requirements Engineering,

1997.

[28]. Gyimóthy, T., Ferenc, R., and Siket, I., "Empirical

validation of OO metrics on open source software for

fault prediction", TSE,vol.31/10,Oct' 2005.

[29]. Harrison.R, Counsell.S.J, and Nithi.R.V.“ An evaluation

of the MOOD set of object-oriented software metrics”.

IEEE Transactions on Software Engineering, 24(6):491-

496, June 1998.

[30]. Harrison.R, Counsell.S.J, and Nithi.R.V.”Coupling

metrics for object-oriented design”. In Proceedings Fifth

International Software Metrics Symposium, pages 150-

157, Bethesda, MD USA, IEEE Computer Society, Nov.

1998.

[31]. Helmer, G., Slagell, M., Honavar, V., Miller, L. and

Lutz, R., "A Software Fault Tree Approach to

Requirement Analysis of an Intrusion Detection System"

Symposium on Requirements Engineering for

Information Security, March 5-6, 2001.

[32]. Lawrie, D., Feild, H., and Binkley, D., "Leveraged

Quality Assessment Using Information Retrieval

Techniques", in ICPC'06, pp. 149-158., 2006.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.18, October 2012

53

[33]. Leveson, N. G. and P. R. Harvey, “Analyzing Software

Safety”, IEEE Transactions on Software Engineering,

Vol. SE-9, No. 5, pp. 569- 579, September 1983,

[34]. Leveson, Nancy G., Stephen S. Cha, Timothy J.

Shimeall, "Safety Verification of Ada Programs Using

Software Fault Trees." IEEE Software. pp 48-59,July

1991

[35]. Lutz, R. R., “Targeting Safety-Related Errors During

Software Requirements Analysis,” Journal of Systems

and Software, 34, 223-230, 1996.

[36]. MassoodTowhidnejad Dolores R. Wallace Albert M.

Gallo, Jr,”Validation of Object Oriented Software Design

With Fault Tree Analysis”, Proceedings of the 28th

Annual NASA Goddard Software Engineering Workshop

(SEW’03) IEEE 2003.

[37]. NUREG-0492, “Fault Tree Handbook”, U.S. Nuclear

Regulatory Commission, January, 1981.

[38]. Parnas.D. L. “On the criteria to be used in decomposing

systems”. Communications of the ACM, 15(12):1053-

1058, Dec. 1972.

[39]. Poshyvanyk, D., Marcus, A., Ferenc, R., and Gyimóthy,

T., "Using Information Retrieval based Coupling

Measures for Impact Analysis", Empirical Software

Engineering, vol. 14, no. 1, pp. 5-32., 2009.

[40]. Quah, T.-S. andThwin, M. M. T., "Application of neural

networks for software quality prediction using OO

metrics", in ICSM'03,pp. 116-125.

[41]. Shaw. M ,DeLine. R, Klein. D. V, Ross. T. L, Young. D.

M, and Zelesnik.G.“ Abstractions for software

architecture and tools to support them”. IEEE

Transactionson Software Engineering, 21(4):314-335,

Apr,1995.

[42]. Wilkie, F. G. and Kitchenham, B. A., "Coupling

measures and change ripples in C++ application

software", JSS, vol. 52, pp. 157-164., 2000.

