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ABSTRACT 

We present fuzzy goal programming approach to solve chance 

constrained linear plus linear fractional bi-level programming 

problem. The chance constraints with right hand parameters 

as random variables of prescribed probability distribution 

functions are transformed into equivalent deterministic system 

constraints. We construct nonlinear membership functions 

based on deterministic system constraints. The nonlinear 

membership functions are transformed into linear membership 

functions by using first order Taylor’s series approximation. 

In the bi-level decision making context, decision deadlock 

may arise due to the dissatisfaction of the lower level decision 

maker with the decision of upper level decision maker. To 

overcome this problem, decision maker of each level gives his 

preference bounds on decision variables under his/her control 

to provide some relaxation on their decisions. Fuzzy goal 

programming model is used to achieve highest membership 

goals by minimizing negative deviational variables. Euclidean 

distance function is used in order to find out the most 

satisfactory solution. We solve a chance constrained linear 

plus linear fractional bi-level programming problem to 

illustrate the proposed approach.  

General Terms 

Bi-level programming, linear plus linear fractional 

programming. 

Keywords 

Bi-level programming, linear plus linear fractional 

programming, chance constraints, fuzzy goal programming, 

Taylor’s series. 

1. INTRODUCTION 
In game theory, inventory problems, production house 

problems, banking systems, the objective functions may be 

either linear fractional or the sum of linear and linear 

fractional functions. In 1962, Charnes and Cooper [1] 

developed variable transformation method to solve multi-

objective linear fractional programming problem (MOLFPP). 

Linear programming with a fractional objective function was 

studied by Bitran and Noveas [2] in 1973. Goal programming 

(GP) approach to linear fractional criteria was introduced by 

Kornbluth and Steuer [3]. In GP, the goals are stated 

explicitly. In real situation, the target goals may not be 

explicitly stated due to uncertainty. To deal with uncertainty, 

Luhandjula [4] proposed fuzzy approaches for solving 

MOLFPP. Sakawa and Kato [5] used interactive decision 

making to solve MOLFPP involving fuzzy numbers. 

In 1970, Teterav [6] first studied optimality criteria for 

solving linear plus linear fractional programming problem. 

Schaible [7] studied the sum of linear and linear fractional 

function in 1977. Chadha [8] and Hirche [9] developed 

different models for solving the sum of linear and linear 

fractional programming problem. Under fuzzy constraints, 

linear plus linear fractional programming problem (LPLFPP) 

was studied by Jain and Lachhwani [10]. In 2010, Jain and 

Lachhwani [11] developed LPLFPP with homogeneous 

constraints using fuzzy approach. Jain et al. [12] discussed 

multi-objective linear plus linear fractional programming 

problem (MOLPLFPP) containing non-differential term. In 

2011, Singh et al. studied fuzzy goal programming (FGP) 

approach for solving MOLPLFPP. Using Taylor’s Series 

approximation Pramanik et al. [14] developed FGP model to 

solve MOLPLFPP. Recently, Pramanik and Banerjee [15] 

studied chance constrained MOLPLFPP based on first order 

Taylor’s series approximation. 

Linear plus linear fractional bi-level programming problem 

(LPLFBLPP) is a special type of non-linear bi-level 

programming problem.  In this paper, we consider the 

objective function of each level DM as linear plus linear 

fractional function. We also consider the constraints as linear 

functions and probabilistically defined. There are many 

research fields where LPLFBLPP arises such as robust data 

fitting, traffic assignment problems, portfolio optimizations, 

banking systems, any management systems, etc.  

In this paper, the concept of Pramanik and Banerjee is 

extended to chance constrained linear plus linear fractional bi-

level programming problem (CCLPLFBLPP). In bi-level 

programming problem (BLPP), two types of decision makers 

(DMs) i.e. upper level decision maker (ULDM) and lower 

level decision maker (LLDM) execute their decision in 

hierarchical way. Each level DM independently controls a set 

of decision variables. Candler and Townsley [16] as well as 

Fortuny –Amart and McCarl [17] developed the formal BLPP. 

After that many researchers [18, 19] studied BLPP in various 

perspectives. Sakawa and Nishizaki [20, 21] introduced linear 

fractional BLPP using interactive fuzzy programming. 

Pramanik and Dey [22] presented bi-level linear fractional 

programming problem based on FGP using first order 

Taylor’s series approximation.  

In the present paper, we convert the chance constraints into 

equivalent deterministic constraints with known distribution 

functions and confidence levels. We form non-linear 

membership functions by using individual best solutions 

subject to the deterministic constraints. Using first order 

Taylor’s series, the non-linear membership functions are 

transformed into linear membership functions by expanding 

about the respective individual best solution point. In decision 

making process, each level decision maker provides 

preference bounds on the decision variables controlled by 

him/her for avoiding decision deadlock.  Two FGP models are 
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formulated and Euclidean distance function is used to 

determine the most compromise solution. A numerical 

example is solved to demonstrate the proposed approach.   

The rest of the paper is developed in the following way. In 

Section 2, we formulate CCLPLFBLPP. In Section 3, chance 

constraints are reduced into equivalent deterministic 

constraints. Non-linear membership functions are constructed 

in Section 4. In Section 5, technique of linearization of non- 

linear membership function is discussed by using first order 

Taylor’s series. In Section 6, preference bounds on the 

decision variables are defined. Section 7 is devoted to develop 

two FGP models for solving CCLPLFBLPP. The Euclidean 

distance function is described in the next Section 8. The step 

wise description of the process for solving CCLPLFBLPP is 

presented in the Section 9. Section 10 presents illustrative 

numerical example of CCLPLFBLPP. Section 11 presents 

conclusion and future work.  

2. FORMULAON OF CCLPLFBLPP  
CCLPLFBLPP can be presented as:  
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given matrix of order p  n. The polyhedron X’ is assumed to 

be non-empty and bounded. 

3. REDUCTION OF STOCHASTIC 

CONSTRAINTS INTO EQUIVALENT 

DETERMINISTIC CONSTRAINTS 
We consider the chance constraints of the form:   
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Here,  (.) and 
-1

Ψ (.) represent the distribution function and 

inverse of the distribution function of standard normal 

variable respectively. 

We consider the case when 
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The constraints can be rewritten as:  
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i = p1 + 1, p1 + 2,…, p.                                                                                                                                                                               

X ≥ 0                                                                                     (8) 

Let us denote the equivalent deterministic system constraints 

(5), (7) and (8) by X. Here, X` and X are equivalent set of 

constraints. 

4. CONSTRUCTION OF MEMBERSHIP 

FUNCTIONS 
In order to construct non-linear membership function subject 

to the equivalent deterministic system constraints, the 

objective functions are maximized separately.  

Let the individual best solution for the objective function

)X(Z
i

, i = 1, 2 be 
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Let )X(Z=Z=)X(Zmax
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If we consider the individual best solution as the aspiration 

level, the fuzzy goal assumes the form: 

)X(Z
i ~

 B

i
Z

,
i = 1, 2                                                          (9)                        

)X(Z=Z
B

11

B

1
and )X(Z=Z

B

22

B

2
are the upper tolerance limits 

of the fuzzy objective goals of ULDM and LLDM 

respectively. Similarly,  W

1
Z  = )X(Z

B

21
and W

2
Z  = )X(Z

B

12
 

are the lower tolerance limits of the fuzzy objective goals of 

ULDM and LLDM.   
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and the membership function for the objective function
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 of LLDM can be formulated as: 
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Now, the CCLPLFBLPP reduces to  
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5. CONVERSION OF NON-LINEAR 

MEMBERSHIP FUNCTION INTO 

LINEAR MEMBERSHIP FUNCTION BY 

USING TAYLOR’S SERIES 

APPROXIMATION 
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6. PREFERENCE BOUNDS ON THE 

DECISION VARIABLES 
Since the objectives of level DMs are conflicting, cooperation 

between the level DMs is necessary in order to reach 

compromise optimal solution. Each DM tries to reach 

maximum profit with the consideration of benefit of other. 

Cooperation between the DMs is reflected by the relaxations 

provided by the level DMs on both decision variables. 

Let )r-x(
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7. FORMULATION OF FGP MODEL OF 

CCLPLFBLPP  
The CCLPLFBLPP reduces to the following problem: 
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According to Pramanik and Dey, it can be written [23] as: 
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8. USE OF DISTANCE FUNCTION TO 

DETERMINE COMPROMISE 

SOLUTION 
For multi objective programming, the objectives are 

incommensurable and conflicting in nature. The aim of 

decision makers is to find out the compromise solution which 

is as near as possible to the ideal solution points in the 

decision making context. Here, we use the Euclidean distance 

function [24] of the type 

D2
 = 
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 The solution with the minimum distance is considered as the 

best compromise optimal solution. 

9. SUMMARIZATION OF THE 

PROCESS FOR SOLVING CHANCE 

CONSTRAINED LPLFBLPP  
To solve CCLPLFBLPP we use the following steps. 

Step-1.  Transform the chance constraints into equivalent 

deterministic constraints. 

Step-2.  Calculate individual best solution for each linear plus 

linear fractional objective function of the level DM subject to 

the equivalent deterministic constraints. 

Step-3. Lower and upper tolerance limits are determined for 

each linear plus linear fractional objective function as stated 

in Section 4.  

Step-4. Non linear membership functions are formulated by 

using individual best solutions subject to the equivalent 

deterministic system constraints. 

Step-5.  Find out the individual best solution for each of the 

non-linear membership functions subject to the equivalent 

deterministic constraints. 

Step-6. Using first order Taylor’s series, the non-linear 

membership functions are approximated into linear functions 

at the individual best solution point.  

Step-7. Both level DMs express their choices for the upper 

and lower preference bounds on the decision variables 

controlled by them. 

Step-8. Two FGP models are formulated and solved. 

Step-9. Determine the Euclidean distance for two optimal 

compromise solutions obtained from two FGP Models. 

Step-10. Select the solution with the minimum Euclidean 

distance as the best compromise optimal solution.  

10. ILLUSTRATIVE EXAMPLES OF 

CCLPLFBLPP  
To illustrate the proposed FGP approach, the following 

CCLPLFBLPP with maximization type objective function at 

each level is considered.  

21
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2
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x1 ,0≥  x2 ,0≥
 
                                                              (26)  

The mean, variance and the confidence levels are prescribed 

as follows: 

E (d1) = 2, var (d1) = 1, 
1

m = 0.02                                       (27) 

E (d2) = 4, var (d2) = 2, 
2

m = 0.04                                       

(28) 
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Using (5) and (7), the chance constraints defined in (24) and 

(25) can be converted into equivalent deterministic constraints 

as: 

4x1 + 3x2 ≤  4.055                                                                 (29) 

5x1 +2x2 ≥ 1.518055                                                            (30) 

The individual best solution for each  objective function of the 

level DM subject to the equivalent deterministic constraints is 

obtained as =Z
B

1
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1
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2
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2
X = (0, 0.7590275).                                                                             

The fuzzy goals appear as: 
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The non-linear membership functions )X(μ
1

and )X(μ
2

are 

linearized at their individual best solution point at  
B

1
X  = 

(0.303611, 0), B

2
X = (0, 0.7590275) and we obtain equivalent 

linear membership functions as follows: 

)X(
*

1


 
= 1 + (x1 –0.303611) * 0 + (x2 -0) * (0.303611-5) / 

(4.240972*0.33611),                                                           (34)                                                                           

                                                                     

)X(
*

2


 
= 1 + (x1-0) * (0.7590275-7) / (2.029722*0.7590275) 

+ (x2 –0.7590275) ×0                                                           (35) 

Let 0 ≤ x1≤ 0.5   and 0 ≤ x2 ≤ 1 be the preference bounds 

provided by the level DMs.                                                

By using two FGP models (19) and (20), the optimal 

compromise solutions (See Figure –1, Fifure-2 and Figure-3) 

are presented in the Table1. 

Table 1. The optimal solutions obtained from two FGP 

models of the problem 

Model 

No. 
1

μ ,
2

μ  ,x
1 2

x  21
Z,Z  D2 

FGP-I 0.435 

0.265 

0.2102191 

0.2334797 

7.6024 

7.5073 

0.928 

FGP-II  0.603 

 0.157 

0.2468549  

0.1418902 

 

8.3169 

7.3289 

 

0.932 

Comparing Euclidean distance D2 (see Table 1), we conclude 

that model I offers better optimal solution than Model II for 

this problem.  

 

 

Figure 1. Comparison of optimal solutions 

 

Figure 2. Comparison of optimal solutions 

 

Figure 3. Comparison of obtained resulting membership 

values 

11. CONCLUSION 
In this paper, we present CCLPLFBLPP in simple way. The 

proposed approach is very easy to understand. In the proposed 

approach, chance constraints are transformed into equivalent 

deterministic constraints and linear plus linear fractional bi-

level programming problem is converted into linear bi-level 

programming problem by using the first order Taylor’s series 

approximation.  

For the further study, chance constrained multi-level linear 

plus linear fractional programming problem can be solved by 
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extending the proposed approach. In the hierarchical decision 

making context, the proposed approach can be also applied for 

solving chance constrained linear plus linear fractional 

decentralized multi-level multi-objective programming 

problems.     
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