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ABSTRACT 
The Conventional acoustic echo   canceller encounters 

problems like slow convergence rate (especially for speech 

signal) and high computational complexity as the 

identification of the echo path requires filter with more than a 

thousand taps, non-stationary speech input, slowly time-

varying systems to be identified. The demand for fast 

convergence and less MSE level cannot be met by 

conventional adaptive filtering algorithms. There is a need to 

be computationally efficient and rapidly converging 

algorithm.  

The LMS algorithm is easy to implement and computationally 

inexpensive. This feature makes the LMS algorithm attractive 

for echo cancellation applications. The results show that the 

steady state value of the output estimation error increases with 

increasing the step size parameter and the optimality of the 

LMS algorithm is no longer hold. The results also reveal that 

choosing the smallest value of the step size parameter 

guarantees the smallest mis-adjustment but might not meet the 

convergence criteria. 

General Terms 
Adaptive Filtering Algorithm, Acoustic Echo-cancellation. 
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1. INTRODUCTION 
Teleconferencing systems are expected to provide a high 

sound quality. Speech by the far end speaker is captured by 

the near end microphone and being sent back to him as echo. 

Acoustic echoes cause great discomfort to the users since their 

own speech (delayed version) is heard during conversation. 

The echo has been a big issue in communication networks. 

Hence this is devoted to the investigation and development of 

an effective way to control the acoustic echo in hands-free 

communications [1]. The Generation of acoustic echo through 

direct coupling and reverberations [2] can be shown in Fig. 1. 

Each side of the communication process is called an ‘End’. 

The remote end from the speaker is called the far end (FE), 

and the near end (NE) refers to the end being measured. The 

acoustic echo is due to the coupling between the loudspeaker 

and microphone. 

The speech of the far-end speaker is sent to the loudspeaker at 

the near end, and it is reflected from the floor, walls and other 

neighboring objects, and then picked up by the near-end 

microphone and transmitted back to the far-end speaker, 

yielding an echo, which can be illustrated in Figure 1.  

The paper is organized as follows. Section 2 presents the 

principles of acoustic echo cancellation in teleconferencing 

environment. Section 3, 4 gives a very brief idea about 

Discrete Time Signal and Speech Signal. Section 5, 6 gives a 

very brief review on The LMS Algorithm. Section 7 reports 

the Discussion and Analysis of Simulation results, carried out 

on acoustic echo cancellation using LMS Algorithm. The 

conclusions and references are discussed in the last Section. 

 

Fig 1: Generation of acoustic echo through direct coupling 

and reverberations 

2. THE PRINCIPLES OF ACOUSTIC 

ECHO CANCELLATION 
In a teleconferencing environment, speech by the near end 

speaker is often captured by the far end microphone and being 

sent back to him as echo. For acoustic echo cancellation, the 

initial speech transmitted to the far end is adaptively filtered 

to follow the echo of the speech retransmitted from the far 

end. The difference of the two signals (i.e. the error of the 

adaptive filter) is transmitted to the near end [20]. This error 

signal is used by the adaptive filter in adapting its filter 

parameters. Figure 2 shows such an acoustic echo cancelling 

setup. Referring  to figure let x(n) be the input signal (from 

the far end speaker) travelling to the near end speaker through 

the loudspeaker and d(n) is the signal picked up by the 

microphone which in this case is the far end echo corrupted 

with noise . 

The adaptive filter is used to model the transfer function of 

the room in which the loudspeaker and microphone are in to 

generate a replica of the echo, y(n) following that, the 

estimated echo is subtracted from the desired input signal d(n) 

yielding the estimation error signal, 

      )()()( nyndne                                               1 

The aim is to cancel the desired input signal d(n)  and that is 

by making sure the error signal e(n) is kept to the best 

minimum value possible. From Figure 2, it is also noted that 

past values of the estimation error signal )(ne is fed back to 

the adaptive filter. The purpose of the feedback is to 

effectively adjust the structure of the adaptive system, thus 

altering its response characteristics to the optimum possible. 
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Simply, the adaptive filter is self adjusting hence the name 

‘adaptive’. 

In an acoustic echo cancellation [3], [14], [18], a model of the 

room impulse response may vary continuously hence the 

model needs to be updated continuously. This is done by 

means of adaptive filtering algorithms. 

 

Fig 2: Acoustic Echo Canceller configurations 

3. DISCRETE TIME SIGNAL 
Real world signals, such as speech are analog and continuous. 

An audio signal, as heard by our ears is a continuous 

waveform which derives from air pressure variations 

fluctuating at frequencies which we interpret as sound. 

However, in modern day communication systems these 

signals are represented electronically by discrete numeric 

sequences [4]. In these sequences, each value represents an 

instantaneous value of the continuous signal. These values are 

taken at regular time periods [5], known as the sampling 

period, Ts. 

The values of the sequence, x(t) corresponding to the value at 

n times the sampling period is denoted as x(n). 

)()( snTxnx                                                2    

4. SPEECH SIGNAL 
A speech signal consists of three classes of sounds [13]. They 

are voiced, fricative and plosive sounds. Voiced sounds are 

caused by excitation of the vocal tract with quasi-periodic 

pulses of airflow. Fricative sounds are formed by constricting 

the vocal tract and passing air through it, causing turbulence 

that result in a noise-like sound. Plosive sounds are created by 

closing up the vocal tract, building up air behind it then 

suddenly releasing it. This is heard in the sound made by the 

letter. Figure 3 shows a discrete time representation of a 

speech signal.  

 

Fig 3: Speech signal representation 

5. THE LMS ALGORITHM 
The LMS algorithm is a type of adaptive filter known as 

stochastic gradient-based algorithms as it utilizes the gradient 

vector of the filter tap weights to converge on the optimal 

wiener solution. It is well known and widely used due to its 

computational simplicity [6]. 

LMS algorithm consists of two basic processes  

1. A filtering process- which involves computing the output 

d(n) of the Transversal filter generating from the set of tap 

weights, and computing a error e(n) by comparing this output 

with the actual desired response. 

2. An adaptive process- which involves the automatic 

adjustment of the tap weights. Figure 4 shows the block 

diagram of adaptive transversal filter.  

 

Fig 4: Block diagram of Adaptive Transversal Filter 

The filter tap weights of the adaptive filter LMS algorithm 

[6], [7] are updated according to this equation 

      )()()()1( nxnenwnw                                 3 

Where w (n) is the tap weight vector at time n.  

The parameter µ is known as the step size parameter and is a 

small positive constant. This step size parameter controls the 

influence of the updating factor. Selection of a suitable value 

for is imperative to the performance of the LMS algorithm, if 

the value is too small the time the adaptive filter [8] takes to 

converge on the optimal solution will be too long; if µ is too 

large the adaptive filter becomes unstable and its output 

diverges. 

It is noted that the existence of feedback e(n) in the LMS 

Algorithm [19] may cause the algorithm to be unstable. 

Fortunately, the stability of the algorithm can be determined 

by the step-size parameter. The step size parameter should 

satisfy the following  

max

2
0

S
                                                      4 

Where maxS is maximum value of input signal power. 

6. ANALYSIS OF THE LMS 

ALGORITHM 
The LMS algorithm minimizes the expected value of the 

squared error (residual echo). Thus the criterion function, 

mean squared error is 

)]([ 2 neEJ                               5  

)]([ 2 neEJ   

)]([)(2 neEneJ   

)]()()([)(2 nxnWndEneJ T  
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For simplicity, the tap input vector x(n) and the desired 

response d(n) are assumed to be jointly wide-sense stationary 

[9]. With this assumption, the method of steepest descent can 

be used to compute a tap weight vector. 

Jnwnw  )()1(                  7 

)()(2)()1( nxnenwnw                           8 

For convenience, the factor two in equation 8 is absorbed into 

the constant µ yielding 

)()()()1( nxnenwnw                                    9 

The LMS algorithm has a correction factor of µ e(n)x(n) to 

the tap weight vector w(n). One notable fact is that the 

correction factor is directly proportional to the tap input 

vector x(n) and hence when x(n) is large, the LMS algorithm 

faces a gradient noise amplification problem [10]. This means 

the error in the gradient estimate gets magnified. 

The main reason for the LMS algorithms popularity in 

adaptive filtering is its computational simplicity, making it 

easier to implement than all other commonly used adaptive 

algorithms. For each iteration the LMS algorithm requires 2N 

additions and 2N+1 multiplications (N for calculating the 

output, y(n), one for 2μe(n) and an additional N for the scalar 

by vector multiplication) [11], [12], [17]. Figure 5 shows the 

flowchart of the basic LMS adaptive filtering Algorithm.  

 

Fig 5: Flowchart of the Basic LMS Algorithm 

7. DISCUSSION AND ANALYSIS OF 

SIMULATION RESULTS 
The LMS algorithm was simulated using Matlab with respect 

to the application of acoustic echo cancellation depicted in 

Figure 2. LMS algorithm is easy to implement and 

computationally inexpensive. This feature makes the LMS 

algorithm attractive for echo cancellation applications. 

Simulations involving real speech input signal consisted of 

48,000 sample points and the echo path was assumed to have 

known impulse response, h(n) of 500 points long.  

Table 1 shows the condition of simulation experiment for 

LMS Algorithm for acoustic echo cancellation [15, 16]. 

In this paper filter length was taken to be 300 taps. The 

parameter of LMS algorithm µ was set to be 0.03 and the near 

end speaker was assumed to be noisy. Noise variance was set 

at 0.012.  

Figure 6 shows the Acoustic echo path Impulse from where 

Output of Loudspeaker is passed. Figure 7 shows Microphone 

Signal which is Resulting Far End Echo corrupted with Noise 

from near end. Residual Echo of LMS filter is shown in 

Figure 8 and it is compared with Microphone signal in Figure 

9. It can be seen that the residual echo is small but not 

satisfactory. Mean square error performance is shown in 

Figure 10 which is showing the average of the MSE decay to 

zero after long time [11]. 

A very useful tool to express the effect of echo cancellation is 

the Echo Return Loss Enhancement (ERLE) [12] defined as: 

))((

))((
log10

2

2

neE

ndE
ERLS dB                                       10 

Where, E represents the estimated expected value by means of 

moving averages. Here, the ERLE is used as the performance 

index of the algorithm and is defined as the ratio of energy in 

the original echo d (n) to the energy in the residual echo e (n). 

Table 1. Condition of Simulation Experiment using fixed 

values of µ 

Simulation Parameters Value 

Time (length of signal in second) 6 sec 

Sample Rate of speech Signal 8KHz 

LMS Step size (µ) 0.03 

No of adaptive Filter Tap 300 

Moving point average (Mpa) 150 

length of   room  impulse response (M) 500 

Noise Variable 0.012 

 

Table 2. Condition of Simulation Experiment using 

different values of µ 

Simulation Parameters Value 

Time (length of signal in second) 6 sec 

Sample Rate of speech Signal 8KHz 

LMS Step size (µ) 
0.001, 0.007, 

0.03 

No of adaptive Filter Tap 300 

Moving point average (Mpa) 150 

length of   room  impulse response (M) 500 

Noise Variable 0.012 

 

In other words, ERLE is a measure of how much echo is 

attenuated in decibel (dB). 

ERLE for LMS algorithm is shown in Figure 11.It is observed 

that the ERLE for LMS algorithm has lower peaks hence 

convergence is slower as well as less echo suppression is 

achieved. 

  Initialization of the tap-weight vector w (n) 

 

Get the value of x (n) and d(n) 

 

Filter x (n) according to 

 )()()(
1

0

knxnwny
M

k

k 




 

Compute the error 

e(n) = d(n) – y(n) 

 ( )   ( )   ( )  
Updating the coefficient 

 )()()()1( nxnenwnw   
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Fig 6: Acoustic Echo Path Impulse Response 

 

Fig 7: Microphone Signal 

 

Fig 8: Residual Echo of LMS Algorithm 

 

 

Fig 9: Comparison of Microphone Signal with remaining 

Residual Echo of LMS Algorithm 

 

Fig 10: MSE Performance of LMS Algorithm 

 

Fig 11:  ERLE Performance of LMS Algorithm 

The convergence behaviour of the LMS algorithm is highly 

dependent on the step size parameter µ.  As an illustration, the 

learning curves of ERLE and MSE for three different values 

of µ (.001, .007 and .03) are depicted in Figure 12 and Figure 

13 respectively and the Table-2 shows the parameter of LMS 

Algorithm using different values of µ.  

 

Fig 12:  ERLE Performance of LMS Algorithm for 

different step size 

 

Fig 13: MSE Performance of LMS Algorithm for different 

step size 

From Figure 12 it is observed that the ERLE for large step 

size (in red) has higher peaks than the two lower value of step 

size (in blue and magenta). In other words, LMS algorithm 

converges faster for large value of step size hence; more echo 

suppression is achieved but from Figure 13 results in large 

mis-adjustment error for large value of step size and learning 

curve never actually converges down to a satisfactory steady 

state condition. On the other hand, when µ is small (equal to 

0.001), the rate of convergence reduces significantly and gives 

small steady state mis-adjustment error.  

In short, the results show that the steady state value of the 

output estimation error increases with increasing µ and the 

optimality of the LMS algorithm is no longer hold. The results 

also reveal that choosing the smallest value of the step size 

parameter guarantees the smallest mis-adjustment but might 

not meet the convergence criteria[11], [12]. 

8. CONCLUSION 
The LMS algorithm is attractive for echo cancellation 

applications due to its inherent simplicity. In acoustic echo 

cancellation applications such as hands free telephony, input 

signal is no other than the speech signal and speech 

excitations have a large Eigen value spread. As a result, the 

convergence rate of the LMS algorithm for such application 
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will drop significantly. This undesirable dependence on the 

Eigen value spread has prompted investigations into other 

adaptive algorithms (or structure) particularly in combating 

the dependence of convergence rate to its signal 

characteristics. 

This paper has presented the acoustic echo cancelling using 

adaptive filters. Acoustic echo canceller is necessary as the 

control of acoustical echoes is important to ensure 

comfortable conversation in hands free telephones and 

teleconferencing applications. Essentially, the acoustic echo 

cancelling problem can be viewed as an identification 

problem where the identification is no other than the acoustic 

echo path (normally requires more than a thousand taps). 

The results show that the LMS algorithm has the least 

computational complexity but a poor convergence rate.  
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