
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.14, October 2012

18

Evaluation of Flow Graph and Dependence Graphs for

Program Representation

Vinay Arora

Thapar University,Patiala
CSED

Rajesh Kumar Bhatia
DCR Uni. of Sc. Tech, Murthal

CSED

Maninder Singh
Thapar University, Patiala

CSED

ABSTRACT

Graphical methods offer the structural icon of the system that

facilitates testing the logical progress of the program. A

control flow graph describes the sequence in which the

instructions of a program will get executed. PDG represents a

program as a graph where statements and predicate

expressions can be characterized by the nodes. The System

Dependence Graph (SDG) is an extension of the Program

Dependence Graph (PDG) and represents a program that

consists of multiple procedures and involves procedural calls.

An assessment of flow graphs & dependence graphs can be

performed on the basis of properties like control dependence,

data dependence, transitive dependence, flow sensitivity,

parameter passing etc.

General Terms

Flow graph, dependence graph.

Keywords

Control flow graph, program dependence graph, system

dependence graph.

1. INTRODUCTION
A graph G = (N, E) is defined as a finite set of nodes N and a

finite set of edges E. The graphical methods offer the

structural icon of the system that facilitates testing the logical

progress of the program [1]. Flow graph indicates the flow of

control between statements present in a program whereas a

dependence graph symbolizes program features and

dependencies between many objects. There are many

graphical representations such as Data Flow Graph (DFG),

Program Dependence Graph (PDG), System Dependence

Graph (SDG), Extended System Dependence Graph (ESDG),

Call-based Object-Oriented System Dependence Graph

(COSDG), etc. Section 2 provides a brief review of various

graph based approaches followed for program representation.

Section 3 provides the assessment of flow graphs &

dependence graphs on the basis of properties like control &

data dependence, transitive dependence, flow sensitivity,

parameter passing etc. Section 4 presents the conclusion for

comparison between various graphical representations.

Section 5 outlines the future scope.

2. PROGRAM REPRESENTATION

USING GRAPHS

2.1 Control Flow Graph
A control flow graph is a directed graph where nodes

correspond to the basic blocks (set of statements in a program)

and the edges represent control flow paths [2]. For example,

in Fig 1, blocks (nodes) are labeled such that block bi

corresponds to node ni. An edge (i, j) connecting basic blocks

bi and bj implies that control can go from block bi to block bj

[4].

Fig 1 Block/Node representing set of statements [5]

Most of the programs are constructed with the three types of

constructs namely sequence, selection and iteration. Fig 2

summarizes how the CFG for these three types of constructs

can be drawn. The CFG representation of the sequence and

decision types of statements is straightforward. For the

Iteration type constructs such as the while construct, the loop

condition is tested only at the beginning of the loop and

therefore control flows from the last statement of the loop to

the top of the loop [6].

Fig 2 CFG for sequence, selection and iteration construct

[5]

For programs written in Pascal Frankl et al introduced control

flow and data flow testing criteria and also defined a new

family of adequacy criteria called feasible data flow testing

criteria which has been derived from the data flow testing

criteria [7]. To find subsets of nodes and edges in a flow

graph branch coverage and testing of programs has been

proposed by Agrawal [8]. The author has introduced

dominator relationships among super blocks which can be

used to identify a subset of the super blocks and these

techniques reduce object code size, runtime overhead and cost

of coverage testing of programs. Dominator relationships

were represented using Block Dominator Graph and Edge

Dominator Graphs. An algorithm to construct Global

Dominator Graph has also been presented which shows

dominator relationships among mega blocks at inter-

procedural level. Global dominator graph is the combination

of block dominator graphs. Inter-procedural jump statements

can also be handled using this graph.

(i, j)

ni

nj

bi

bj

Block of statements

Block of statements

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.14, October 2012

19

An Event Graph is an extension of control flow graph in

which interactions can be represented between the program

units such as procedures and functions. The Event Inter

Actions Graph (EIAG) is used as a model for concurrent

programs and it constitutes an Event Graphs and various

Interactions. A Class Specification Implementation Graph

(CSIG) is a graphical representation which shows a class from

two distinct perspectives, namely the class as specified and

the class as implemented. In this graph, each class method can

be represented by two control flow graphs where one graph

visualizes at control flow as specified and other graph at

control flow as implemented. Beydada and Gruhn presented

the application of CSIGs in regression testing. The control

flow graphs are the main constituents of a CSIG and therefore

testing techniques implemented on control flow graphs can

also be combined with CSIGs with some modifications.

For capturing the semantic inter-relations of aspect-related

interactions for AspectJ software a Java Interclass Graph

(JIG) is a new control flow representation. A JIG contains a

CFG for each method which is internal to the set of classes

[9]. Each call site is expanded into a call node and a return

node where call node is linked with the entry node of the

called method. There is a path edge between the call node and

the return node to represent the path through the called

method.

2.2 Program Dependence Graph
The PDG represents a program as a graph where statements

and predicate expressions can be characterized by the nodes.

The edges incident on to a node represent data values on

which the node’s operations depend and the control conditions

on which the execution of the operations depends [10, 11]. A

PDG can represent both control dependence as well as data

dependence in a single graph.

For statements X and Y in a program, if X is control

dependent on Y then there must be at least two paths out of Y.

In this, one path always causes X to be executed and the other

path may result in X not being executed. A data dependence

exists between statements X and Y in a program if X defines a

variable v, Y uses v and there is a path from X to Y in the

program on which v is not defined [12, 13].

A program dependence graph contains a flow dependency

edge from vertex v1 to vertex v2, iff all of the following

conditions hold [10, 11]:

 v1 is a vertex that defines variable x and v2 is a

vertex that uses x.

 Control that reach v2 after v1 through an execution

path in which there is no intervening definition of x.

Consider the program given in Fig 3 where the code fragment

is used to calculate the factorial of a number [14]. The

execution of statements 11 and 12 is dependent on the control

predicate at statement 9. The statement 11 is data dependent
on statements 7, 8, 12 and itself. Fig 4 represents the

corresponding Program Dependence Graph of the program

given in Fig 3, where control dependence edges are

represented as bold lines and data dependence edges are

represented by light colored regular lines.

1. class Factorial

2. {

3. public static void main(String args[])

4. {

5. int fact;

6. int n;

7. n =4;

8. fact = 1;

9. while (n != 0)

10. {

11. fact = fact * n;

12. n = n-1;

13. }

14. }

15. }

Fig 3 A Sample Java Program to calculate factorial of a

number [14]

Fig 4 The Program Dependence Graph corresponding to

the program in Fig 3 [14]

Rothermel and Harrold implemented PDG for regression

testing in object-oriented software. The researchers presented

an algorithm that constructs class dependence graphs (ClDG)

for classes and application programs. The researchers used

these graphs to determine which tests can cause a modified

class to produce different output than the original [12, 15].

But the researchers did not considered polymorphism and

dynamic binding in their approach. There were also few other

graphs that extended the features of PDG for program slicing

such as Object Program Dependence Graph (OPDG) [16],

Dynamic Object Program Dependence Graph(DOPDG) [16],

Efficient Dynamic Object Program Dependence Graph

(EDOPDG) [17] and so on.

2.3 System Dependence Graph
The System Dependence Graph (SDG) is an extension of the

Program Dependence Graph (PDG) and represents a program

that consists of multiple procedures and involves procedural

calls. SDG models a language in which parameters are passed

by value and where a complete system consists of a single

(main) program and a collection of auxiliary procedures [11].

Each Procedure Dependence Graph contains an entry vertex

that represents entry into the procedure. To model parameter

passing, SDG associates each procedure entry vertex with

formal-parameter vertices namely a formal-in vertex for each

formal parameter of the procedure and a formal-out vertex for

each formal parameter that may be modified by the procedure

[18]. SDG associates each call-site in a procedure with a call

vertex and a set of actual parameter vertices with an actual-in

vertex for each actual parameter at the call-site and an actual-

out vertex for each actual parameter that may be modified by

the called procedure. A call edge connects a call vertex to the

entry vertex of the called procedure’s dependence graph.

Parameter-in and parameter-out edges represent parameter

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.14, October 2012

20

passing. Parameter-in edges connect actual-in and formal-in

vertices and parameter-out edges connect formal-out and

actual-out vertices [15].

public static void main(String args[])

{

int i = 1;

int sum = 0;

while (i<11) {

 sum = add(sum, i);

 i = add(i, 1); }

System.out.println("sum = \n" + sum);

System.out.println("i =\n" + i);

}

static int add(int a, int b)

{

return (a+b);

}

Fig 5 An Example Program [19]

Fig 5 depicts a program to find sum of numbers from 1 to 10.

This program uses two methods namely main() and add()

[19]. Fig 6 shows the System Dependence Graph of this

program representing the flow within two methods. As the

Program Dependence Graph can only represent the flow in a

single procedure but System Dependence Graph is able to

represent multiple procedures.

Fig 6 The System Dependence Graph of the example

program in Fig 5 [19]

Horwitz et al. presented SDG for inter-procedural slicing and

applied context-free grammer for creating SDG [11]. They

presented all dependency relationships using SDG and PDG.

Larson et al. extended the SDG of Horwitz et al. to signify

Object-Oriented programs [15]. They had built Class

Dependence Graphs (ClDG) for each class in an object-

oriented program. A ClDG captures the control and data

dependence relationships that can be determined about a class

without knowledge of calling environments. Each method in a

CIDG is represented by a procedure dependence graph. The

CIDG construction expands each method entry by adding

formal-in and formal-out vertices similarly as procedure

dependence graphs. Liang et al. presented an SDG for object-

oriented software that is more precise and efficient than

previous approaches [18]. Based on this new SDG, they

introduced the concept of object slicing and an algorithm to

implement this concept. Mohapatra et al. presented a

technique for dynamic slicing of Object-Oriented programs,

which extends the System Dependence Graph (SDG) [20].

The graph is known as Extended System Dependence Graph

(ESDG) that handles the features of object oriented programs

such as polymorphism, inheritance etc. Their algorithm is

named as Edge Marking Dynamic Slicing (EMDS) because it

is based on marking and unmarking the edges of the ESDG.

Zhao presented a Java-based graph that encapsulates the

benefits offered by the earlier approaches of SDG. The Graph

was named as Java System Dependence Graph (JSDG) and it

enables the representation of Java-specific features such as

interfaces, packages and single inheritance [21]. Walkinshaw

et al. extended this Java-based graph that is known as Java

System Dependence Graph (JSysDG) [22]. A JSysDG is a

multi-graph that maps out the control and data dependencies

among the statements of a Java program. Xi et al. presented

an approach of Coarse-grained Dynamic Slice for Java

Program [23]. This technique uses AspectJ code tracing tactic

to gather method execution traces, which comprises

information of method calls. Dynamic Java System

Dependence Graph (DJSDG) is used for the intermediate

representation and the slice computation has also been

implemented on this graph.

3. ASSESSMENT OF FLOW GRAPH &

DEPENDENCE GRAPHS
From the given literature, it has been appraised that each and

every graphical method for program representation presented

above supports some unique features/parameters. On the basis

of parameters like procedural call, slicing, sensitivity,

exception handling, test case generation etc. the comparative

analysis of Control Flow Graph (CFG), Program Dependence

Graph (PDG) and System Dependence Graph (SDG) has been

done to better understand the usage of these graphs [5].

Control Flow Graph (CFG) can be taken as base graph for

various other representations like BDG, EDG, EG, CCFG,

etc. Similarly, Program Dependence Graph (PDG) can be

taken as base graph for ClDG, OPDG, DOPDG, etc. System

Dependence Graph extends the features of PDG and can be

taken as base graph for other graphs like ESDG, JSDG,

OSDG, etc.

4. CONCLUSION
From the given literature this has been listed out that system

dependence graph is a feature rich representation as compare

to flow graph that supports features like control, data and

transitive dependence, single & multiple procedure, inter &

intra procedure calls, multiple types of edges, slicing, context

sensitivity, inheritance & polymorphism, test case generation

and parameter passing. Whereas flow graph be deficient in

representing data & transitive dependence, multiple

procedures, inter & intra procedure calls, multiple types of

edges, slicing, context sensitivity, inheritance &

polymorphism etc.

5. FUTURE SCOPE
System dependence graph can be extended further for

incorporating the features like exception handling & flow

sensitivity.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.14, October 2012

21

Table 1: Comparison of CFG, PDG and SDG (y/n denotes presence/absence of the feature in the corresponding graph) [5]

S No. Parameters CFG PDG SDG

1. Control Dependency [2,4,6,7,10,13,24] y Y y

2. Data Dependency [10,13,18,24] n Y y

3. Transitive Dependency [11,14,15,18] n N y

4. Single Procedure [2,4,10,11,12,15] y Y y

5. Multiple Procedures [2,10,11,12,25] n N y

6. Intra-procedural Calls [10,11,13,14,15] n Y y

7. Inter-procedural Calls [10,11,13,14,15,16,25] n N y

8. Multiple types of Edges [4,8,10,13,25] n Y y

9. Slicing [10,11,12,13,14,25] n Y Y

10. Flow-Sensitive [4,25] y Y N

11. Context-Sensitive [4,25] n N Y

12. Inheritance & Polymorphism [10,15,16,24,26] n N Y

13. Dynamic Binding [12,13,14,15,16,18] n N N

14. Test Case Generation [2,7,10,11,13] y Y Y

15. Exception Handling [25,26] n Y N

16. Parameter Passing [14,15,21,24,27] n N Y

Table 2: Description of Graphs shown in Fig 7 [5]

S No. Acronym Abbreviation Description

1. CFG Control Flow Graph Flow between nodes & edges

2. BDG Block Dominator Graph Dominator relationship among blocks

3. EDG Edge Dominator Graph Dominator relationship among edges

4. GDG Global Dominator Graph BDG + EDG + Inter-procedural level

5. EG Event Graph CFG + Interaction between procedures

6. EIAG Event InterActions Graph EG + Interaction for concurrent programs

7. CCFG Class Control Flow Graph CFG + Call Graph between classes

8. ICCFG Inter-Class Control Flow Graph CFG + Inter-class relationship

9. CSIG Class Specification Implementation Graph CFG for each class method

10. JIG Java Inter-class Graph Inter relationship of AspectJ programs

11. PDG Program Dependence Graph Control + Data dependencies for single procedure

12. CDS Control Dependence Sub-graph Control dependencies for single procedure

13, DDS Control Dependence Sub-graph Data dependencies for single procedure

14. OPDG Object Program Dependence Graph PDG + Object-Oriented Features

15. DOPDG Dynamic Object Program Dependence Graph OPDG + Dynamic Slicing

16. EDOPDG Efficient Dynamic Object Program Dependence Graph DOPDG + few modifications

17. ClDG Class Dependence Graph Set of PDGs + Inter-procedural calls within class

18. SDG System Dependence Graph Set of PDGs + Interprocedural calls for whole sys.

19. ESDG Extended System Dependence Graph Extends SDG by representing a class with ClDG

20. JSDG Java System Dependence Graph SDG + Interfaces& Packages in Java

21. JSysDG Java System Dependence Graph JSDG_ few modifications

22. DJSDG Dynamic Java System Dependence Graph JSDG + Dynamic Slicing

23. COSDG Call-based Object-oriented System Dependence Graph Dependencies + Flow + CallGraph + Inherited Call

+ Polymorphic calls

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.14, October 2012

22

Fig 7: CFG, PDG, SDG and their sub-graphs [5]

6. REFERENCES
[1] M. E. Paige, “On partitioning Program Graphs”, IEEE

Transactions on Software Engineering, vol. se-3, no. 6,

pp. 386-393, November 1977.

[2] Frances E. Allen, “Control Flow Analysis”, In

Proceedings of a Symposium on Compiler optimization,

ACM SIGPLAN Notices, vol. 5, July 1970.

[3] Shveta Verma, Vinay Arora, “Survey on Graphical

Methods for Test Case Generation”, International Journal

of Mobile & Adhoc Network (IJMAN), vol. 2, issue 2,

pp. 257-264, May 2012

[4] Robert Gold, “Control Flow Graph and Code Coverage”,

Int. J. Appl. Math.Computer Sci., vol. 20, no. 4, pp. 739–

749,2010.

[5] M.E. Thesis on “Comparative Analysis of Flow Graph

and Dependence Graphs”, Shveta Verma, Vinay Arora,

Thapar University, Patiala.

[6] R. Mall, Fundamentals of Software Engineering, Prentice

Hall of India.

[7] P. G. Frankl and E. J. Weyuker, “An Applicable Family

of Data Flow Testing Criteria”, IEEE Transactions on

Software Engineering, vol. 14, no. 10, October 1988.

[8] HiralalAgrawal, “Dominators, Super Blocks and

Program Coverage”, In Proceedings of the 21st ACM

SIGPLAN-SIGACT symposium on Principles of

programming language, 1994.

[9] G. Xu and A. Rountev, “Regression Test Selection for

AspectJ Software”, In 29th International Conference on

Software Engineering, pp. 65-74, 2007.

[10] J. Ferrante, J. Worren and K. Ottenstein, “The Program

Dependence Graph and its use in optimization”, In ACM

Transactions on Programming Languages and Systems,

vol. 9, no. 3, pp. 319-349, July 1987.

[11] S. Horwitz, T. Reps and D. Binkley, “Interprocedural

slicing using dependence graphs,” In ACM Transactions

on Programming Languages and Systems, vol. 12, pp.

26-60, January 1990.

[12] G. Rothermel and M. J. Harrold, “Selecting regression

tests for Object-Oriented Software”, In Proceedings of

International Conference on Software Maintenance,

pp. 14-25, IEEE transactions, 1994.

[13] K. Tewary and M. J. Harrold, “Fault Modeling using the

Program Dependence Graph”, In Proceedings of 5th

International Symposium on Software Reliability

Engineering, pp. 126-135, IEEE Transactions, 1994.

[14] P. E. Livadas andS.Croll, “System Dependence Graphs

Based on Parse Treesand their Use in Software

Maintenance”, IEEE Transactions, 2005.

CFG

BDG

EDG

GDG

EG CCFG

ICCF

G

CSIG

JIG

EIAG

PDG

CDS

DDS

ClDG OPDG

DOPDG

EDOPDG

SDG

ESDG

ClDG

JSDG

JSysDG

DJSDG

COSDG

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.14, October 2012

23

[15] L. Larsen and M. J. Harrold, “Slicing object-oriented

software”, In 18th International Conference on Software

Engineering, pp. 495–505, Mar. 1996.

[16] B. Xu, Z. Chen and H. Yang, “Dynamic slicing object-

oriented programs for debugging”, In the Proceedings of

the Second IEEE International Workshop on Source

Code Analysis and Manipulation, pp. 115 – 122, 2002.

[17] S.Park, “Efficient Dynamic Slicing of Object Oriented

Programs”, Dept. of R&D, Korea Micro System, pp.143-

721, January2003.

[18] D. Liang and M.J. Harrold, “Slicing objects using

System Dependence Graphs”, International Conference

on Software Maintenance, pp. 358-367, November 1998.

[19] TONG Chun Yin under the supervision of Dr. LO Eric

Chi Lik and Mr. LUK Ming Hay , “ Java System

Dependence graph API ”, Department of computing, The

Hong Kong polytechnic University, 2010, Available at:

http://www.comp.polyu.edu.hk/~csllo/teaching/SDGAPI

(accessed 25/4/2012).

[20] D.P.Mohapatra, R.Mall, and R.Kumar, “A node marking

dynamic slicing technique for object-oriented programs”,

In Proceedings of Workshop on Software Development

and Architecture, Bangalore, pp.1 – 15, January 2004.

[21] J. Zhao, “Applying program dependence analysis toJava

software,” in Proc. Workshop on Software

Engineeringand Database Systems, (Taiwan), pp. 162–

169, December 1998.

[22] Neil Walkinshaw,Marc Roper, Murray Wood, “The Java

System Dependence Graph”, Proceedings of the Third

IEEE International Workshop on Source Code Analysis

and Manipulation, 2003.

[23] Liu Xi, Miao Li, Zhao Dan, Li Wei, “An approach of

coarse-grained dynamic slices for Java programs”, IEEE

3rd International Conference on Communication

Software and Networks, pp.670 – 674, May 2011.

[24] E S F Najumudheen, R. Mall, D. Samanta, “A

Dependence representation for coverage testing of

object-oriented programs”, Journal of Object Oriented

Technology (JOT), Vol. 9, No. 4, pp. 1-23, 2010.

[25] C. Hammer, J. Krinkle and G. Snelting, “Information

Flow Control for Java based on Path Conditions in

Dependence Graphs”, In Proceedings of IEEE

International Symposium on Secure Software

Engineering, Virgina, USA, 2007.

[26] V. Martena, A. Orso and M. Pezze, “Interclass Testing of

object oriented software”, In Proceedings of 8th IEEE

International Conference on Engineering of Complex

Computer Systems, pp. 135-144, 2002.

[27] E S F Najumudheen, R. Mall, D. Samanta, “A

Dependence Graph-based Test Coverage Analysis

technique for Object-Oriented programs”, In 6th

International Conference on Information Technology:

New Generations, IEEE, 2009.

