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ABSTRACT 

In recent years researches in hybrid system dynamics and 

control strategies have become very prominent because most of 

the systems show hybrid behavior (continuous and discrete) in 

their dynamics. In this work authors have considered a three-

tank autonomous hybrid system for the investigation. 

Implementation aspects of the model based control scheme and 

a derivative-free state estimator for three-tank hybrid system are 

simulated in MATLAB platform. In the simulation studies on 

benchmark three tank hybrid systems, the efficacy of the 

proposed controller and estimator under various real time 

operating conditions is demonstrated. 
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1. INTRODUCTION 
The dynamical systems which have both continuous and 

discrete behavior are termed as Hybrid systems. They demand 

the combination of continuous system descriptions like 

differential equations with discrete event models. Hybrid 

system arises, when the continuous and discrete dynamics 

interact. Mathematical models which combines the dynamics of 

the continuous parts of the system with the dynamics of logic 

and discrete part is required to capture the evolution of hybrid 

systems. The research of the hybrid system theory comprises of 

collection of modeling, analysis and controlling technique. 

Hybrid system theory plays an important role in the multi 

disciplinary design of many technological systems around us. 

The main sources of motivation to study hybrid system are 

related to (i) the design of technological systems, (ii) networked 

control system (iii) physical processes which exhibit non-

smooth behavior.[11] 

Timothy J. H. and David K. W., provide a rigorous approach to 

modeling, simulating and analyzing hybrid system using 

constraint logic programming with interval arithmetic [1]. Many 

approaches are now available in the literature for control of 

hybrid systems based on linear hybrid models. Most of them are 

using linear approximations of nonlinear systems [2][3][4][5]. In 

this context very less work has been reported on the direct use 

of nonlinear models for control. Recently a novel identification 

method and predictive control of nonlinear hybrid system using 

structural approach is proposed for a class of hybrid systems by 

Nandola and Bhartiya [7]. Using Bayesian approach they 

developed a nonlinear model by combining multiple local linear 

models. An experimental validation of the predictive control 

has reported by using the developed model by Nandola and 

Bhartiya [8]. J. Lygeros, C. Tomlin, and S. Sastry [9] discuss the 

modeling issues, local existence, uniqueness, verification 

techniques, stability concerns and other lyapunov like theories 

for hybrid systems. J. Prakash, S. C. Patwardhan, S. L. Shah[10] 

recommends a state estimation scheme for an autonomous 

hybrid system using ensembled Kalman filter and NMPC by 

using estimated state values. Later they [12] extended their work 

to develop a nonlinear fault tolerant control of the autonomous 

hybrid systems by using UKF based state estimator.  

Paper [6] introduces an adaptive growing and pruning radial 

basis function neural network for online identification of hybrid 

system. Identification is based on modified UKF algorithm. The 

procedure is online. There are two artificial neural networks 

which predict the levels in each tank of benchmark two tank 

hybrid system. Harald Brandl, Martin Weiglhofer, and 

Bernhard K. Aichernig [13] present a new approach for verifying 

the input-output conformance of two hybrid systems. Vinay A. 

Bavdekar and Sachin C. Patwardhan [14] proposed to identify 

noise covariances associated with autonomous hybrid systems 

from the operating data. The state estimators used for this 

purpose are UKF and EnKF. The problem of estimating the 

noise covariance matrices is formulated as a constrained 

optimization problem, in which a suitable objective function of 

the innovation sequence is minimized. 

From literature survey, it is found that no work with real time 

platform has been reported in the field of state estimation and 

control of autonomous hybrid systems using nonlinear models.  

In this work, by using volume balance equation and conducting 

the experiments for finding the process parameters of the three-

tank hybrid system a first principle model for the system is 

formulated and the performance of the model is validated for 

various operating regions using real time data, collected from 

the experimental set up. Inverse dynamics control algorithm for 

controlling the output variable of the three tank hybrid system 

and Unscented Kalman Filter based state estimator for 

estimating all the state variables (levels in three tanks) were 

applied for simulation studies. Offline validation of the UKF 

algorithm has been done with the collected real time data. 

2. PROCESS DESCRIPTION 
The autonomous hybrid system considered in this work for the 

investigation is three-tank hybrid system. The schematic 

representation of the three tank hybrid system is as shown in 

figure 1. It consists of three cylindrical tanks and a sump. Two 

pumps deliver water inflow, Fin1 and Fin2, to first and second 

tanks (left and right) respectively and the water level in the third 

tank is considered as the output of the system.  
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Figure 1: Schematic representation of three tank hybrid system 

 

 

Tank-1 and Tank-3 as well as Tank-2 and Tank-3 are inter-

connected through hand valves at two different positions. V1 

and V2 are inter connecting valves at the bottom position and V3 

and V4 are the intermediate interconnecting valves. Intermediate 

inter connecting pipes are situated at a height of 0.3 m (h0) from 

the bottom of the tank. V5, V6 and V7 are the valves in the pipes 

from Tank-1, Tank-3 and Tank-2 respectively to the sump. 

Normally, the position of all the valves (Vi , where i=1, 2…7) 

remain the same throughout the experiment. Flow through Vi is 

denoted by Qi and corresponding discharge coefficients are 

denoted by ki.  

In this system, water level in the three tanks makes the 

continuous state, x(t) of the system and the flow through middle 

inter connecting pipes form the discrete state, z(t) of the system. 

The total height of the tank is 0.6m. An overflow is given at 

0.55m height for each tank. x(t) may vary between 0 and 0.55m. 

The discrete state z(t)=(z1(t), z2(t)) depends on the flow through 

the intermediate interconnections(Q3 and Q4).  

  -1   if Q3 from Tank-3 to Tank-1 

z1=   0;  if Q3=0 

 +1;  if Q3 from Tank-1 to Tank-3 

Similarly 

  -1  if  Q4 from Tank-3 to Tank-2 

z2=   0;  if Q4=0 

 +1;  if Q4 from Tank-2 to Tank-3 

The three tank system described above is a typical hybrid 

system as it has both continuous and discrete states. Based on 

the values of continuous states the discrete states of the system 

is determined and based on the values of z1 and z2 ,  the system 

may fall in to 8 different modes of operation. The continuous 

dynamics of the system are different under each mode. Since 

the automatic switching between the modes takes place based 

on the continuous state values, the system may classified as 

state driven or event driven autonomous hybrid system.  

The governing equations of the autonomous three-tank hybrid 

system are 

1
1 1 1 3 5

2
2 2 2 4 7

3
3 1 2 3 4 6

dh
A =Fin -Q -Q -Q

dt

dh
A =Fin -Q -Q -Q

dt

dh
A =Q +Q +Q +Q -Q

dt

                                                 (1) 

Where, 

1

2

1 1 1 3 1 3

2 2 2 3 2 3

3 1 3 1 0 3 0

4 2 4 2 0 3 0

5 5 1 d

6 6 3 z

7 7 2 d

Q =k (h -h ) 2g h -h

Q =k (h -h ) 2g h -h

Q =z k 2g a(h -h ) b(h -h )

Q =z k 2g c(h -h ) b(h -h )

Q =k 2g(h +h )

Q =k 2g(h +h )

Q =k 2g(h +h )

sign

sign



                                      (2)  

Here a, b and c are temporary variables whose values 

indicates that the water level in Tank-1, Tank-3 and Tank-2 are 

above or below the intermediate interconnection.  
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3.   METHODOLOGY 

3.1   Parameter Identification 
By conducting detailed study and giving a series of step 

changes in the two inflows, the steady state analysis is done to 

obtain the discharge coefficients, ki of ith valve. From these 

experiments, the discharge coefficients of the valves are found 

to be as given in Table-1. 

 Table 1: Discharge coefficients of the valves  

Discharge coefficient Value(m2) 

k1 8.960E-5 

k2 1.960E-4 

k3 1.005E-4 

k4 8.600E-5 

k5 0 

k6 7.653E-5 

k7 0 

The process parameter values of the three-tank hybrid system 

experimental setup is listed in Table-2 

Table 2 : Three Tank Hybrid System Parameter Values 

Parameter Value 

Inner diameter of all Tanks 0.15m 

Height of  all Tank 0.60m 

Over flow height of all tanks 0.55m 

Orifice diameter of tanks 0.0125m 

Inner diameter of all inter connecting pipes 0.0125m 

Pump power rating 0.5 HP 

Valve coefficients of control valves 2 

Maximum rated flow rate for control valves 750 lph 

3.2   Model Validation 
Once the model parameters are ready, next to validate the 

performance of the model formulated. To validate the model, a 

sequence of step changes in the two inflows to the actual system 

is given and the response is recorded. The same input sequence 

is given to the model developed and compared the performance 

of both.  

3.3   Controller and Estimation Techniques 
After offline validation of the model developed using real time 

data, this model is used for designing a nonlinear inverse 

dynamics controller for controlling the output variable of the 

system and a UKF based state estimator for estimating all the 

states including non measurable states.  

3.3.1   Inverse Dynamics Controller Algorithm 
One of the Inflows (Fin1) can be manipulated for controlling the 

output level. Other inflow (Fin2) is treated as the disturbance 

variable. The control law is  

 
1

1
in 3 3sp 3 6 3 4

dh
F =A C h -h +Q -Q -Q A1 dt

                            (3)  

C is the tuning parameter of the controller. 

3.3.2   Unscented Kalman Filter Algorithm 
All the measurable and non-measurable states are estimated 

using a nonlinear state estimator which makes use of Unscented 

Kalman Filter algorithm. Apart from Extended Kalman Filter, 

UKF does not require the Jacobian of the system. Therefore this 

algorithm is a derivative free estimation algorithm.  

Unscented Kalman Filter uses unscented transformation, which 

is a new novel method for calculating the statistics of a random 

variable which undergoes a nonlinear transformation. The n-

dimensional state variable x with mean, k-1x̂   and covariance, 

k-1P̂  is approximated by 2n+1 weighted points called sigma 

points. Where n is the number of states under consideration of 

the process. Sigma points can be generated using the formulae 

given in eqn. 4. We have to assume the initial values of state 

variables and co variance from the available information. 

(0)
k-1ˆx x                     (4.a) 

(i)
k-1 k-1

ˆˆx x (n+λ)P 
                                                (4.b) 

Where i=1,2,…,2n   and

     

2λ=α (n+κ)-n

 

                    (4.c)        

The constant, α determines the spread of the sigma points 

around k-1x̂ usually set to 1e-3 ≤ α ≤1 and κ  is secondary 

scaling parameter. It is usually set κ  to 0 for state estimation 

and to (3 – n) for parameter estimation. β is used to incorporate 

the prior knowledge of distribution of state. Optimum value of β 

is 2 for Gaussian distribution. Associated weights are computed 

as per equation 5.
 

(i) (i)
m C

1
= =

2(n+λ)
W W                   (5.a)

m
(0)W =λ/(n+λ) 

                                                                 (5.b)

(0)
C

2λ
W = +(1-α +β)

(n+λ)                                                          (5.c)

  

After calculating the sigma points, time update is done as 

follows (eqn.6).   

 

(i) (i)
F( , )

k-1k-1
k/k-1

x x u
                    (6.a)

 

(i) (i)
k/k-1 k/k-1

Hz x 
 
 

                       
                                          (6.b)

(i)
(i)

Wm k/k-1k/k-1

2n
x x

i=0

 %                        
(6.c)

2n (i)(i)
Wk/k-1 m k/k-1

i=0

z z %
                  (6.d)

                            

C

T
2 (i) (i) (i)

- -k k/k-1 k/k-1
k/k-1 k/k-1i=0

P W x x x x Q
n    

     
   

% % %
          (6.e)

                                 

Measurement update equations are given in equation 7. 

T
zzk k kk = -P̂ P K P K%                                                 (7.a)

k k k k kx̂ =x +K (z -z )% %
                                                  

(7.b) 

where  k xz zz
-1K P P

                  (7.c)
T2

(i) (i)(i)
zz C k/k-1 k/k-1

k/k-1 k/k-1i=0

- -P W z z z z R
n    

   
      

  % %

     

 (7.d)

T2
(i) (i)(i)

Wxz C k/k-1 k/k-1k/k-1 k/k-1
i=0

- -P x x z z
n

   
   
   

 % %

          

(7.e)

 Where Q is the process noise covariance and R is the 

measurement error covariance. 
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4.    RESULTS AND ANALYSIS 

4.1   Model validation 
 In this work, after developing the nonlinear model, 

offline validation of the model using the data collected from 

real-time set up has been carried out. The response shown in the 

figure 2 reveals that the nonlinear model developed is good 

enough to cope up with the all dynamics of the actual three-tank 

hybrid system. The input variables are tabulated in table-3.  

Figure 2: Offline Model Validation using data collected 

from  experimental setup 

Table 3: Input Sequence 

Sampling 

Instants 

1-

2000 

2001-

4000 

4001-

6000 

6001-

8000 

8001-

10000 

Fin1 (lph) 150 375 375 150 150 

Fin2 (lph) 150 150 375 375 150 

 

4.2   Performance of Controller 
The stability in controlling the output variable of the system 

under three different conditions has been investigated. The three 

conditions are operation below, above the intermediate 

connection and crossing the intermediate connection. From the 

figure 3, it is clear that the controller designed has very good set 

point tracking capability. The settling time and the integral 

square error are considered as the performance measure for the 

tuning of the controller by varying the controller gain and are 

tabulated in Table 4. Also a disturbance is given to the third 

tank level by increasing outflow from the third tank at 1000th 

sampling instant and the result shows that the controller 

designed has good disturbance rejection property. 

Table 4: Tuning of IDC 

Gain ISE Settling Time 

.1 3.0917 150 

.2 3.0889 140 

.4 3.0870 97 

.7 3.1193 104 

1 3.1546 105 

1.5 3.2335 105 

 

 

 

 

Figure 3: Performance of the Inverse Dynamics Controller 

4.3. State Estimator 

In this work authors have assumed that only one of the three 

levels is available for measurement using which the other two 

levels are estimating using a UKF based state estimator [10]. The 

performance was improved by tuning the estimator by varying 

the process noise covariance used in the UKF algorithm. The 

estimator is able to predict the states of the hybrid system 

satisfactorily and the performance is compared with the actual 

level and is given in figure-4. Offline validation of the proposed 

estimator using the collected data has been done and the result 

is given in figure-5.   The ISE as well as the prediction time are 

considered as the performance measure of the estimator and 

given in Table-5.  

 

Figure 4: Performance of the state estimator under 

normal condition 
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Figure 5: Offline Validation of State Estimator 

Table 5: Performance measure of UKF based estimator 

Gain Simulation Validation 

ISE1 0.1678 – 

ISE2 0.1242 – 

ISE3 0.0603 0.0003 

Est. Time 0.1346 0.2773 

 

Some real-time operating constraints are introduced in the 

simulation and the stability of the estimator is evaluated. Figure 

6 and figure 7 gives the sample graphs for the performance of 

the proposed estimator under model process parameter 

mismatch and initial condition mismatch. The proposed 

estimator is able to accommodate these operating condition 

variations. As the magnitude of mismatch in parameter value 

increases, estimator gives a biased estimate and the value of ISE 

increases as given in Table 6. Since the levels in first and 

second tanks are not measurable, we assumes the initial values 

of these two to any value which need not be the same as the 

original. Even if the mismatch is given in the initial state vector 

the estimated states are able to track the actual states within a 

few sampling instants. These results show the robustness of the 

estimator under these uncertainties. 

Table 6: Performance measure of estimator with process-

model parameter mismatch 

Condition ISE1 ISE2 ISE3 

Am= Ap, km=kp 0.0236 0.0204 0.0124 

Am= 1.2Ap, km=1.2kp 0.1164 0.0981 0.0523 

Am= 1.5Ap, km=1.5kp 0.3804 0.3270 0.1629 

Am= 2Ap, km=2kp 0.8045 0.6950 0.3448 

Am= .8Ap, km=.8kp 0.3665 0.3168 0.0556 

 

 

 

 

Figure 6.a: Performance of Estimator under process-model 

parameter mismatched condition (mismatch factor =1.2) 

 

 

Figure 6.b: Performance of Estimator under process-model 

parameter mismatched condition (mismatch factor =2)  
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Figure 7: Performance of estimator under initial condition 

mismatch 

5.   CONCLUSION 
The nonlinear model developed is validated using the data 

collectd from tha actual experimental setup. The model is able 

to cope up with the input variations in different modes of its 

operation. In order to investigate the closed loop performance, 

the IDC is implemented in simulatiion whose result shows that 

it has good servo and regulatory performance. The UKF based 

estimator developed for estimating the unmeasurable internal 

states of the system gives a very good performance under 

various real time operating conditions. Estimator gives the 

consistent performance with the realtime data collected from 

the experimental setup. 

Further this work can be extended to the online implimentation 

and validation of the model as well as the controlling and 

estimating algorithms. Also the possibility of estimator based 

controller can be investigated so that all the levels can be 

controlled with only one measurement. 

7.    ACKNOWLEDGEMENT 
The authors would like to thank Dr. J. Prakash, proffessor and 

head of the instrumentation engineering department, MIT 

Campus, Anna Uvniversity, Chennai for his valuable 

suggestions and Ideas and the permission to utilize the three 

tank hybrid system experimental set up present in the 

department for carrying out the real time data collection.  

7.    REFERENCES 

[1]  Timothy J. Hickey and David K. Wittenberg, ‘Rigorous 

modeling of hybrid systems using interval arithmetic 

constraints’, HSCC’04, 402-416, 2004. 

[2]  B. De Schutter, ‘Optimal control of a class of linear hybrid 

systems with saturation’, SIAM J. Control Opt. 39 (3) 

(2000) 835–851. 

[3]  B. Potocnik, A. Bemporad, F.D. Torrisi, G. Music, B. 

Zupancic, ‘Hybrid modelling and optimal control of a 

multiproduct batch plant’, Control Eng. Pract. 12 (9) 

(2004) 1127–1137. 

[4]  J. Thomas, D. Dumur, J. Buisson, Predictive control of 

hybrid systems under multi-MLD formalism with state 

space polyhedral partition, Proc. Am. Control Conf. 

(2004). 

[5]  F.D. Torrisi, A. Bemporad, D. Mignone, HYSDEL—A 

Tool for Generating Hybrid Models, Tech. Re AUT00-03, 

Automatic Control Lab, Swiss Federal Institute of 

Technology (ETH), Zurich, Switzerland, 2000. 

[6] Tohid Alizadeh1, Karim Salahshoor, Mohammad Reza 

Jafari, Abdollah Alizadeh4, Mehdi Gholami, ‘On-line 

Identification of Hybrid Systems Using an Adaptive 

Growing and Pruning RBF Neural Network’, 1-4244-

0826-1/07/$20.00 © 2007 IEEE. 

[7] Naresh N. Nandola, Sharad Bhartiya, ‘A multiple model 

approach for predictive control of nonlinear hybrid 

systems’, doi:10.1016/journal of process 

control.2007.07.003. 

[8] Naresh N. Nandola, Sharad Bhartiya, ‘Hybrid system 

identification using a structural approach and its model 

based control: An experimental validation’, Nonlinear 

Analysis: Hybrid Systems 3 (2009) 87_100, 1751-570X/$ 

_ see front matter ' 2008 Elsevier Ltd. 

[9] John Lygeros, Claire Tomlin, and Shankar Sastry, ‘Hybrid 

Systems: Modeling, Analysis and Control’, December 28, 

2008 

[10] J. Prakash, Sachin C. Patwardhan, Sirish L. Shah, ‘Control 

of an Autonomous Hybrid   System Using a Nonlinear 

Model Predictive Controller’, Proceedings of the 17th 

World Congress The International Federation of Automatic 

Control Seoul, Korea, July 6-11, 2008. 

[11] W. P. M. H. Heemels, D. Lehmann, J. Lunze, B. De 

Schutter, ‘introduction to hybrid systems’, cambridge 

university press, 2009, 3-30.  

[12] J. Prakash, Sachin C. Patwardhan, Sirish L. Shah, ‘Design 

and Implementation Fault Tolerant Model Predictive 

Control Scheme on a Simulated Model of Three-Tank 

Hybrid System’, 2010 Conference on Control and Fault 

Tolerant Systems Nice, France, October 6-8, 2010, 978-1-

4244-8154-5/10/$26.00 ©2010 IEEE. 

[13]  Harald Brandl, Martin Weiglhofer, and Bernhard K. 

Aichernig, ‘Automated Conformance Verification of 

Hybrid Systems’, 10th International Conference on Quality 

Software,  1550-6002/10 $26.00 © 2010 IEEE DOI 

10.1109/QSIC.2010.53 

[14] Vinay A. Bavdekar, Sachin C. Patwardhan,’Identification 

of Noise Covariances for State Estimation of Autonomous 

Hybrid Systems’, 18th IFAC World Congress 

proceedings,9097-9102, Milano (Italy) August 28 - 

September 2, 2011. 

 

 
 

  


