
International Journal of Computer Applications (0975 – 8887) 

Volume 56– No.13, October 2012 

26 

Multiobjective Optimization of Electrical Machine, a State 

of the Art Study 

 
P.Ponmurugan 

Assistant Professor,  
Department of EEE,  

EBET Group of Institutions, Kangayam. 

 

N.Rengarajan, PhD. 
Principal,  

K.S.R College of Engineering,  
Tiruchengode. 

 

ABSTRACT 

This paper presents a literal study of Multiobjective 

optimization (MO) in general used in electrical machine 

optimization in the recent years. A set of a set of nonlinear 

constraints (modeling availability of resources) with a set of 

nonlinear objective functions (modeling several performance 

criteria) is solved with the help of Multi objective 

optimization (MO). The MO problem has several applications 

in science, engineering, finance, etc. It is normally not 

possible to find an optimal solution in MO, since the various 

objective functions in the problem are usually in conflict with 

each other. Therefore, the objective in MO is to find the 

Pareto front of efficient solutions that provide a substitution 

between the various objectives. The paper will summon up 

some of the work done using Multiobjective optimization on 

electric machines in the last years. An overview of methods 

used will be given and the conclusion of the different papers 

will be presented. 
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1. INTRODUCTION 
In recent years, optimization algorithms are focused by the 

research community as well as the industry. Scientifically, the 

field of optimization algorithms is a highly relevant research 

area, because these algorithms can find approximate solutions 

to NP-hard problems and solutions to problems where no 

analytic method exists, e.g. for solving non-linear differential 

equations. 

Optimization process is used to find the solution where a set 

of objective functions is minimized or maximized with subject 

to different constraints. The optimization problem with 

multiple objectives is known as multi objective optimization 

(MO) problem. Multiobjective optimization [1-4] is also 

referred to as multi-criteria optimization, multi-performance 

or vector optimization [5].  

An MO problem may be stated as finding a vector of decision 

variables that satisfies constraints and optimizes a vector 

function whose elements represent the objective functions [6]. 

A mathematical description of performance criteria obtained 

through the objective functions are usually in conflict with 

each other. Hence, the term optimization means finding a 

solution which would give the values of all the objective 

functions acceptable to the decision maker. Obtaining the 

optimal solution in a multi objective optimization problem is 

difficult one. This is because the multiple objective functions 

that are present often conflict each other and it is impossible 

to optimize all the objective functions at the same time. 

Instead, a set of solutions called best solutions providing a 

tradeoff between the objective functions can be found. The 

final solution for the specified application is selected from the 

set of best solutions by the problem solver. 

One of the first applications of multi objective optimization 

was in economics to solve public investment problems in the 

1960s [7]. Other applications arise in control [8], and water 

resource planning [9]. Multiobjective optimization is also 

frequently used in engineering, science, industry and finance 

[1, 2].  

2. MATHEMATICAL FORMULATION 

OF A MULTIOBJECTIVE 

OPTIMIZATION PROBLEM 
Consider the problem  xfmin  such that  

  mjxg j ,,2,1,0              (1) 

  plxhl ,,2,1,0   

The vector 
nRx contains the decision variables in (1). 

The set  

    plxhmjxgRxS lj

n  ,2,1,0,,2,1,0| 

 is the feasible region of (1) and depicts constraints such as the 

limited availability of resources in the problem. The mapping 
kn RRf : defined by         Tk xfxfxfxf ,, 21 contains 

the k objective functions (possibly nonlinear) of (1). We 

define the feasible objective region Z as the image of the 

feasible region S under the mapping f, i.e., 

  SxkixfyRyZ ii

k  ,,,2,1,|  . It is assumed 

that the entire objective functions in  xf are being 

minimized. If an objective function  xfi
 is to be maximized, 

it is equivalent to minimizing the function  xfi
.  

It is important to distinguish between the constraint space S 

and the objective function space Z in multiobjective 

optimization. The set Z plays an important role in the concept 

of Pareto optimality in multiobjective optimization. 

3. METHODS TO SOLVE 

MULTIOBJECTIVE OPTIMIZATION 

PROBLEMS 
The methods that are use to solve multiobjective optimization 

problems can be broadly classified as 

1. Classical Methods 

2. Evolutionary Algorithms. 
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3.1 Classical Methods 
In classical methods, the various objective functions of the 

multiobjective optimization problem are combined together in 

a single objective function. 

     


k

i ii xfwxf
1

ˆ                 (2) 

where 0iw are appropriate weights. The single objective 

function  xf̂ is minimized over the feasible set S using 

traditional nonlinear optimization techniques for a single 

objective function. 

Classical methods are also classified as a priori or progressive 

techniques based on when the weights are assigned to the 

objective functions as follows: 

3.1.1 A priori 
In this method, the weights are assigned to the objective 

functions before optimization is performed. One of the 

requirements of this method is that the order of importance of 

the objectives has to be known ahead of time. Once the 

weights are chosen, they are fixed throughout the optimization 

procedure. Setting the weights before optimization omits 

desirable solutions from the model. For the assigned weights 

to be effective, the objective functions need to be normalized 

to factor in their different dynamic ranges. This is not an easy 

task because it requires the knowledge of the extreme values 

of the objective functions. These drawbacks make a priori 

preference methods [4] very difficult to use.  

3.1.2 Progressive 
In this method, the weights are updated periodically by the 

decision maker based on the current solution [4] in the 

optimization process. This method is better than the a priori 

technique because corrections are made using the information 

obtained during optimization. However, prior knowledge of 

the problem is often required to define a scheme of preference 

to bias the search so that the decision maker’s biases do not 

lead to undesirable solutions. 

To summarize, one of the main shortcoming of classical 

methods is that some prior knowledge of the problem is 

required to assign reasonable weights. In classical methods, it 

is not possible to find multiple solutions in a single run and 

also not possible to find all the Pareto optimal solutions. This 

causes the decision maker to miss out other desirable 

solutions to a problem. However, these algorithms are known 

to converge to a Pareto optimal solution of the multiobjective 

problem [10]. 

3.2 Evolutionary Algorithms 
The classical methods are extensively being replaced by 

Evolutionary Algorithms (EA). Evolutionary algorithms are 

iterative and stochastic optimization techniques inspired by 

concepts from Darwinian evolution theory. An EA simulates 

an evolutionary process on a population of individuals with 

the purpose of evolving the best possible approximate solution 

to the optimization problem at hand.  

Although, evolutionary strategies and genetic algorithms are 

categorized as evolutionary algorithms, they have an 

important difference: Evolutionary strategies encode 

parameters as floating point numbers and then manipulate 

those using arithmetic operators whereas genetic algorithms 

encode parameters as bit strings and then manipulate those 

using logical operators. So, evolutionary strategies are 

suitable for continuous optimization while genetic algorithms 

are more suitable in combinatorial optimization.  Historically, 

EAs were first suggested in the 1940’ties [11]. However, the 

founding fathers of modern EAs, Evolutionary Programming 

[12], and Genetic Algorithms are considered. Several years 

later, Evolutionary Algorithms (EAs) and Evolutionary 

Computation (EC) were introduced as unifying terms for the 

forest of optimization techniques inspired by biological 

evolution.  All evolutionary algorithms aim to improve the 

existing solution using the techniques of recombination, 

mutation, and selection. Fig. 1 illustrates the initialization and 

the iterative cycle in EAs. 

Fig 1: Initialization and the iterative cycle in evolutionary 

algorithms 

The general paradigm is as follows: 

3.2.1 Initialization 
The initial population consisting of   members (parents) is 

chosen randomly. 

3.2.2 Recombination 
The µ parent vectors randomly recombine with each other to 

produce   child vectors. 

3.2.3 Mutation 
After recombination, the  child vectors undergo mutation 

where a random deviation is added to each child vector. 

Selection: The two most commonly used strategies are  ,

and   , selection strategies. In  , strategy, the 

best   child vectors replace the existing  parent vectors to 

become parents in the next generation, whereas in 

  ,  strategy, the best  vectors from the child and 

parent populations become parents in the next generation.  

3.2.4 Termination 
The number of iterations (generations) performed depends on 

the convergence criterion chosen. 

A few advantages of evolutionary algorithms over classical 

methods: 

Evolutionary algorithms are multiobjective optimization 

techniques that generate a set of equally desirable solutions 

using the concept of Pareto optimality. The decision maker 

chooses a solution from the set of available Pareto solutions, 

and thus implicitly assigns a set of weights. Unlike classical 

methods, no weights are assigned to the various objectives 

during the course of the algorithm. Therefore, the solutions 

are found without introducing bias. 

In evolutionary algorithms, a population of desirable solutions 

is covenant in each iteration whereas in classical methods 

only one solution is focused. Unlike classical methods where 
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a pre-defined rule is used to search through the solutions, 

evolutionary algorithms use probabilistic rules to search 

through solutions. Moreover, evolutionary algorithms are 

easier to implement and are typically faster than classical 

techniques. Moreover, several parallel implementations are 

currently available [13]. 

 

4. MULTIOBJECTIVE OPTIMIZATION 

OF ELECTRICAL MACHINES: STUDY 

OF RECENT WORK 

4.1 A multiobjective design optimization of 

induction machine using CAD and ANNs 
This paper [14] proposes a multiobjective optimization 

technique based on the Computer Aided Design (CAD) using 

finite element method in designing ventilation holes of 

squirrel cage induction motor and the Artificial Neural 

Network (ANN) optimization in the purpose of maximizing 

the ventilation effect without making the yoke-saturation 

more serious. Applying the traditional design methodology, 

the rotating machine model with the circle shaped ventilation 

holes is determined. By using the numerical analysis, the 

configurations of ventilation holes from the viewpoint of the 

magnetic saturation are improved. An optimal design of the 

holes, which maximizes the ventilation effect without making 

the rotor-yoke saturation serious, is performed. Finally, a 

novel optimization technique based on the Artificial Neural 

Network (ANN) enables to efficiently obtain the optimal 

solutions for practical induction electric machine design. 

4.2 Design optimization of electric motors 

by multiobjective Fuzzy genetic algorithms  
This paper [15] describes an approach to design the 

submersible induction motor with two objective functions: the 

full load torque and the manufacturing cost utilizing the 

concept of fuzzy sets, convex fuzzy decision-making and a 

genetic algorithm having feature of a unique search. In this 

method, the objective functions are combined by fuzzy 

memberships so that the chromosomes with best 

performances for all objective functions have more chances to 

be chosen for participation in the next generation. The 

multiobjective fuzzy genetic algorithm (MFGA) optimization 

results show the proposed approach is viable and reliable. The 

optimally designed motor is compared with an industrial 

motor having the same ratings. The results of optimal design 

show the reduction in the manufacturing cost and the 

improvement in the full load torque of the motor. The 

simulation results shown that the manufacturing cost 

decreased by 7% and the full load torque increased by 9%. 

4.3 Multiobjective optimization of three-

phase induction motor design based on 

genetic algorithm 
In this article [16], the multiobjective optimization technique 

based on the genetic algorithm and sizing equation is applied 

for the three phase squirrel-cage type induction motor. The 

optimization design is applied for the motor with 4 pole, 

380V/60Hz and 1.5kW. The objective functions are the 

decrease of the total electromagnetic losses and the increase of 

the locked torque respectively. The width of stator teeth, the 

depth of stator slot, the diameter of the winding coil and the 

depth of the rotor slot are also selected as the design variables. 

For the verification of the design result, the simulation and 

experimental data are compared. The design result was 

selected from Pareto optimal solution set. Compared to the 

initial model, the locked torque is increased by 16.4 % and the 

efficiency of the motor is also improved 2.1 % respectively. 

4.4 Multiobjective optimization design of 

in wheel switched reluctance motors in 

electric vehicles 
This paper [17] discusses three criterions the average torque, 

the average torque per copper loss, and the average torque per 

motor lamination volume to evaluate the design of SRMs in 

Electric Vehicle (EV) applications. These three criterions 

imply torque, efficiency and torque density respectively. To 

obtain high torque, low copper loss, and high torque density 

by using three weight factors and three base values, the 

authors developed the optimization function with multi-

objectives, which is defined as the correct compromise 

between the three criterions. The optimized valuables are 

selected as the stator and rotor pole arc angles. The values of 

three criterions at different combinations of stator and rotor 

pole arc angles are compared. It can be seen that the optimal 

stator pole arc angle (22◦) and the optimal rotor pole arc angle 

(23◦) result in the best design. Using the data, the prototype of 

the four-phase in wheel SRM has been manufactured. 

4.5 Multiobjective parameter estimation of 

induction motor using Particle Swarm 

Optimization 
This paper [18] investigates the applicability of PSO 

algorithm for multi-objective parameter estimation to 

minimize the deviation between estimated and manufacturer 

data. Three different induction motor models such as 

approximate, exact and deep bar circuit models are estimated 

using PSO technique. The parameter estimation methodology 

describes a method for estimating the steady-state equivalent 

circuit parameters from the motor performance characteristics, 

which is normally available from the manufacturer data or 

from tests. The sensitivity analysis is performed to identify 

parameters, which have the most impact on motor 

performance. The feasibility of the proposed method is 

demonstrated for two different motors (5 and 40 HP) and it is 

compared with the genetic algorithm and the classical 

parameter estimation method. Simulation results show that the 

proposed PSO method was indeed capable of estimating the 

parameters over a wide operating range of the motor. 

4.6 Multiobjective optimal design of three-

phase induction Generator using simulated 

Annealing technique 
In this paper [19], the task of finding optimal design of a 

three-phase self-excited induction generator has been 

formulated as a multi criterion optimization problem. Criterial 

functions are the active material cost and capacitance required 

for excitation under full load conditions to maintain rated 

voltage. The problem is solved by giving weights which 

reflect the priority of objective functions. The Simulated 

Annealing technique is used as a tool to solve the problem.  

The proposed approach is implemented for the optimal design 

of a sample induction machine (15HP, 440V, 6 pole, 50Hz) 

operating as induction generator. The overall cost of an 

induction generator is reduced significantly when designed on 

the basis of minimizing both active material cost and 

capacitance required. The obtained results prove the 

effectiveness of a multi objective approach since it allows us 

to find a good compromise among the proposed goals, and 

above all it represents an efficacious tool for the designer. 
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4.7 Multiobjective design optimization of 

five-phase Halbach Array Permanent-

Magnet machine 
In this paper [20], a five-phase Halbach array permanent-

magnet machine was optimally designed for high dynamic 

performance such as high efficiency, high steady-state torque, 

a very high torque during transient period of time and low 

rotational inertia. A detailed and accurate analytical model of 

the machine considering the end winding effects was 

proposed to evaluate the torque, efficiency and rotational 

inertia of the motor. Some key parameters of the machine are 

chosen as the optimization variables to optimize the main 

machine design objectives. A Genetic Algorithm technique is 

used to optimize the objectives function. The machine is 

designed optimally for each object separately and then the 

whole objects are optimized simultaneously. The detailed 

finite-element analysis results are carried out to evaluate and 

verify the performance of the designed machine. 

4.8 Multiobjective shape optimization of 

segmented pole Permanent-Magnet 

Synchronous machines with improved 

torque characteristics 
A multiobjective optimization process has been proposed in 

this paper [21] is used to reduce the cogging torque with 

minimum loss in the output torque in PMSMs. A novel semi-

analytical model with improved accuracy and computational 

efficiency has been developed for cogging torque calculation 

in the segmented pole machines and used in the optimization 

process. The cogging torque calculation method first 

computes the air gap flux density distribution of the 

equivalent slot less segmented machines and effects of slots 

are taken into account by the air gap permeance function 

calculated by a static FEA. To achieve the best configuration 

i.e, to minimize the fitness function, particle swarm 

optimization has been employed. The proposed optimization 

framework has been applied to segmented pole machines with 

two (case 1) and three (case 2) segments per pole. In case 1, a 

cogging torque reduction by about 96% was obtained while 

the first harmonic of air gap flux density is reduced by 3.5% 

with respect to the initial non segmented machine with the 

same magnet volume. In case 2, the cogging torque reduction 

is about 91% regarding the non segmented machine with the 

similar magnet volume while flux density loss is less than 

0.5%. 

4.9 A novel method for multiobjective 

design and optimization of three phase 

induction machines 
A fast and efficient multiobjective optimization design 

method is developed for induction machines, which requires 

much fewer design iterations than the traditional design 

method and  only six independent design variables are needed 

to start the design has been proposed in this paper [22]. This 

paper also points out the complexities in design optimization 

caused by the limitation in selecting the number of turns and 

specific challenges in electrical machine design are 

emphasized. A canonical particle swarm optimization (PSO) 

method with penalty function for design constraints is 

developed to find the optimal solution for a user-defined 

objective function. A comparison study of PSO and genetic 

algorithm (GA) is also and the comparison shows that PSO is 

more successful in finding the global optima and also has 

better computational efficiency than GA. The original 

contributions of this paper are a novel induction machine 

design method, consideration of winding turn selection 

limitation and a machine-design-focused comparison. 

4.10 Evolutionary computation based 

multi-objective pole shape optimization of 

switched reluctance machine 
A multi-objective evolutionary algorithm approach for 

determination of optimum pole shape of SRM is proposed in 

this paper [23], considering average torque, torque ripple and 

copper loss as objectives. The application of elitist Non-

dominated Sorting Genetic Algorithm version II (NSGAII) to 

determine optimum pole shape design for performance 

enhancement of Switched Reluctance Machine (SRM) is 

presented. In SRM, torque output and torque ripple are 

sensitive to stator and rotor pole arcs and their selection is a 

vital part of SRM design process.  The problem of 

determining optimal pole arc is formulated as a multi-

objective optimization problem and the Finite Element 

Method (FEM) is used to determine the performance of the 

machine. NSGA-II is used in the search for Pareto solutions 

and the proposed optimization technique is applied to 

determine optimal pole shape of an 8/6, four-phase, 5 HP, 

1500 rpm SRM. The Pareto fronts obtained using the 

proposed approach is in close agreement with the fronts 

obtained using weighted sum method. The results indicate that 

the optimization algorithm has yielded new motor designs 

improving the three objectives considered. Analyzing the 

performance of the machine using FEA confirm the 

application of NSGA-II to determine various viable pole 

shape designs for performance enhancement of SRM. The 

results show the effectiveness of the proposed approach and 

confirm the application of NSGA-II as a promising tool for 

solving SRM design problems. The results obtained by 

NSGA-II are compared and validated with classical multi-

objective approach based on weighted sum method using 

Differential Evolution (DE) algorithm. 

4.11 Multiobjective optimal design of low-

speed linear induction motor using genetic 

algorithm 
In this paper [24], a computer aided systematic and applicable 

design algorithm has been proposed for single-sided linear 

induction motor (SLIM). In the proposed algorithm, different 

geometries of the machine are calculated using analytical 

equations. The low-speed SLIM design is optimized based on 

the equivalent circuit model and using Genetic algorithm. In 

order to maximize the efficiency and power factor as well as 

to minimize the primary weight, 9 effective variables are 

chosen for design optimizations which are effective in 

performance of the SLIM, are considered in optimization. 2D 

finite element method is employed to confirm the precision of 

the equivalent circuit model and the effectiveness of the 

optimization method. The FEM results which considers the 

end effects are in good agreement with the analytical results. 

5. CONCLUSION 
The state of the art study of MO used in electric machine 

optimization is first of all important to give an overview over 

what has been done. It also gives an overview on which area 

MO has been used and how successful the optimization was. 

Most of the authors conclude MO to be a promising 

optimization method, although there are some conclusions on 

premature convergence. Literature address the challenge 

connected to choice of selection of the optimization 

technique. There is however not a clear advice on this choice. 
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Research in the field of electric machine design has also 

addressed this topic. With reference to the case study on 

Multiobjective Optimization in electrical Machines, it is found 

that design of electrical machines using conventional and 

evolutionary techniques gave the result to some extent. 

Instead, hybrid evolutionary techniques may be employed for 

the optimal design of machines. 

6. REFERENCES 
[1] Coello Coello C.A., Van Veldhuizen D.A., Lamont G.B., 

Evolutionary Algorithms for Solving Multiobjective 

Problems, Kluwer Academic Publishers, 2002. 

[2] Deb.K, Multiobjective Optimization using Evolutionary 

Algorithms, John Wiley & Sons Ltd., 2001. 

[3] Ehrgott. M, Multicriteria optimization, Springer - Berlin, 

New York, 2000. 

[4] Miettinen K. M., Nonlinear Multiobjective Optimization, 

Kluwer Academic Publishers, 1999. 

[5] Jahn. J, Vector Optimization: Theory, Applications, and 

Extensions, Springer Verlag, 2004. 

[6] Osyczka. A, Multicriteria optimization for engineering 

design, edited by J.S. Gero, Design Optimization, 

Academic Press, 1985, pp. 193-227. 

[7] Cohon. J.L and Marks. D.H., A Review and Evaluation 

of Multiobjective Programming, Water Resources 

Research, 11(2), 1975, pp. 208-220. 

[8] Zadeh. L.A, Optimality and Non-scalar Valued 

Performance Criteria, IEEE Transactions in Automatic 

Control, AC-8(1), 1963, pp. 59-60. 

[9] Marglin. S., Public Investment Criteria, MIT Press, 

Cambridge, Massachusetts, 1967. 

[10] Stewart. T.J, Convergence and Validation of Interactive 

Methods in MCDM: Simulation Studies, edited by M.H. 

Karwan, J. Spronk and J. Wallenius, Essays in Decision 

Making: A Volume in Honor of Stanley Zionts, 

Springer-Verlag, 1997, pp. 7-18. 

[11] Fogel, Evolutionary Computation: The Fossil Record. 

IEEE Press, 1988. 

[12] Fogel, L. J., Owens, A. J., and Walsh, M. J., Artificial 

Intelligence through Simulated Evolution. John Wiley & 

Sons, 1966. 

[13] Lampinen. J, Differential Evolution - new naturally 

parallel approach for engineering design optimization, 

edited by B.H.V. Topping, Development in 

computational mechanics  with high performance 

computing, Civil-Comp Press, Edinburgh, 1999, pp. 187-

197. 

[14] Mimi Belatel, Hocine Benalla, “A Multiobjective Design 

Optimization of Induction Machine using CAD and 

ANNs”, ICGST-AIML Journal, ISSN: 1687-4846, Vol. 

8, Issue II, September 2008, pp.1-8. 

[15] Mehmet Cunkas, “Design Optimization of Electric 

Motors by Multiobjective Fuzzy Genetic Algorithms”, 

Journal of Mathematical and Computational 

Applications, Vol. 13, No. 3, pp. 153-163, 2008. 

[16] Yon-Do Chun, Pil-Wan Han, Jae-Hak Choi, Dae-Hyun 

Koo, “Multiobjective Optimization of Three-Phase 

Induction Motor Design Based on Genetic Algorithm”, 

Proceedings of the 2008 International Conference on 

Electrical Machines, Paper ID 1220, pp.1-4 

[17] Xue X. D, Cheng K.W. E, Ng T.W, and Cheung N. C, 

“Multi-Objective Optimization Design of In-Wheel 

Switched Reluctance Motors in Electric Vehicles”, IEEE 

Transactions on Industrial Electronics, Vol. 57, No. 9, 

September 2010, pp.2980-2987. 

[18] Sakthivel V.P, Bhuvaneswari. R, Subramanian. S, 

“Multi-objective parameter estimation of induction 

motor using particle swarm optimization”, Engineering 

Applications of Artificial Intelligence, 2010, pp. 302–

312. 

[19] Kannan. R, Dr.Subramanian. S, Dr. Bhuvaneswari. R, 

“Multiobjective Optimal Design of Three-Phase 

Induction Generator using Simulated Annealing 

Technique”, International Journal of Engineering Science 

and Technology, Vol. 2(5), 2010, pp. 1359-1369. 

[20] Siavash Sadeghi and Leila Parsa, “Multiobjective Design 

Optimization of Five-Phase Halbach Array Permanent-

Magnet Machine”, IEEE Transactions on Magnetics, 

Vol. 47, No. 6, June 2011, pp.1658-1666. 

[21] Mahdi Ashabani and Yasser Abdel-Rady I. Mohamed, 

“Multiobjective Shape Optimization of Segmented Pole 

Permanent-Magnet Synchronous Machines with 

Improved Torque Characteristics”, IEEE Transactions on 

Magnetics, Vol. 47, No. 4, April 2011, pp.795-804. 

[22] Yao Duan and Ronald G. Harley, “A Novel Method for 

Multiobjective Design and Optimization of Three Phase 

Induction Machines”, IEEE Transactions on Industry 

Applications, Vol. 47, No. 4, July/August 2011, pp.1707-

1715. 

[23] Balaji. M, Kamaraj. V, “Evolutionary computation based 

multi-objective pole shape optimization of switched 

reluctance machine”, Electrical Power and Energy 

Systems, 2012, pp. 63–69. 

[24] Abbas Shiri, Abbas Shoulaie, “Multi-objective optimal 

design of low-speed linear induction motor using genetic 

algorithm”, Electrical Review, ISSN 0033-2097, R. 88 

NR 3b/2012. 

 

 


