
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

33

Verification of Durational Action Timed Automata

using UPPAAL

Souad GUELLATI
MISC Laboratory, Mentouri

University, Constantine, 25000,
Algeria

Ilham KITOUNI
MISC Laboratory, Mentouri

University, Constantine, 25000,
Algeria

Djamel-Eddine SAIDOUNI
MISC Laboratory, Mentouri

University, Constantine, 25000,
Algeria

ABSTRACT

The increasing complexity of software is incessant, this

phenomenon is even more accentuated when temporal aspects

are introduced, hence the need for rigorous verification

methods.

The main purpose of this paper is to propose a quantitative

verification approach based on model checking. Their

properties are expressed in TCTL (Timed Computation Tree

Logic) on real-time systems. The system behavior is

expressed by temporal labeled systems; namely Durational

Action Timed Automata model (DATA* model). This model

supports the expression of the parallel behavior, the temporal

and structural non-atomicity of actions and urgency.

Our approach is to interpret the behavior described by

DATA* to Timed Safety Automata. The environment

UPPAAL allows us verifying quantitative temporal

properties, especially the bounded liveliness.

Keywords

Formal verification, Model Checking, TCTL, DATA*'s

model, Timed Safety Automata, Bounded Liveliness,

UPPAAL.

1. INTRODUCTION

Computer applications become increasingly involved in

critical and real-time systems (e.g., automotive, avionic and

robotic controllers, mobile phones, communication protocols

and multimedia systems). These systems are known by their

high complexity.

One approach for designing such systems is to use formal

specification models, such as Petri nets, process algebras and

formal description techniques, historically this work are based

on searches similar to [5, 6, 12, 16]. In fact the specification

may contain mistakes, so, formal validation and verification

approaches are needed.

In this work, we are interested by model checking [8] based

verification methods. It is used to verify some behavioral

properties specified, by the temporal logic TCTL(Timed

Computation Tree Logic), on the system's state space, in order

to detect precocious errors of conception.

It is well known that the quality of validation techniques and

verification depend on the quality of models used for

specification. In this context the model of Durational Actions

Timed Automata (DATA*) has more interest. DATA* is a

timed model, its semantic express the durations of actions and

other notions for specifying the real-time systems such as

urgency and deadlines [4]. This model is based on a

maximality semantic [19] and advocates the true concurrency;

from this point of view it is well suitable for modeling real

time, concurrent and distributed systems. But, the

consideration of a dense time domain make the generation of

space state infinite from which the impossibility to use model

checking [8] as methods for verification.

The IF toolset [24] and UPPAAL [15] offered different

modeling and verification environments. For instance, the IF

toolset verifies requirements on TAD (Timed Automata with

Deadlines) models that are expressed in the alternation free μ-

calculus [25], or are expressed as observers (safety

properties). Instead, our translation allows requirements to be

expressed in the fragment of TCTL [3] that is supported in

UPPAAL, and safety properties. Bornot et al [26] suggested a

way to translate TAD to Timed Automata, whereas Barbuti

and Tesei [27] proposed an extension of TA with urgent

transitions. [28]

In this paper, we will propose an approach for translating

DATA*’s to Timed Safety Automata. However, we will keep

the advantage offered by DATA*s model, in which only the

beginnings of the actions are considered. This translation

allows us to use the UPPAAL tool for verification.

This paper is organized as follows: Section 2 presents the

timed automata with durational actions, we describe the

syntax and semantic of Timed Automata and DATA*. Section

3 presents the Timed Safety Automata model. A translation

approach of DATA* to TSA is given in Section 4. Section 5

describes the verification of DATA* using the UPPAAL tool.

Section 6 presents the results of applying our approach to the

case study. The last section concludes the paper and gives

some perspectives.

2. TIMED AUTOMATA WITH

DURATIONAL ACTIONS

2.1 Notations

In the following is the set of non-negative real numbers. A

clock takes values from or it is undefined, denoted by .

Without loss of generality, we write
 where

the set of non-negative real numbers is extended with the

special value .

Given X a set of clocks. A clock valuation over X is a function

assigning a non-negative real number to every clock. The set

of valuations of X, denoted VX, is the set of total function from

X to . A valuation v ∈ VX is a mapping on X to . The

valuation v+d maps every clock y to v(y)+d (d ∈).

Given a set λ of clocks, a reset λ is a subset of X. Given a

valuation v and a reset λ, we define the valuation v[λ  0] by

v(x) =0 for all x in λ and v(x) if x λ.

The set XC of clock constraints over X are defined by the

following grammar:

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

34

  )(),(,,,: xttx
X

C
Y

C
X

C
Y

C
X

C
X

C  , where x∈ X,

t∈
 , and is a binary operator and . Clock

constraints are evaluated over clock valuations. The

satisfaction with respect to clock valuation function v ∈ VX,

the expression evaluates to true and all other

comparisons that involve evaluate to false. We write
X

Cv 

to denote that according the valuation function v, XC

evaluates to true.

2.2 Timed Automata [1, 2]

In general way Timed Automata are finite state machines

whose transitions are decorated by clocks constraints.

They are widely studied as model in which the control of real

time systems is finite. In fact Timed Automata are

construction of both finite set of locations and finite set of

clock variables. Each edge is specified by a label name which

contains action (that is going to be executed) and clocks

formula. Those are considered as a guard of the edges and set

of clocks which are going to be reset. Clock variables, in fact

capture the time elapsed since the last clocks rest.

The execution (control) of automaton proceeds along an edge

only when the valuation on clocks satisfies the corresponding

constraint.

A finite timed word over ACT is defined as

 ).......,)(,)(,(, 221100 tatatata  , where a = a1 . . . an is a finite

sequence of symbols in ACT and t = t1 . . . tn is a finite

monotone sequence of non-negative real numbers. ti

represents the time stamp of the occurrence of the event ai.

For convenience we assume the initial time stamp t0=0,

prefixed to any sequence of time stamps t.

A run r of a timed automaton is a sequence of timed

transitions:

   

 
),(),

....),(),(

11
,

,
11

,
00

1100

 

  

nn
ta

nn

tata

vlvl

vlvlr

nn

With l0 an initial location and ν0 is such that ν0(x) = 0, ∀x ∈ X.

The run r is accepting iff ln+1 is a final or terminal location.

2.3 Durational Actions Timed Automata

The Durational Actions Timed Automata model DATA* [4]

is a timed model defined as Timed Automata over an alphabet

representing actions to be executed. This model takes into

account the duration of actions based on an intuitive idea:

temporal and structural non-atomicity of actions.

Each clock in Durational Actions Timed Automaton is real

value variable that records the duration of associated action.

According to this sense, it exist an association between label

names and clock variables, during its life.

Illustrate the model with the example above (see Figure 1):

Fig 1: DATA* (1).

The durations associated to the actions are represented by

constraints on the transitions and in the states targets of each

of them. In this sense, any enabled transition represents the

beginning of the action execution. On the target state of

transition, a timed expression means that the action is possibly

under execution.

From operational point of view, each action is associated to a

clock which is rested to 0 at the start of the action. This clock

will be used in the construction of the temporal constraints as

guard of the transitions.

Figure 1 presents a system of two consecutive actions a and b,

the clock x is associated to the action a, on the locality s1 the

temporal formula {x≥2} represents the duration of the action

a.

The end of the execution of an action is deduced implicitly in

the case of causally dependent actions. The action b depends

on a, so the transition is guarded by the duration constraint of

a and extended by more time (x≥2).

Starting from this, we can express different possibilities of

real time systems behavior like delaying execution of action

or limiting its offering time by manipulation of clock

constraints.

A relevant aspect of real time systems specification is the

concurrency. Contrary of interleaving semantics based

models, the true concurrency is specified with elegant and

natural way by models based on maximality semantics.

Indeed, using Durational Actions Timed Automata model is

very suitable to capture the true concurrency in systems

behavior. Since each locality detain the information about

current execution of action; when more than one action are

under execution then on locality, associated temporal formula

are found. With this simple technique, the true concurrency is

finely captured without heavy artefact.

As claimed above, this is inherited from the maximality

semantics. Concurrent actions have different representation by

transitions systems from choice on actions [7].

This model seems interesting and funneling more and more

research because it coated model of Timed Automata by

maximality semantics [10, 13, 18, 20, 14].

The DATA* model, as the timed models, takes in charge the

notion of urgency; expressed with deadlines as temporal

constraints of the system.

2.3.1 Formalization

Definition 1 : a DATA* A is a tuple  SD LTXlL ,,,, 0 over

ACT a finite set of actions, L is a finite set of locations, l0∈ L

is the initial location, X is a finite set of variables named

clocks and TD is a set of edges. A subset of L noted Lf for

terminal locations.

An edge e=(l,G,D,a,x,l′) represents a transition from location l

to location l’ on input symbol a, x is a clock to be reset with

this transition. G is the corresponding guard which must be

satisfied to launch this transition. And D specifies the

deadline.

Finally, 2: XC
fnS LL  is a maximality function which

decorates each location by a set of timed formula named

actions durations, about actions potentially in execution on it.

 S2

 S1

 S0

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

35

The function used to isolate the cloc;k names about timed

constraints, named Dom is defined as:

    GtxxGDomthatsuchXCDom iiX  , :

Definition 2: The semantic of a DATA* A is defined by

the Timed transitions system(TTS)  ,, 0sS A , over ACT

R+. A state of SA (or configuration) is a pair),(vl such that l

is a location of A and v is a valuation function over X , with

initial configuration  ,0l . A terminal (accepting)

configuration of TTS is a pair  vl, with l in Lf .

The transitions on SA are labeled either by a real number

representing the elapsed time (Time steps), or by an action in

ACT (Discrete steps). The rules to derive the transitions on SA

are the following:

R1
 ∈ ∀

()

→()

R2
()∈

()

→ ([])

As defined above, a run is manner to capture the behavior of

automata. A run records the states and the values of all the

clocks at the end-point of transitions.

Definition 3: a run r of DATA* A over a timed word

 ),).......(,)(,)(,(, 221100 nn tatatatata  , is a finite

sequence:
   

 
),(

),....(),(),(

11
,

,
11

,
00

1100

 

  

nn
ta

nn
tata

vl

vlvlvlr

nn

Of states  ii vl ,

about locations Lli  an edge

  Diiiiii TlxaGle  1,,,, such that 0l is the initial location and

 0 and G ,0, allfor i  iii xvvnii .

R1
 ∈ ∀

()

→()

R2
()∈

()

→ ([])

In the following example we consider the execution of two

actions in parallel, each of them has a specific time execution

and offered delay during which it can start its execution.

Figure 2 illustrates this behavior.

The transition from the state to the state is labelled by

the action , indicating the beginning of its execution while

respecting a offered delay units of time expressed by the

condition (The clock serves to count the offer

delay of the first action, in this case the action ∈ [])

; the symbol meaning that the beginning of waits for

the end of no other action and the clock counting the

evolution of time from the crossing of this transition.

The label , associated to the state is an

information on the action execution time of the action and

mean that the action is currently executed, as the clock

has not overtaken the value yet.

Fig 2: DATA* (2).

In the state , the two actions of the same name can be

executed in parallel. It is the auto-concurrency, and each of

them cannot finish that if his clock reaches a value equal to its

duration. Hence the set of durational conditions

 . Given that the second action is offered for units of

time, she can start only if her beginning respects the condition

 .

3. Timed Safety Automata Model
Timed Safety Automata (TSA) [11] has been proposed for the

specification of real-time systems. TSA has been adopted in

several verification tools for timed automata e.g. UPPAAL1

[15] and Kornos2 [21].

Definition 4: A Timed Safety Automaton is a tuple

() where:

 is a set of actions,

 is a set of locations,

 ∈ is the initial location,

 is the set of clocks,


 () is a set of edges. An

arc (′) represent a transition from the state

 to the state ′ by reading symbol . The set

contains the clocks to be reset by this transition, and

 is a temporal constraint on . (′)can be

written

→ ′, and

 → () Assigns invariants to locations.

Invariants are predicates defined by the following

grammar:

 | |

Where ∈ is an integer and ∈ .

A way to model this behavior by Timed Safety Automata is

by splitting each action in two instantaneous actions

corresponding to the beginning and the end, due to the

supposition of the temporal atomicity of the actions (the

execution time is zero. The system starts the execution of the

action when the constraint is verified. The invariant

 forces the residence of the system to the state , once

this condition is violated, the system has to execute the

transition () when the guard is verified.

In the example bellow we consider the action with its two

parameters, duration of execution and delay of offer have

respectively and units of time. The Timed Safety

Automata is illustrated by the Figure 3.

1
 www.uppaal.com

2
 http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/



 S2

 S1

 S0

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

36

Fig 3: Timed Automaton.

Although this solution allows the correct modelling of an

action with durations, it cannot be accepted by the reason of

the combinatorial explosion problem which it engenders for

the state space and the set of alphabet.

4. TRANSLATION OF DATA* TO TSA
Our objective is to verify quantitative properties expressed by

temporal logic TCTL on system behavior witch is expressed

by DATA*'s model passing by Timed Safety Automata in

order to use the tool UPPAAL.

Let's consider the behavior expressing the sequential

execution of two actions and have respective durations

 and and respective offered delays and the

behavior of is represented by DATA* of the Figure 4.

Fig 4: Example of a sequential behaviour.

From initial state , action can begin its execution while

respecting the condition . can begin its execution

since a delay of units of time from enabling the system has

not expired.

The system passes in the state and cannot leave it before

the end of action , the same reasoning applies for the action

 .

Let us try now to express this behavior with timed automaton.

The first passage from to can be described by the

transition
 ()
→ (the transition from the state

to begin the action , the condition represents the garde and

 is the clock to be reset in zero by this transition to count the

execution time of the action). Once the system is in the

state , he cannot leave it neither before ending of nor after

the expiration of the offered delay of , the action is enable

at the time of the ending of , i.e. the offer delay of begin

its expiration once is ended. The passage from to can

be described by the transition
 ()
→ .

Clearly it is possible to express the duration without being

forced to consider each action as two events: the beginning

and end.

Therefore, our approach is to model an action, which has two

optional parameters: offered delay and time execution, with a

Timed Automaton including:

 A transition to express the beginning of action (with

guard if there is, offered delay to respect and reset

the clock appropriate to capture the instant of

beginning of action),

 A state, where the system resides during the

execution of action (the system is not forced to

leave this state once the action is complete).

Therefore, the guard of the next transition that will serve us

capture both, the end of action () and beginning of

next action () . Finally we obtain the automata

representing the global behavior of in Figure 5.

Fig 5: Timed Automaton obtained after translation.

Comparing the two models illustrated in Figure 4 and Figure

5, we able to observe that both express the same behavior

except that in Timed Safety Automata we have lost

information about end of the action .

It is clear that it is impossible to capture the end of last action

without adding another transition. For that we consider all

processes expressed by DATA*'s necessarily use particular

atomic action to marked its ends. And thus we obtain the

behavior illustrated by Figure 6.

Fig 6: The Timed Automaton corrected.

Effectively, the passage from DATA* to Timed automaton, in

the case of sequential processes, is naturally performed.

Now we want to know if this approach supports the urgency

and the parallelism (concurrency).

4.1 Expressing urgency
Take the example of Figure 6, action (respectively) must

occur when the clock (respectively) attained the value

(respectively).

 The expression of urgency in Timed Safety Automata is done

by using invariants. Therefore the timed automaton describing

this behavior is illustrated by Figure 7.

Fig 7: Timed Automaton expressing the urgency.

4.2 Concurrency
Let us consider the example of a system which consists of

two concurrent subsystems and synchronizing on an

action . The subsystem executes the action followed by

 , while executes then .

 S2

 S1

 S0

 ()

 ()

 S0 S1 S2

 ()

 ()

 S0 S1 S2 S3

 S0 S1 S2 S3

 S1

 S2 S0
 ()

 ()

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

37

Now suppose that actions and have respective durations

 and . The temporal restriction of the domain of

sensibilization of the action is and units of time

following from of or . The global behaviour of is

represented by the DATA* in Figure 8.

Fig 8: DATA* of behavior .

Applying the previous reasoning, we obtain the timed

automaton illustrated by Figure 9.

Fig 9: The Timed Automaton generated.

4.3 Algorithm of translation
The translation of Durational Action Timed Automaton

 () in Timed Safety Automata

 () equivalent is made while

applying the following algorithm:

Begin

1. The set of locations
2. The initial control state
3. The set of the clocks

4. For all transition (′)of we constructs

the transition (′)of Timed Safety Automata

where:
(a) The source control state (location)
(b) The target location
(c) The label of transition is
(d) The guard of transition
(e) The initialization of clocks

5. For all state of the set of states the

invariant () is calculated by the following algorithm :

(a) For all transition labelled by and therefore

of state do:

If is not empty (void) then

 () () (())

Else ()

The global invariant associated to the state is the

conjunction of all deadlines calculated for all transitions

starting from l.

End.

5. UPPAAL FOR VERIFICATION OF

DATA*

5.1 Temporal logics
Temporal logic has been proposed as a formalism to specify

and verify the correctness of computer programs in 1977 by

Pnueli [22]. It supports the formulation of properties on timed

behavior systems. Different interpretations of temporal logics

exist; linear and branching temporal logics. The most

successful propositional temporal logics are LTL (Linear

Temporal Logic) [22], CTL (Computation Tree Logic) [23]

and TCTL (Timed Computation Tree Logic) [3]. TCTL is a

real-time extension of CTL for which model checking

algorithms and several tools exist.

The temporal operators:

 (ne t),

 (Until),

 (always or lobally),

 (eventually or uture),

 (for some path) and

 (for all paths).

The formula:

 means is verified in the next state,

 , to all future states,

 , to some future state, and

 , to all future states until a certain condition

becomes valid.

Example of TCTL formula: every transmission of a

message is followed by a reply within 5 units of time.

Formally:

 [() ()]

In the following, we focus only in verification of the bounded

liveliness property. The formula is true, for

 S0

 S1 S2

 S4

 S5

z

 S3

z

 S4

 S5

 S1 S2

 S0

 S3

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

38

execution , iff there exists a state located within time

units from the initial state verifying and such as all previous

states along verify .

5.2 Verification
Let's consider the actions and has respective durations

 and and are offered for the following durations

and .

The timed automaton generated from DATA* is described by

Figure 10.

Fig 10: Example of Timed Automaton to simulate.

First, we will proceed with the transformation of bounded

liveness property by a simple safety property for reasons of

performance. This step is inspired by the works [17].

For this purpose, we increase the model by two variables:

 A clock time, to overcome the problem of lost

information of time past, following the reuse clocks.

Therefore time is a reference clock.

 A boolean variable bool.

We must first examine time zones generated using the

UPPAAL simulator in order to explain the usefulness of time

and bool.

A zone associated with a state , defined by a clock constraint,

describes the maximum time that the system can stay in this

state. These zones are a symbolic representation and its

construction is on the fly algorithms (For more details, the

reader is referred to the work on graph regions [2]).
Suppose we want to verify that the time between the

beginnings of the two actions and illustrated in the Figure

10 respect an interval [].

First initialize the clock time. If the initialization is made on

the first transition to , the duration for which action is

offered will not be detected by the clock time, for this

initialization time is made before crossing the transition to

 .

The zones calculated by UPPAAL are as follows:

{

 ()
→ {

 []

 ()
→ {

 []

 ()
→ {

 []

 ()
→ {

The zone (corresponds to state) described by the

constraints allow the system to stay

indefinitely and it corresponds to the semantics model. About

the constraint , it expresses as time passes the same

way for both clocks namely and . Now see the

constraint [] of . We know that action

can start if it respects the interval []. Observing other

zones, the interval given by always corresponds to

earliest and later start dates. Effectively begins at the

earliest at time (end of) and at least

 (and delays are committed by the actions and , is

the execution time of). Action begins after the end of so

at the earliest after and at least

 using the same reasoning before.

This information is very useful for verification, it suffices to

initialize the variable bool by (true) the entrant transition to

the state , triggering the start of , and (false) on outgoing

transition. Thus we can use the formula of safety

 []() to verify that the

beginning of meets an interval after the beginning of .

The automaton increased by time and bool is illustrated by

Figure 11.

Fig 11: The Timed Automaton increased.

In the case of parallelism, this approach remains valid. The

verification of the same property i.e. the beginnings of the two

actions and illustrated in the Figure 9 respects an interval

[].

 () () ()

z
 S4 S0 S1 S2 S3

 () () ()

z
 S4 S0 S1 S2 S3

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

39

The only constraint we are interested among those that

constitute the zone corresponding to the state is:

 [] the lower bound represents the maximum

between duration of action and namely and which

represents the earliest start of action . For the upper bound,

this represents the maximum delay that can be done and this

corresponds to the minimum (due to synchronization)

between and . So the property to verify

is formulated as follows: []().

6. CASE STUDY
The purpose of this section is to show how to specify a system

behavior in DATA* model. Then, we present our verification

approach of quantitative properties based on DATA* model.

We take as example the gas burner, which is a classic example

widely used as case study for the specification of real-time

systems. This example was introduced in [9] where the

specification is written in the formal specification Duration

Calculus [9]. A simplified schema is given in Figure 12.

Fig 12: Primitive scheme of gas burner.

6.1 Verification
In our case, we adopt an approach of verification by model

checking [8]. Using our approach we verify the quantitative

properties of a reactive system amounts to the model by a

DATA* as described in Figure 13 then transformed into timed

automaton.

Fig 13: DATA* of gas burner.

6.2 Bounded liveness property verified
1. «The burner should trigger a spark ignition after a request

from the user in seconds».

We begin by increased timed automaton result by two

variables time and b (see Figure 14).

Fig 14: The timed automaton increased with time and b.

The property to verify:

 []()

2. «A request ignition can always be satisfied in interval of

 seconds to seconds»

We will verify the property:

 []()

after increasing the timed automaton by two variables time

and c (see Figure 15).

Fig 15: The timed automaton increased with time and c.

Shutter release

Flame

Flame sensor

 Gas valve

Request ignition

 S1

 S0

 S2

 S3

 S5

 S4

 S6

 S7

S0

S0

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

40

The results obtained using the tool UPPAAL are represented

in Figure 16.

Fig 16: The results of the verification.

7. CONCLUSION AND PERSPECTIVES
In this paper, we have proposed an approach for verifying real

time systems. The systems are modelled by Durational Action

Timed Automata (DATA*). Properties are expressed in

temporal logic TCTL(Timed Computation Tree Logic).

Our approach is based on the translation of DATA*’s in

Timed Safety Automata.

As we have demonstrated in this work, the interest of this

translation is twofold. First, the advantage offered by

DATA*s model in which only the beginnings of the actions

are considered. Second, this translation allowed the use of

UPPAAL tool. Since the model resulting is Timed Safety

Automata.

As perspective, we plan to apply our study on other systems,

such as real-time communication protocols, examples of

"academic" as the media stream (Multimedia Stream) etc... .

Also the use of translation approach for testing real time

system.

8. REFERENCES
[1] Alur, R. and Dill, D. L. 1990. Automata for modeling

real-time systems. In ICALP, pages 322–335.

[2] Alur, R. and Dill, D. 1994. A theory of timed automata.

Theoretical Computer Science 126, 183-235.

[3] Alur, R., Courcoubetis, C. and Dill, D. 1993. Model

Checking in Dense Real-Time. Information and

Computation, 104(1):2–34.

[4] Belala, N. 2010. Modèles de Temps et leur Intérêt à la

Vérification Formelle des Systèmes Temps-Réel. PHD’s

thesis, University of Mentouri, 25000 Constantine,

Algeria.

[5] Bergstra, J. A. and Klop, J. W. 1985. Algebra of

communicating processes with abstraction. TCS, 37:77—

121.

[6] Bolognesi, T. and Brinksma, E. 1987. Introduction to the

ISO specification language LOTOS. Computer Networks

and ISDN Systems, 14:25—59.

[7] Bowman, H. and Gomez, R. 2006. Concurrency Theory,

Calculi and Automata for Modelling Untimed and Timed

Concurrent Systems. ISBN-10: 1-85233-895-4 ISBN-13:

978-1-85233-895-4 Springer-Verlag London Limited.

[8] Clarke, E.M., Emerson, E.A. and Sistla, A. P. 1986.

Automatic verification of finite-state concurrent systems

using temporal logic specifications. ACM Transactions

on Programming Languages and Systems, 8(2): 244-263,

(January 1986).

[9] Chaochen, Z., Hoare, C. A. R. and Ravn, A. P. 1991. A

Calculus of Durations. Information Processing Letters,

40(5):269—276.

[10] Hachichi, H., Kitouni, I. and Saidouni, D. E. 2011. A

Graph Grammar Approach for calculation of Aggregate

Regions Automata, The International Arab Conference

on Information Technology (ACIT), 2011, Naif Arab

University for Security Science (NAUSS) Riyadh, Saudi

Arabia (December 11-14, 2011).

[11] Henzinger, T., Nicollin, X., Sifakis, J. and Yovine, S.

1994. Symbolic model checking for real-time systems.

Information and Computation 111(2), 193-244.

[12] Hoare, C. A. R. 1985. Communicating Sequential

Processes. Prentice Hall.

[13] Kitouni, I. 2008. Determinisation des automates

temporises avec durees d’actions pour le test formel ,

Aggregation Master’s thesis, Universite Mentouri, 25000

Constantine, Algerie, (Juin 2008).

[14] Kitouni, I., Hachichi, H. and Saïdouni, D.E. 2012. A

Simple Approach for Reducing Timed Automata. In: The

2nd IEEE International Conference on Information

Technology and e-Services (ICITeS 2012). Sousse,

Tunisia (March 24-26, 2012).

[15] Larsen, K.G., Pettersson, P. and Yi, W. 1997. UPPAAL

in a nutshell. Springer International Journal of Software

Tools for Technology Transfer, 1(1+2).

[16] Petri, C. 1962. Kommunikation mit Automaten. PhD

thesis, Institut für Instrumentelle Mathematik, Bonn,

Germany.

[17] Pettersson, P., Lindahl, M. and Yi, W. 1998. Formal

Design and Analysis of a Gear Box Controller. In Proc.

Of the 4th Workshop on Tools and Algorithms for the

Construction and Analysis of Systems, number 1384 in

Lecture Notes in Computer Science, pages 281.297.

Springer-Verlag, (Mar 1998).

[18] Saïdouni, D. E. and Belala, N. 2006. Actions duration in

timed models, The International Arab Conference on

Information Technology (ACIT).

[19] Saïdouni, D. E., Belala, N. and Bouneb, M. 2008.

Aggregation of transitions in marking graph generation

based on maximality semantics for Petri nets, in

Proceedings of the 2nd Workshop on Verification and

Evaluation of Computer and Communication Systems

(VECoS’2008), University of Leeds, UK. BCS.

[20] Saïdouni, D. E., Kitouni, I. and Hachichi, H. 2011.

Formalisation du calcul de l’automate des regions agrege

d'un automate temporise avec durees d'actions, MISC

REPORT 11001, Universite Mentouri, 25000

Constantine, Algerie.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.11, October 2012

41

[21] Yovine, S. 1997. Kronos: A verification tool for real-

time systems. International Journal on Software Tools for

Technology Transfer, 1(1/2):123–133, (October 1997).

[22] [Pnu77] Pnueli, A. 1977. The temporal logic of

programs. In Proc. of the 18th IEEE Symposium on

Foundations of Computer Sciences, pages 46-77.

[23] [CE81] Clarke, E.M. and Emerson, E.A. 1981. Design

and synthesis of synchronization skeletons using

branching time temporal logic. In Proc. of Workshop on

Logic of Programs, LNCS 131, pages 52 – 71. Springer-

Verlag.

[24] [BGOOS04] Bozga, M., Graf, S., Ileana Ober, Iulian

Ober, and Sifakis. J. 2004. The IF toolset. In SFM-RT

2004, LNCS 3185, pages 237–267. Springer.

[25] D. Kozen. 1983. Results on the propositional mu-

calculus. Theoretical Computer Science, 27:333–354.

[26] Bornot, S., Sifakis, J. and Tripakis, S. 1998. Modeling

urgency in timed systems. In Proc. of COMPOS 1997,

LNCS 1536, pages 103–129. Springer.

[27] Barbuti, R. and Tesei, L. 2004. Timed automata with

urgent transitions. Acta Informatica, 40(5), (March

2004).

[28] Gómez, R. 2009. Verification of Timed Automata with

Deadlines in Uppaal. Technical Report No. 02-08.

University of Kent at Canterbury, (July 8, 2009).

