
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.16, October 2012

29

An Encryption Algorithm for End-to-End Secure Data

Transmission in MANET

Rohan Rayarikar
Masters in Science (M.S.)

Computer Science
Northeastern University, Boston,

MA

Ajinkya Bokil
Masters in Science (M.S.)

Computer Science
Northeastern University, Boston,

MA

ABSTRACT
Encryption is of prime importance when confidential data is

transmitted over wireless network. Numerous encryption

algorithms like AES, DES, RC4 and others are available for

the same. The most widely accepted algorithm is AES

algorithm. We have proposed a new algorithm based on the

concept used by Rijmen and Daemen (Rijndael algorithm),

the founders of AES algorithm. The proposed algorithm

encrypts and decrypts two 128 bits data simultaneously i.e.

256 bits data, thus providing strong encryption accompanied

with complex processing. The proposed Feistal algorithm uses

various invertible, self-invertible, and non-invertible

components of modern encryption ciphers and key generation

same as that of AES. This algorithm provides a secure, fast,

and strong encryption of the data. There is a huge amount of

confusion and diffusion of the data during encryption which

makes it very difficult for an attacker to interpret the

encryption pattern and the plain text form of the encrypted

data. The proposed algorithm is also resistant to Brute-Force

and pattern attacks. This algorithm proves particularly useful

while transmitting confidential data over a Bluetooth or wifi

network. This algorithm is implemented in the Application

layer of the device. The details of implementation are given in

the article.

General Terms
Security Algorithm, Symmetric Key Encryption, MANET.

Keywords

Encryption Algorithm, Matrix Transformation, Complement,

Feistal, Dynamic Row Modification, Row Column Swapping.

1. INTRODUCTION
A Mobile Ad-Hoc Network (MANET) is a self-configuring

infrastructure-less network of mobile devices connected

wirelessly. Various devices are connected wirelessly on

MANET and transmit data to one another. Since, the devices

are mobile; they change their links to other devices frequently.

Each device should be able to act like a router. Since the

devices are connected wirelessly; it is very easy for the

intruder to get hold of the data. [6] The proposed algorithm

increases the data confidentiality by confusion, diffusion and

encryption of data.The proposed algorithm is to be

implemented in the application layer.The algorithm is

explained below.

Figure 1: Flowchart of proposed algorithm

2. THE PROPOSED ALGORITHM
The proposed algorithm is an asymmetric key encryption

algorithm. It uses Rjindael’s key generation algorithm for

generation of the round key. Based on the length of the cipher

key; 10, 12 or 14 round keys are generated.

The input to the algorithm is a 4*8 matrix. This matrix is then

split into two separate 4*4 matrices. The reason behind taking

a large even numbered matrix is that more data can be

encrypted in less amount of time. [5] The two matrices; for

ease of understanding lets name them A and B; are processed

Matrix AB : 4*8 Matrix, 256 bits

Matrix A : 4*4 Matrix, 128 bits Matrix B : 4*4 Matrix, 128 bits

Matrix A' : 4*4 Matrix, 128 bits

Matrix B' : 4*4 Matrix, 128 bits
Matrix A' : 4*4 Matrix, 128 bits

Cipher Key : 4*4 Matrix, 128

bits

Matrix B' : 4*4 Matrix, 128 bits

Add Round Key

Row Column Swapping

Dynamic Row Modification

Matrix Transformation

Add Round Key

Row Column Swapping

Dynamic Row Modification

Matrix Transformation

 + +

Matrix B'' : 4*4 Matrix, 128 bits Matrix A'' : 4*4 Matrix, 128 bits

Matrix Y : 4*4 Matrix, 128 bits

Intermediate

Key : 4*4

Matrix, 128

bits

Matrix X : 4*4 Matrix, 128 bits

 + +

Matrix XY : 4*8 Matrix, 256 bits

n - times based

on the length of

 the cipher key

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.16, October 2012

30

simultaneously. The flowchart for the algorithm is shown in

figure1.

2.1 Initial Processing

The matrices A and B are both 4*4 matrices of 32 bits. A 4*4

cipher key is xor-ed with both A and B. The cipher key is

either taken from the user or is auto-generated based on the

choice of the user. Let us consider A’ and B’ being obtained

from A and B respectively. A’ and B’ are then swapped with

each other. This completes the initial processing of the data.

[4]

2.2 Steps in Encryption Process

2.2.1 Dynamic Row Modification

In this step, first row of the data matrix is selected for

modification decisions. All elements of the first row are

XORed to get one 8-bit number (say PP’) which can be split

as two 4-bit numbers (say X and Y). [2] One element (say

EE’) which is to be XORed with the row to be modified will

be taken from the data matrix. Row number of EE’ will be

given by 2 LSBs of X and column number of EE’ will be

given by 2 LSBs of Y. [2] Row to be modified is decided by

calculating (number of 1s in PP’%4). Each element of this

row is XORed with EE’ to get the required modified row in

the data matrix.

2.2.2 Matrix Transformation

In matrix transformation, each row is modified separately

based on predefined condition. Each row is converted to

binary equivalent as shown in figure 2.

After computing the binary equivalent of particular row;

number of 1s in the result is calculated. The condition for

modification is calculated as number of 1s % 4. Based on the

output, the changes are made as per table 1.

Figure 2: Calculating binary equivalent for Matrix

Transformation

(Number of

1’s)% 4
Modification for corresponding row

0

Circular right shifts all elements by 1 place.

1

Swap two LSBs of first 4-bit number with two

LSBs of second 4-bit number.

 (e.g. a2 a3 with a6 a7)

Perform similar operation with all the columns

of the current row in the data matrix.

2

Swap two MSBs of first 4-bit number with two

MSBs of second 4-bit number.

 (e.g. a0 a1 with a4 a5)

Perform similar operation with all the columns

of the current row in the data matrix.

3

Circular left shifts all elements by 1 place.

Table 1: Modification Table for Matrix Transformation

2.2.3 Row Column Swapping

In row column swapping, all the elements of the data matrix

are XORed. Number of 1s in the result is calculated after

which (Number of 1s % 4) is computed. Based on the result,

data matrix is modified according to the following table.

Number of

1s % 4

Row swapping Column Swapping

0 1 and 4 2 and 3

1 2 and 3 1 and 4

2 1 and 2 3 and 4

3 3 and 4 1 and 2

Table 2: Row Column Swapping

For example, suppose after XORing all the elements,

(Number of 1s % 4) is 0, following operations will take place.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.16, October 2012

31

Figure 3: Example of Row Column Swapping

2.2.4 Add Round Key

This is the last step of the rounds of encryption process. In

this step the round key generated using the key scheduling

algorithm is XOR-ed with the matrix given input to this step.

The key is arranged in a 4*4 matrix. [2] The XOR operation

takes place column-wise i.e. first column of round key matrix

is XOR-ed with the first column of the inputted matrix. For

every round a new round key is generated. For a particular

round, same round key is used to encrypt both left and right

4*4 parts of the data matrix. [1]

2.3 Steps in Decryption Process

2.3.1 Inverse Dynamic Row Modification

This step is same as the dynamic row modification in

encryption process. In this step, first row of the data matrix is

selected for modification decisions. All elements of the first

row are XORed to get one 8-bit number (say PP’) which can

be split as two 4-bit numbers (say X and Y).

One element (say EE’) which is to be XORed with the row to

be modified, will be taken from the data matrix. Row number

of EE’ will be given by 2 LSBs of X and column number of

EE’ will be given by 2 LSBs of Y. Row to be modified is

decided by calculating (number of 1s in PP’%4). Each

element of this row is XORed with EE’ to get the required

modified row in the data matrix.

2.3.2 Inverse Matrix Transformation

This step is same as Matrix Transformation in Encryption

process with some minor changes in modification table. In

matrix transformation, each row is modified separately based

on predefined condition. [4] Each row is converted to binary

equivalent as shown in figure.

Figure 4: Calculating binary equivalent for Matrix

Transformation

After computing the binary equivalent of particular row;

number of 1s in the result is calculated. The condition for

modification is calculated as number of 1s % 4. Based on the

output, the changes are made as per the following table.

(Number of

1’s) % 4

Modification for corresponding row

0

Circular left shifts all elements by 1 place.

1

Swap two LSBs of first 4-bit number with two

LSBs of second 4-bit number. (e.g. a2 a3 with

a6 a7)

Perform similar operation with all the columns

of the current row in the data matrix.

2

Swap two MSBs of first 4-bit number with two

MSBs of second 4-bit number. (e.g. a0 a1 with

a4 a5)

Perform similar operation with all the columns

of the current row in the data matrix.

3 Circular right shifts all elements by 1 place.

Table 3: Modification Table for Matrix Transformation

2.3.3 Inverse Row Column Swapping

In row column swapping, all the elements of the data matrix

are XORed. Number of 1s in the result is calculated after

which (Number of 1s % 4) is computed. Based on the result,

data matrix is modified according to the following table.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.16, October 2012

32

(Number of

1s) % 4

Row swapping

Column Swapping

0

1 and 4

2 and 3

1

2 and 3

1 and 4

2

1 and 2

3 and 4

3

3 and 4

1 and 2

Table 4: Row Column Swapping

For example, suppose after XORing all the elements,

(Number of 1s % 4) is 0, following operations will take place.

2.3.4 Add Round Key

This is the last step of the rounds of decryption process. In

this step the round key generated using the key scheduling

algorithm is XOR-ed with the matrix given input to this step.

The key is arranged in a 4*4 matrix. The XOR operation takes

place column-wise i.e. first column of round key matrix is

XOR-ed with the first column of the inputted matrix. For

every round a new round key is generated. For a particular

round, same round key is used to encrypt both left and right

4*4 parts of the data matrix. The round keys used for

decryption are in opposite direction as that of encryption. For

example, nth round key is used for nth round in case of

encryption where as in case of decryption it is used for first

round.

Figure 5: Example of Row Column Swapping

3.IMPLEMENTATION
The proposed algorithm can be implemented in any language.

This algorithm can also be used in general data encryption.

We have implemented it in java, java being an open source

and platform independent language. The pseudo codes for the

components of the cipher are given below. The entire codes

are not written for obvious reasons.

3.1 Add Round key:
public byte[][] addRoundKey(byte[][] state,byte[][]

roundkey)

{

 for (int i=0;i<4;i++)

 {

 for (int j=0;j<4;j++)

 {

 state [i][j]=doExclusiveOR(state[i][j],

roundkey[i][j]);

 }

 }

 return state;

}

3.2 Dynamic Row Modification
public String[][] Dynamic_Row_Modification (String[][] ip)

{

Integer object;

for (j=0; j<length; j++)

{

do{

 x=XOR(ip[0][j], ip[0][j+1];

 } while (j<4)

}

y=NoOfOnes (x[i][j])%4;

Row_no=firstTwoLSB[x];

Column_no=TwoBits[x];

Element=ip[Row_no][Column_no];

for (j=0; j<length; j++)

{

ip[y][j]=XOR(ip[y][j], element);

}

return ip;

}

3.3 Matrix Transformation
public String[][] Matrix_transform (String[][] ip)

{

 n= integer object;

 for (i=0; i<length; i++)

{

Int row=ip[i];

for (j=0; j<length; j++)

{

Int bin[i][j]=BinEq(ip[i][j]);

n=NoOfOne (bin[i][j]);

}

}

x=n%4;

if(x==0){Circular_Right_Shift(bin[i][j]);}

else if(x==1){SwapLSB (bin[i][j]);}

else if(x==2){SwapMSB(bin[i][j]);}

else if(x==3){Circular_Left_Shift(bin[i][j]);}

return bin;

}

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.16, October 2012

33

3.4 Row Column Swapping
public String[][] Row_Column_Swapping(String[][] ip)

{

for (i=0; i<length; i++)

{

for (j=0; j<length; j++)

{

X=XOR(string[][] ip)

}

}

if((X%4)==0){Swap 1423(String[][] ip)}

else if((X%4)==1){Swap 2314(String[][] ip)}

else if((X%4)==2){Swap 1234(String[][] ip)}

else if((X%4)==3){Swap 3412(String[][] ip)}

return ip;

}

4. STRENGTH OF THE ALGORITHM
The cipher key used in the proposed algorithm is of 128 bits.

Therefore, to break the cipher key an attacker has to check

2128 possibilities which are practically almost impossible.

Therefore, the Brute-force Attack fails on this algorithm. [4]

The flow of the algorithm makes sure that there is no fixed

pattern in any of the steps of the algorithm. The components

of the proposed algorithm have brought about strong diffusion

and confusion. Therefore, statistical and pattern analysis of

the ciphertext fails. [4]

The algorithm turns into a Feistal structure cause of various

swapping operations performed. [4]

Another most important security advantage is that no

differential or linear attacks can break this algorithm. [4]

5. CONCLUSION
As discussed in the paper, Mobile ad-hoc network is a less

secure means of transmitting data from one device to the other

within a wireless network. An attacker with basic knowledge

of hacking into systems can easily procure the data being

transferred. The proposed encryption algorithm, implemented

in application layer, tries to avoid this possibility. The

algorithm enhances the security of data by confusion and

diffusion. Since the algorithm can also be implemented on a

mobile device, care has been taken that it consumes minimum

resources of the processor, thus enhancing the efficiency of

the device. The security of end-to-end data transmission in

MANET is improved when the proposed algorithm is used.

6. REFERENCES
[1] J.Daemen and V.Rijmen, AES Proposal: Rijndael,

NIST’s AES home page, http ://www:nist:gov/aes.

[2] “Announcing the Advanced Encryption Standard

(AES)”, Federal Information Processing Standards

Publication 197, November 2001

[3] Priyanka Pimpale, Rohan Rayarikar and Sanket

Upadhyay, “Modifications to AES Algorithm for

Complex Encryption”, IJCSNS International Journal of

Computer Science and Network Security, VOL.11

No.10, October 2011.

[4] Rohan Rayarikar, Sanket Upadhyay, Deeshen Shah “An

Encryption Algorithm for Secure Data Transmission”,

IJCSNS International Journal of Computer Application,

VOL.40 No.7, February 2012.

[5] Sakib, Rizwanul Karim; Reza, Bisway “Security Issues

in VANET” BRAC University Institutional Reposistory,

April 2010

[6] Brent A. Peacock “CONNECTING THE EDGE: Mobile

Ad-Hoc Networks (MANETs) for Network Centric

Warfare” Blue Horizons Paper, Center for Strategy and

Technology, Air War College, April 2007

[7] John A. Clark, John Murdoch, John A. McDermid, Sevil

Sen, Howard R. Chivers, Olwen Worthington and Pankaj

Rohatgi, “Threat Modelling for Mobile Ad Hoc

andSensor Networks” ITA CONFERENCE 1569048773

THREAT MODELLING FOR MOBILE AD HOC AND

SENSOR NETWORKS

