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ABSTRACT
Due to steady increase in traffic density on roads, the traffic phe-
nomena become non-linear and complex. For the traffic engineers
and policy makers to regularize the traffic flow, we need to explore
the traffic behavior in detail. In the current paper, the usefulness
of CA to traffic flow modeling has been determined. Also, some
of the existing CA models have been extended to study character-
istics of traffic flow that have not been captured either by using
analytic models or by existing simulation techniques. We discuss
CA models such as Standard Nagal model, Rule 184, Deterministic
CA model, Stochastic CA model and Velocity Dependent Random-
ized CA model. We provide applications of Nagal model for urban
streets and for freeway. Higher moments of traffic flow have been
examined and their effect on overall traffic performance has been
evaluated. We also examine the relationship between lane changing
behavior and flow performance for a two-lane system. The ability
of this modeling paradigm to capture the most important features
of the traffic flow phenomena is established from the simulation
results obtained.
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1. INTRODUCTION
Of late, in metros, the traffic demand exceeded the capacity of ve-
hicles. This results in increasing of pollution and increase of the
number of accidents. One way to solve this problem is to construct
additional roadways. Due to escalation of the constructing cost
and environmental objection, this solution is impractical. Hence,
man-made transportation systems have become more and more im-
portant for planning and prediction of traffic. The description of
the characteristics and analytic technique of the fundamental traf-
fic flow are provided by the theory of traffic flow. An important
step in the design and control of transportation systems is to con-
struct traffic flow modeling. Simplified models that capture the es-
sentials of the dynamics of the transportation system play an im-
portant role in the research of traffic flow. A real possibility is to
use CA models which are based on simple rules to simulate traf-
fic in the microscopic level. These CA models are used to capture
micro-level dynamics and relate these to macro-level traffic level

behavior.From a microscopic point of view, the process of a vehicle
following its predecessor is typically expressed by a realtion which
uses a stimulus- response [4]. In traffic CA models this response is
the speed or acceleration of a vehicle.

2. TRAFFIC MODEL CLASSIFICATIONS
In the study of the impacts of different policies on vehicular traf-
fic, modeling and simulations play on important role. In advanced
countries modeling and simulations are used in intelligent informa-
tion systems.
In general, there are two types of traffic models: Macroscopic and
Microscopic.
Macroscopic models describe traffic with aggregate variables such
as traffic density, mean speed, and volume. The use of such vari-
ables reduces the computation requirements for macroscopic mod-
eling, making real-time calculation quite feasible. However, macro-
scopic models cannot estimate travel time, turning movements at
intersections, fuel consumption, and control parameters on a short
time scale.
Microscopic modeling considers the individual vehicle’s physical
status and the factors that control human driving behavior. The
movement of individual vehicles is governed by the driver’s behav-
ior, the road topology, the status of surrounding vehicles, and the
headway distribution. Each vehicle in the traffic may be described
by a set of parameters that includes position, actual speed, desired
speed, route choice, and willingness to pass the other vehicles.

3. DEFINITION OF CA
CA are mathematical models for dynamical systems in which space
and time are discrete. CA consists of finite, regular grid of cells,
each in one of the finite number of states. The grid can be of any
number of finite dimensions. For each cell there is neighborhood
that locally determines the evolution of the cell. The size of the
neighborhood is the same for each cell in the lattice. The site value
evolves synchronously in discrete time steps according to the value
of their nearest neighborhood. These values are updated in a se-
quence of discrete time space according to finite fixed rule. The
rule acts upon a cell and its direct neighborhood, such that the cell’s
state changes from one discrete time step to another.

3.1 Mathematicians View
Notation: d=dimension; k = states per site; r = radius
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For simplicity, assume d=1 for the moment.
A d-dimensional cellular automaton takes as its underlying space
the lattice (integers). The dynamics are determined by a global
function F : Sz → Szwhose dynamics are determined “locally”
as defined below. A “local (or neighborhood) function” f is defined
on a finite region as
f : S2r + 1 → S,where S is a finite set of k elements.
The all-important property of CA is that this function is defined dis-
cretely. Both the domain and range of f are finite. The global func-
tion F arises from f by defining: F ( c ) = f(ci−r , ........, ci+r )

4. IMPORTANCE OF CA MODELS

1. CA models are conceptually simple, thus we can use a set of
simple CA rules to produce complex behavior. Through the use of
powerful computers, these models can encapsulate the complexity
of the real world traffic behavior and produces clear physical pat-
terns that are similar to those we see in everyday life. For example,
CA models show the shifting from moving traffic to jamming traf-
fic.
2. CA models can re-create all kinds of complicated traffic phe-
nomena and reflect the properties of traffic flow.
3. Cellular automata models are capable of explicitly represent-
ing individual vehicle interactions and relating these interactions to
macroscopic traffic flow metrics, such as throughput, travel time,
and vehicle speed.
4. The massive parallelism and robustness of the model, which in-
volves an efficient data processing and a high global tolerance in
respect to local failures.
5. CA models can more adequately capture the complexity of real
traffic, by allowing different vehicles to possess different driving
behaviors (acceleration/deceleration, lane change rules, reaction
times, etc.),
6. CA models, by being either deterministic or stochastic, can be
more effective in accounting for the inherent variability in most real
traffic.
7. CA models are amenable to representing both single and multi-
lane traffic, which is particularly crucial for the modeling of high-
ways.

5. CA FOR ONE-LANE TRAFFIC FLOW
In physical systems, space and time are discrete and physical quan-
tities take on a finite set of discrete values. CA are realizations
of physical systems. CA made up of a regular uniform finite lat-
tice with discrete variables occupying various sites. At each site,
the values of the variables completely determine the state of a CA.
Based on a definite set of “local rule” and on the values of the vari-
ables in their neighborhood at the preceding time step the variables
at each site are revised simultaneously [9].
We define the initial traffic model a 1-dimensional array with L
cells and with closed boundary condition, which implies that N, the
total number of vehicles in the system, is kept as a constant. Each
cell contains either one vehicle or none. Each cell corresponds to
a road segment with a length l equal to the average headway in a
traffic jam. Traffic density ρ is given by ρ = N/L. The velocity of
each vehicle varies from 0 to vmax. The number of sites a vehicle
advances in one iteration is the velocity of each vehicle. The set of
updating rules determines the movement of vehicles. At each iter-
ation, to each vehicle these rules are applied in a parallel fashion.

As per the desired level of simulation detail the length of the iter-
ation can be chosen. To approximate a continuous time system a
sufficiently small iteration interval can be used. The distribution of
vehicles among the cells and the speed of each vehicle in the cell
determine the state of the system at each iteration.
The following notations are used to characterize each system state:
x(i): position of the ith vehicle,
v(i): speed of ith vehicle, and
g(i): gap between the ith and the (i+1)th vehicle(i.e.,vehicle imme-
diately ahead) and is given by g(i) = x(i + 1) - x(i) - 1.

6. DETERMINISTIC CA MODEL
In the deterministic single lane model, vehicle motion is determined
by the following set of updating rules:

Rule 1. Acceleration of free vehicles:
v(i) < vmaxand g(i) ≥ v(i) + 1 ⇒ v(i) = v(i) + 1.

Rule 2. Slowing down due to other vehicles:
g(i) < v(i) + 1 ⇒ v(i) = g(i).

Rule 3. Vehicle motion: Vehicle is advanced v(i) sites.

These updating rules were first suggested by Nagel. Fig. 1 shows
the application of these three updating rules to an example system
with 24 cells and 7 vehicles:

Note that in these rules it is assumed that all vehicles have same
behaviors and have the same maximum speed. However, these as-
sumptions can be relaxed. Let vmax= 135cells/iteration and each
iteration correspond to one second. Let the length of each cell be
7.5m. Since 7.5 m/s is equal to 27 km/hr, vehicles assume the
speeds v0 = 0 km/h, v1 = 27 km/h, v2 = 54 km/h,..., and vmax=
135 km/h. The deterministic CA models are simplified versions of
real traffic and these are useful modeling for automated highway
systems where vehicle speeding and vehicle deceleration are exter-
nally controlled.

6.1 Computer Simulation Of The Deterministic
System

The simulation is based on a system of 300 cells evaluated over
10,000 iterations (approximately 2.8 hours) for varying density lev-
els. For each density level, various traffic flow measures were ob-
tained (e.g., throughput, average speed, speed variance, traffic peri-
odicity, etc.). The model reproduces the familiar fundamental dia-
gram of flow versus density - see Fig.2. Flow is linearly increasing
with initial increase in traffic density (laminar flow). A maximum
flow of 3000 vehicles/hour is achieved at ρmax = 0.1667, beyond
which flow becomes linearly decreasing in density (back traveling
start-stop waves). In the laminar flow phase, average speed con-
verges to the maximum speed vmax.
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Average speed becomes a decreasing function of density for traffic
densities larger than ρmax- see Fig.3.

As shown in Fig.4 there is a maximum variance density which oc-
curs shortly after the maximum throughput density. Thus, the re-
gion of maximum flow is also the region of maximum variance.
Note that during the laminar flow phase, speed variance is negli-
gible but starts to increase with the onset of maximum flow. The
initial increase is fairly large creating a significant discontinuity in
the variance-density function.

Fig.5 depicts the behavior of the period length as a function of den-
sity. Period length is negligible for densities below the maximum
flow densities. Period length is negligible for densities below the
maximum flow densities. However, the period length can be signif-
icant for higher densities.
In fact, either an increase or a decrease in period length may oc-
cur with an increase in density. More importantly, small changes in
density could result in large fluctuations in period length.

7. THE STANDARD CA MODEL (STCA)
7.1 The Model and Its Rules
In this model we use integer variables for space, time and speed.
This kind of model is known as a cellular automaton[14]. The space
is divided into cells so that the length of each cell is the maximum
space headway between vehicles in jam and it is 1/kj , where kj is
the jam density so that if the length of each cell is 7.5 m then kj =
133 vel/km . When the update time-step t= 1s, the speed ranges
from 0 to vmax = 6 cells / t = 162 km/hr. The STCA following the
philosophy that goes as fast as you wish and as fast as the vehicle
in front allows you and decelerate if you have to avoid a rear end
collision[7, 8].
This philosophy is represented by the following four rules.

Rule 1. v < vmax ⇒ v = v + 1

Rule 2. v > gap⇒ v = gap

Rule 3. v > 0⇒ v = v − 1 with pbrake
Rule 4. x = x+ v

These rules can be updated in parallel for any vehicle. pbrake is
average deceleration ratio over the driver population. Average ac-
celeration ratio over the driver population gives 1- pbrake. Though
this model is extremely simple, it shows many features with the
real-world traffic, STCA gives very good results, particularly in de-
scribing queueing system at the intersection of two urban streets
[2].

7.2 Application of STCA Model For Urban Streets
The capacity of the intersections is important for the urban traffic
networks. By varying the parameter pbrake this capacity can be
reproduced very well using STCA.
Fig. 6 shows the shape of the capacity curves at intersections with
traffic signals as function of the parameter pbrake. In the graph each
curve is constructed by taking pbrake along the x-axis and satura-
tion flow Qs (veh/hr) along the y-axis by keeping vmax at the in-
tersection fixed (i.e., for various values of vmax we get various ca-
pacity curves). From the curve that corresponds to vmax = 2 cell/t
(i.e., v = 54 km/hr), by taking pbrake = 0.2, a saturation flow can
be obtained. Hence, a parameter pbrake = 0.2 should be applied in
STCA to get a saturation flow of Qs = 1700 veh /hr for vmax = 2
cell/t. Also from these curves the move-up times tf (representing
the average time headway between two vehicles departing at the
stop line in succession) at intersections without traffic signals can
be calculated. It is the reciprocal of the capacity at the stop line.
i.e., tf = 1/Qs.

I:/hod/figure6.png

Pbrake [-]

Fig. 6 Saturation flow Qs from STCA at signalized intersec-
tions
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7.3 Application of STCA Model For Freeways
On the other hand, as a result of the extreme simple configuration
of the STCA, the characteristics of traffic flow in motion (no queu-
ing) can be described by STCA with satisfying performance. The
simulated traffic flow on motorways,cannot represent the realistic
speed-flow relationships. Analyzing the STCA in details one finds
the following unrealistic features on the microscopic level:

(i) The acceleration and deceleration ratios are unrealistic because
of their infinite value and dependence on each other(acceleration
ratio =1-pbrake, deceleration ratio = pbrake)
(ii) The acceleration ratio (= 1 − pbrake) is larger than the decel-
eration ratio (= pbrake) (for the common case of pbrake > 0.5).
(iii) The speed of a vehicle is not dependent on the speed of other
vehicles ahead.
(iv) The minimum time headway between two vehicles cannot ob-
tain values smaller than t.
(v) The driver reaction time is always equal to t.
(vi) The speeds are classified in discrete classes (i.e. with steps 27
km/h).
(vii) The threshold (time interval to the vehicle ahead) for chang-
ing (adjusting) speed is always equal to t.

These microscopic properties of the STCA lead to the following
macroscopic disagreements compared to real traffic flow on motor-
ways:
1. The maximum flow ratio in the opening (depressive) phase
Copen is larger than the maximum flow ratio in the closing (com-
pressive) phase Cclose, whereas in reality just the opposite occurs.
2. No capacity drops exist.
3. The convoy dynamics is always stable.
4. No breakdowns in an open pipeline system.
The first application of the CA for simulation of traffic flows on
streets and highways was introduced by Nagal and Schreckenberg
[7].

8. WOLFRAM’S RULE-184

Rule 184 has been popularised by Stephen Wolfram . This rule has
been studied as the simplest 1-dimensional CA model for the high-
way traffic flow [12]. The rules are tabulated as below.

current pattern 111 110 101 100 011 010 001 000
new state for center cell 1 0 1 1 1 0 0 0

Here “1” indicates the cell is occupied by a vehicle and “0” indi-
cates that the cell is empty. According to Rule 184, the movement
of a vehicle in a cell depends on its two immediate neighborhoods.
If the vehicle has an empty space in front of it, it will move one
unit to the right. Otherwise, it remains in the original cell. Under
this rule, the number of filled cells does not change.
The following time-space diagram (Fig.7) of CA-184 shows that it
constitutes a fully deterministic system that strictly repeats itself.

Fig. 7 A typical time-space diagram of the CA-184 TCA model.
The global density of the system was set to 0.3. There are many
deterministic congestion waves present; they have an eternal
lifetime in the system.

9. STOCHASTIC CA MODEL (SCA)

Since this model needs some fluctuations for explaining traffic
jams, the presence of a noise parameter, represented by the slow-
down probability, is required. From the following time space dia-
gram(Fig.8) of the SCA model one can see that the breaking be-
havior creates mini jams which are not so in real-life observations.

Fig. 8 A typical time-space diagram of Nasch’s SCA model. The
slowdown probability was set to 0.5 and the global density of
the system to 0.2; the large congestion wave is very raveled out,
resulting in many mini-jams localized in its neighborhood.

10. VELOCITY DEPENDENT RANDOMIZATION
MODEL (VDR)

By reducing the outflow, one can achieve the stable traffic jams. The
reduction in outflow is made possible by implementing the slow-to-
start rule, by which we mean that vehicles in the front portion of the
jams are made to wait a small amount of time. One such example
is VDR Traffic CA [1].
This model is based on the following rules:
The rule steps for the vehicle n of this model are:

1. vn(t+ 1) := min(vmax, vn(t) + 1)

2. vn(t+ 1) = min

(
dn(t)

∆t
, vn(t) + 1

)
3. vn(t+ 1) := max(0, vn(t+ 1)− 1),with probability p(v)

4. xn(t+ 1) := xn(t) + vn(t+ 1) + ∆t

where p = p(v(t)), a function of vehicle speed and dn(t) repre-
sents the number of empty cells in front of the nth vehicle. The
braking probability is calculated from to the gap (the number of
empty sites) in front of the vehicle n and the braking probability is
calculated from

p(v) =

{
pn, for v = 0
p, for v > 0

This gives the characteristics of flow almost coincide with realistic
value. The system settles into a phase several state with a large jam
and a free flow zone. This can be seen from the following time
space diagram(Fig.9).
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Fig. 9 A typical time-space diagram of the VDR CA model.
The slowdown probability was set to 0.01, the slow-to –start
probability to 0.5 and the global density to 0.2. We can see the
formation of a persistent compact jam; there’s also a significant
decrease of the density in front and behind the jam’sformation.

11. A TWO-LANE CA MODEL
All the previous work dealt with unidirectional roads. Some au-
thors, e.g., Gundaliya et al. [3], Mallikarjuna and Ramachandra Rao
[5] used multi- cell structures. In real life situation vehicles mov-
ing in multi-lane road. Hence there is a need to have a model for
two-lane traffic. A two-lane model due to Nagal and schreckenerg
consists of two parallel single lane models with periodic boundary
conditions. The following rules have to be observed before chang-
ing the lane: .

Rule 1 : Check ahead your current lane if another car is in your
way.
Rule 2 : Check ahead on the other lane if it is better there
Rule 3 : Check back on the other lane if you would get in the way
of another vehicle.
Rule 4 : Based on the result of the first three rules, decide whether
to remain on the same lane or change to the other lane.

Using these rules and the algorithm for the one-lane model the fol-
lowing conditions have been arrived for a vehicle to change a lane:
Rule 1. gapi < vi + 1
Rule 2. gap′i > vi
Rule 3. gap′′i > vmax

To bring stochasticity into the algorithm we add the additional con-
dition ”rand() < Pnoise” is the probability of lane changing. Be-
fore the velocity update this step on lane changing to be imple-
mented.

12. DISCUSSION AND CONCLUSION

The usefulness of CA to traffic flow modeling has been explored.
Existing CA models have been used to capture interesting charac-
teristics of traffic flow that has not been possible using conventional
analytic models or existing simulation techniques.Traffic CA mod-
els provide us with sufficient detail in order to capture the micro-
scopic nature of traffic flows. Higher moments of traffic flow were
examined using CA models.For example, we showed that the den-
sity area of maximum throughput is also the density area of max-
imum speed variance. For deterministic systems, we found traffic
flow to possess a finite period which is highly sensitive to den-
sity in non-monotonic fashion. In this paper, it has been shown
that CA models are more suitable to modeling multi-lane traffic.
In this model, lane changing rules and behavior are explicitly ac-
counted. The impact of these rules and behaviors becomes then

easier to examine. We observed that lane changing does little to in-
crease throughput. Since more frequent lane changing means an in-
crease in the likelihood of traffic accidents, traffic should be smaller
than both the density of maximum lane changing and maximum
throughput. This will ensure traffic with few lane changes and with
a small speed variance.Simulation results indicate that (i) the essen-
tial feature of traffic flow can be captured by this method and (ii)
this model is useful for application to large scale traffic networks.
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