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ABSTRACT 

Discrimination of rehabilitation diseases based on 

electromyogram (EMG) signals is a hot topic among the 

biomedical society. Although many attempts have been made 

to obtain the informative features from the recorded EMG 

signals, specialists have still not satisfied with the achieved 

results. Therefore, this paper is aimed at introducing an 

effective way to enhance the classification rate among the 

three groups including: myopathy, neuropathy, and control 

simulated subjects. In this way, first, the empirical mode 

decomposition (EMD) is applied to the simulated signals in 

order to decompose each signal to its natural components. The 

resulted decomposed signal is used to classify these three 

groups. The achieved comparison results between the 

suggested method and other conventional method exhibit the 

superiority of our method in terms of classification accuracy 

among these groups. In addition, applying the paired T-test on 

the results supports the significance of our evolution (P<0.05). 
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1. INTRODUCTION 
Several neuromuscular disorders that affect the spiral cord, 

nerves, or muscles are existed. Neuromuscular pains has a 

high prevalence in various groups of people including young 

and old professionals in sport fields, older house wives, 

traditional artists who involve with making handcraft objects, 

young and elder labors, typists, etc. Early detection and 

diagnosis of such diseases is crucial for managing of their 

treatments [1].  

Specialists diagnose the neuromuscular diseases using visual 

inspection of the recorded Electromyogram (EMG) of the 

patients and compare their shape and key points to the 

standard ones. Regarding the limitation of human eyes, it is 

obvious that visual template matching cannot be as accurate 

as the quantitative measures that automatically analyze all 

details of the recorded signals in time, frequency, and state-

space domains. 

EMG signals are naturally constructed by spatio-temporal 

integration of motor unit action potentials (MUAPs) which are 

activated in different depths and length [2]. EMG signals are 

easily caught from the forearm skin while to record each 

MUAP signal, a needle electrode is required to invade inside 

the muscle (beside a neuromuscular junction) the subject is 

asked to slightly contract that muscle.  Electrical activity of a 

single anatomical motor unit (MUAP) represents the 

superposition of action potentials related to the muscle fibers 

within the recording range of the electrodes [3]. In other 

words, the aim is decomposing the EMG into MUAP patterns, 

because existence of each abnormality in the EMG signal is 

originated by deterioration of MUAPs’ shape. These 

characteristic changes can be utilized to classify various types 

of neuromuscular diseases  [4-6]. Hence, for detection and 

classification of each abnormality, first, EMG signals should 

be decomposed to its essential elements (by decomposing the 

signal into its natural subspaces) and then abnormality 

detection should be performed on decomposed subspaces.      

The classification problem is mostly divided into three stages 

including; feature extraction, dimensionality reduction, and 

pattern classification. Several features can be extracted from 

EMGs in different domains such time, frequency, and state 

space. 

Specialists in practice just use time domain features like 

duration (latency), amplitude, and phases of MUAPs that is 

still their gold-standard criteria due to the interpretation 

simplicity and its capability to differentiate myopathy from 

neuropathy diseases [7]. However, with increasing muscle 

force, the number of activated MUAPs recruited at higher 

firing rates incline; therefore, making it difficult for the 

neurophysiologist to distinguish the individual MUAP 

waveforms. In practice, specialists assess MUAPs’ shape in 

the screen and listen to their audio characteristics. As a result, 

an experienced specialist can detect abnormalities with a 

reasonable accuracy. Nevertheless, subjective MUAP 

assessment, although satisfactory for the detection of 

unequivocal abnormalities, may not be sufficient to describe 

less obvious deviations or mixed patterns of abnormalities [8].  

An efficient way to over the practitioners’ shortcomings is to 

decompose EMG signal and then elicit informative features 

from different domains, and finally classify them into similar 

groups that present significant information for the assessment 

of neuromuscular pathology [1]. Several methods have been 

proposed to decompose EMG signals quantitatively. Buchthal 

et al. [9] developed one of the earliest methods for EMG 

decomposition, at which MUAPs were recorded 

photographically and finally were selected for analysis. 

Stalberg et al. [8] used waveform template matching and 

employed different shape parameters as input to a template 

matching technique. Stashuk and Qu [10] proposed a method 

in order to identify MUAPs based on power spectrum 

matching. Chauvet et al. [11] introduced a method allowing 

decomposition of EMG signals based on fuzzy logic 

techniques. All of these techniques deal only with MUAP 

detection and EMG decomposition, but they do not classify 

them according to their pathology. 

In this study, first EMG signals were decomposed using the 

empirical mode decomposition [12] that its efficiency is 

experimentally proved in some similar attempts [13, 14]. 

Since dimension of the decomposed EMGs is high, one 

feature extraction method is used to reduce the dimensionality 

of feature space to map the input space into a more separable 
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subspace. Finally, support vector machine (SVM) classifier 

[15-17] is exploited to classify the extracted features. 

The rest of this paper is structured as follows. In Section 2, the 

methods which are used in this study are explained in detail. 

Section 3, presents the experimental results produced by 

applying the simulated data to the methods described in the 

former part. Finally, the paper is concluded and future outline 

of this research is briefly described as future work. 

2. METHODS & MATERIALS  
In this Section, first the proposed method is explained, and 

then one conventional method which implemented in this 

study is briefly described. Next, the characteristics of 

simulated data are described. Afterward, the evaluation 

criteria are explained.  

2.1.proposed method 

In this part, our proposed method is described which include 

three stages as depicted in Figure 1. First, the data is 

segmented with window length of 0.5s (2000 samples). Then, 

signals are decomposed by empirical mode decomposition 

scheme into its essential subspaces. 

In this decomposition scheme, different part of signal may 

have different extracted component. Therefore, we consider 

the same number of EMG components for all segments. In 

order to equalize the feature vector length, the segment with 

minimum number of base components is found. If this 

minimum number of components is indicated by M, only the 

first M segment components of all other windowed signals 

consider in the feature selection phase and the others are 

discarded. Next step is to extract features by Sequential 

Forward Selection strategy (SFS) [18] as discussed in section 

2.4. Finally, these features are fed to support vector machine 

(SVM) classifier [15] to determine the classification rate 

among the three groups including: myopathy, neuropathy, and 

control simulated subjects. 

 

 

 

2.2.emprical mode decomposition(EMD) 

This decomposition method determines the intrinsic 

oscillatory modes within a data using its time scales 

characteristic and then decomposes the data accordingly. 

EMD is based on three assumptions: 1) the signal has at least 

two extrema with at least one maximum and one minimum; 2) 

the time scale characteristic is determined by the time lapse 

between the extrema; and 3) if the data does not have any 

extrema, but contains inflection points, then it can be 

differentiated once or more times to reveal the extrema. 

According to Drazin [19], the first step in this procedure 

is to examine the data by eye. After that, one can identify the 

different scales directly in two ways: by the time lapse 

between the successive zero crossings, and by the time lapse 

between the successive alternations of local maxima and 

minima. The interlaced local extrema and zero crossings make 

a complicated data with one undulation is riding on top of 

another, and they, in turn, are riding on other undulations, and 

so on. These undulations explain various characteristic scales 

of data. 

The purpose of EMD procedure is decomposing time series 

into superposition of components, with well-defined 

instantaneous frequency, which is called Intrinsic Mode 

Functions (IMF). An IMF is a function which satisfies two 

conditions: 1) in the whole data set, the number of extrema 

and the number of zero crossings must be either equal or 

differ at most by one; 2) at any point, the mean value of the 

envelope defined by the local maxima and one defined by the 

local minima is zero. 

The procedure of EMD Method which decomposes the signal 

f is as follows (n = 0 and f0= f): 

 Set h0= fn and k= 0. 

 Construct the Upper (Lower) Envelope for hk by 

identifying all the local extrema and fitting all the 

local maxima (minima) by a cubic spline 

interpolation to use as the upper/lower envelope 

denoted by Uk / Lk. 

 The mean value of U and L is determined (mk(t)) , 

and the kth component is defined as 

kkk mhh 1 . 

 If hk+1 is not an IMF, then increment k, return to 

Step 2 and repeat the procedure (with hk+1 in place 

of hk). Otherwise, define the nth IMF as cn=hk+1 and 

the residual fn+1= fn–c1 which is essentially a slowly 

varying portion of the signal. If a convergence 

criterion is not met, increment n and return to Step 

1. Several convergence criterions have been 

proposed [13, 20, and 21]. In this work, a method 

with the aim of guaranteeing globally small 

fluctuations in the mean while taking into account 

local large excursions is applied to our data [20]. 

This method considers 2 thresholds θ1 and θ2
. In this 

way, sifting is iterated until σ (t) < θ1: for a 

prescribed fraction which defined as (1 − α) of the 

total duration, and also, σ (t) < θ2 for the remaining 

fraction. α = 0.05, θ1 = 0.05, and θ2 = 10 θ1 are used 

in this paper. 

| /=| kkk am  

2/)( kkk LUa   

This procedure called the sifting process, and after 

stopping, we obtain the following result: 
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Figure 1: Stages of determining the proposed 
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However, as noted in [21, 22], intermittency and mode mixing 

are major problems to the use this decomposition on many 

signals. The situation can be improved by using a masking 

function as proposed in [23]. In this method, the first IMF 

component (h1) is used to describe the highest frequency 

component of the signal. Then, after the Hilbert 

decomposition [20, 24] of h1 into a1 and f1, an energy 

weighted mean is computed which gives the mean frequency 

of k samples: 
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Choosing the following masking signal can result in a good 

performance: 

)/2sin()(
_
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Choosing a0 can affect the performance of the algorithm. 

Generally the optimal choice of that depends on the 

amplitudes and frequencies of the components, but 1.6 above 

the average amplitude of the components can be considered as 

a good value.   

Thus, a decomposition of the data is obtained containing n 

empirical modes and a residue denoted as rn. The decomposed 

components have several characteristic; they include different 

frequency bands ranging from high in the first base 

component to low in the last decomposed component. 

Moreover, these components are almost orthogonal, and in 

most cases, the leakage is too small. The result of applying the 

EMD decomposition process on one portion of simulated 

EMG data is shown in Figure 2. This data segment contains 9 

IMFs and as can be seen the frequency of these IMFs is 

reduced from first to last component. 

 

Figure 2: An EMG trial along with its decomposed IMF 

components, are depicted. The frequency of these IMFs is 

reduced from up to down corresponding the first 

decomposition level to the last one. 

 

 

 

2.3.The future extraction strategy 

The purpose of feature extraction in this study is to extract a 

set of features that effectively distinguish the simulated EMG 

for myopathy, neuropathy, and control individuals. These 

features are quantitative representative of the EMG signals 

belong to each group, that finally applied to the classifier to be 

labeled. Therefore, In order to reduce the feature 

dimensionality that normally lead to decrease the 

classification time, and also improve the generalization, SFS 

is used in this paper which contains following steps: 

1. Start with an empty feature set F0= {}. 

2. Select the best feature x+ by the following criterion: 

)]([maxarg xFJx k
Fx k





 

3. Update Fk+1=Fk + x+, k=k+1. 

4. Go to 2 

In this work, J is the mutual information [25], and the 

procedure will be continued until a decrease or an 

insignificance increase of J. 

2.4.conventional compared method 

To compare the proposed method to the state-of-art 

methodologies, one approach is considered and implemented 

here [26]. In this method Fast Fourier Transform (FFT) which 

represents the EMG contents into the frequency domain in 

terms of Fourier coefficients was used. Due to the high 

dimensionality of these coefficients, Principle Component 

Analysis (PCA) [27] was deployed to simultaneously 

preserving the EMG information and highly reducing the 

dimensionality of these features. 

2.5.support vector machine 

SVM has been developed based on the theory of structural 

risk minimization [15]. In a binary classification problem, the 

decision function of SVM is defined as follows: 

𝑓 𝑥 =< 𝑤, ∅ 𝑥 > +𝑏  

Where <. , . > denotes the dot product, and ∅ 𝑥  is a kernel 

function mapping the input space to a higher dimensional 

feature space with probably more separability. In optimization 

heart of SVM, two objectives are considered: the first one is 

minimizing the margin width to preserve the locality and risk 

minimization, as far as margin width is inversely related to W; 

consequently, inverse of W should be minimized while the 

classification error should be minimized. Power two is 

considered for the variable w in order to construct a convex 

optimization function. By solving the following objective 

function, both of the mentioned objectives are satisfied. The 

optimum values of 𝑏 and 𝑤 can be obtained by taking two 

derivations from two variables of b and w.   

minimize:  𝑔 𝑤, 𝜉𝑖 =
1

2
| 𝑤 |2 + 𝑐 𝜉𝑖

𝑁

𝑖=1

 

subject to: 𝑦𝑖 < 𝑤, ∅ 𝑥𝑖 > +𝑏 ≥ 1 − 𝜉𝑖 , 𝜉𝑖
≥ 0               

Where 𝜉𝑖 the ith slack variable and C is is the 

regularization parameter. The above minimization problem 

can be rewritten according to Wolfe dual form: 
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minimize:  𝑊 ∝ 

= − ∝𝑖

𝑁

𝑖=1

+
1

2
  𝑦𝑖𝑦𝑗

𝑁

𝑗=1

𝑁

𝑖=1

∝𝑖∝𝑗 𝑘(𝑥𝑖 , 𝑥𝑗 ) 

subject to:  ∝𝑖 𝑦𝑖 = 0,   ∀𝑖: 0 ≤∝𝑖≤ 𝑐

N

i=1

  

Where ∝𝑖  is a Lagrange multiplier which corresponds to each 

sample 𝑥𝑖 , and 𝑘(𝑥𝑖 , 𝑥𝑗 ) is a kernel function that implicitly 

maps the input vectors into a suitable feature space: 

𝑘 𝑥𝑖 , 𝑥𝑗  =< ∅ 𝑥𝑖), ∅(𝑥𝑗  >  

In SVM, first, all samples are nonlinearly mapped into an 

implicitly higher dimensional space, and then, an optimal 

separating hyper-plane is estimated by the support vectors. 

The generalization performance of SVM is mainly affected by 

the kernel parameters and also, the regularization parameter c. 

2.6.evaluation criteria 

To validate the results, leave-one (patient)-out cross validation 

was employed in which accuracy (AC), specificity (SP) and 

sensitivity (SE) are calculated at each fold, and the average of 

these measurements were determined. In each experiment, 

according to leave-one-out cross validation, the train portion 

of data (features of all subjects except one) was fed to support 

vector machine and features of the out-patient in the training 

phase, is used as the test set. This process repeated for up to 

the number of subjects. 

2.7.simulating EMG signals 

In this section, the method for constructing the EMG signals 

for each group of subjects is explained. For each group 10 

subjects were considered and to simulate their corresponding 

EMGs, statistical and morphological properties of each group 

were incorporated through the construction process of the 

signals. Sampling rate of the each simulated signal was set to 

4000 sample per sec. It should be pointed out that EMG 

signals were simulated in the EMG laboratory of Waterloo 

University by the software of professor Stashuk. 

3. Experimental Results & Discussion 
In this section, the results of applying the proposed scheme 

and also the explained compared method are presented. In the 

first experiment, we applied the EMD decomposition method 

to each segment. The result of applying this method on one 

segment of three normal, myopathy, and neuropathy groups of 

EMG signals can be seen in Figure 2. The results of applying 

this procedure to other segments of EMG data were similar to 

these figures depicted in Figure 3. 

 

(A) 

 

(B) 

 

(C) 

Figure 3: the result of applying EMD procedure to EMG 

data A. subject with myopathy disorder B. subject with 

myopathy disorder C. control subject. 

As shown in Figure 3, there are several differences between 

the components of these groups. Therefore, we can employ 

the resulting components in the classification task.  

In the second experiment, the EMD components were use as 

features. We decomposed signals with and without the 

masking signal explained in section 2.2. As shown in Table 1 

and 2, these components can differentiate these groups from 

each other quite accurately. However, using masking signal 

improved the results as can be seen in Table 2. 

Table 1: Results of applying EMD components to SVM 

(without masking function) 

Classifier AC SP SE 

SVM 82.35 82.04 82.68 

 

Table 2: Results of applying EMD components to SVM 

(wit masking function) 

Classifier AC SP SE 

SVM 87.96 85.22 90.7 

 

In this experiment, due to high dimensionality, the 

computational burden is too high. Therefore, in the third 

experiment according to the proposed method and via feature 

selection strategy, which was described in the former sections, 

the dimensionality of the resulted components was reduced. 

The result of applying these features was shown on Table 3. 

The results suggest that these features, which reflected the 

deferential properties of these groups, could be used to 

determine the signal type. Also, the computation burden 



International Journal of Computer Applications (0975 – 8887) 

Volume 56– No.18, October 2012 

27 

decreased with an insignificant decrease in the classification 

rate. 

Table 3: Results of the proposed feature on the SVM 

classifier 

classifier AC SP SE 

SVM 86.82 85.04 88.62 

 

Moreover, the result of applying the method, which was 

discussed in section 2.5 and proposed by Guler et al. [25], is 

shown in Tables 4.  

Table 4: Results of applying the method proposed by 

Guler et al. 

classifier AC SP SE 

SVM 76.67 78.33 75.83 

 

As it can be seen in Tables 3 and 4, the proposed scheme 

outperforms the compared methods. Using paired T-test 

analyses, this was found that this improvement is statistically 

significant (P<0.05). Hence, these features can discriminate 

these groups efficiently. In other words, in this work, EMD 

 was utilized to extract indicative feature. EMD forms a 

complete and nearly orthogonal basis for the signal. 

Therefore, the resulted IMFs are sufficient to describe the 

data. Additionally, as the signal is decomposed in time 

domain and with the same length of original data, we can 

observe varying frequencies at time. As experimental results 

suggests this decomposition reveals discriminative 

information which is hidden in the original data. IMFs of 

different subjects with different types don’t have the same 

structures. Hence, the extracted features could differentiate 

these classes almost accurately and also we can have a small 

feature dimension.    

4. CONCLUSION & FUTURE WORK 
In this study, the empirical mode decomposition was used to 

classify three groups including: myopathy, neuropathy, and 

control simulated subjects. The results suggest that the 

proposed features might be a useful tool in the classification 

of these groups. Also, experimental results show that the 

resulted IMF components in different groups have different 

characteristics. In the future work, the results could be further 

investigated with a real data set and other features related to 

the structure of IMFs. 
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