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ABSTRACT  

The increasing complexity of software is incessant, this 

phenomenon is even more accentuated when temporal aspects 

are introduced, hence the need for rigorous verification 

methods. 

The main purpose of this paper is to propose a quantitative 

verification approach based on model checking. Their 

properties are expressed in TCTL (Timed Computation Tree 

Logic) on real-time systems. The system behavior is 

expressed by temporal labeled systems; namely Durational 

Action Timed Automata model (DATA* model). This model 

supports the expression of the parallel behavior, the temporal 

and structural non-atomicity of actions and urgency. 

Our approach is to interpret the behavior described by 

DATA* to Timed Safety Automata. The environment 

UPPAAL allows us verifying quantitative temporal 

properties, especially the bounded liveliness. 
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1. INTRODUCTION 

Computer applications become increasingly involved in 

critical and real-time systems (e.g., automotive, avionic and 

robotic controllers, mobile phones, communication protocols 

and multimedia systems). These systems are known by their 

high complexity. 

One approach for designing such systems is to use formal 

specification models, such as Petri nets, process algebras and 

formal description techniques, historically this work are based 

on searches similar to [5, 6, 12, 16]. In fact the specification 

may contain mistakes, so, formal validation and verification 

approaches are needed.  

In this work, we are interested by model checking [8] based 

verification methods. It is used to verify some behavioral 

properties specified, by the temporal logic TCTL(Timed 

Computation Tree Logic), on the system's state space, in order 

to detect precocious errors of conception.  

It is well known that the quality of validation techniques and 

verification depend on the quality of models used for 

specification. In this context the model of Durational Actions 

Timed Automata (DATA*) has more interest. DATA* is a 

timed model, its semantic express the durations of actions and 

other notions for specifying the real-time systems such as 

urgency and deadlines [4]. This model is based on a 

maximality semantic [19] and advocates the true concurrency; 

from this point of view it is well suitable for modeling real 

time, concurrent and distributed systems. But, the 

consideration of a dense time domain make the generation of  

space state infinite from which the impossibility to use model 

checking [8] as methods for verification.  

The IF toolset [24] and UPPAAL [15] offered different 

modeling and verification environments. For instance, the IF 

toolset verifies requirements on TAD (Timed Automata with 

Deadlines) models that are expressed in the alternation free μ-

calculus [25], or are expressed as observers (safety 

properties). Instead, our translation allows requirements to be 

expressed in the fragment of TCTL [3] that is supported in 

UPPAAL, and safety properties. Bornot et al [26] suggested a 

way to translate TAD to Timed Automata, whereas Barbuti 

and Tesei [27] proposed an extension of TA with urgent 

transitions. [28] 

In this paper, we will propose an approach for translating 

DATA*’s to Timed Safety Automata. However, we will keep 

the advantage offered by DATA*s model, in which only the 

beginnings of the actions are considered. This translation 

allows us to use the UPPAAL tool for verification.  

This paper is organized as follows: Section 2 presents the 

timed automata with durational actions, we describe the 

syntax and semantic of Timed Automata and DATA*. Section 

3 presents the Timed Safety Automata model. A translation 

approach of DATA* to TSA is given in Section 4. Section 5 

describes the verification of DATA* using the UPPAAL tool. 

Section 6 presents the results of applying our approach to the 

case study. The last section concludes the paper and gives 

some perspectives.           

2. TIMED AUTOMATA WITH 

DURATIONAL ACTIONS 

2.1 Notations 

In the following    is the set of non-negative real numbers. A 

clock takes values from    or it is undefined, denoted by  . 

Without loss of generality, we write   
         where 

the set of non-negative real numbers is extended with the 

special value  .  

Given X a set of clocks. A clock valuation over X is a function 

assigning a non-negative real number to every clock. The set 

of valuations of X, denoted VX, is the set of total function from 

X to   . A valuation v ∈ VX is a mapping on X to   . The 

valuation v+d maps every clock y to v(y)+d (d ∈   ).   

Given a set λ of clocks, a reset λ is a subset of X. Given a 

valuation v and a reset λ, we define the valuation v[λ  0] by 

v(x) =0 for all x in λ and v(x)  if x λ. 

The set XC of clock constraints over X are defined by the 

following grammar: 
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C  , where x∈ X, 

t∈   
 , and   is a binary operator and            . Clock 

constraints are evaluated over clock valuations. The 

satisfaction with respect to clock valuation function v ∈ VX, 

the expression     evaluates to true and all other 

comparisons that involve   evaluate to false. We write 
X

Cv   

to denote that according the valuation function v, XC  

evaluates to true. 

2.2 Timed Automata [1, 2]  

In general way Timed Automata are finite state machines 

whose transitions are decorated by clocks constraints. 

They are widely studied as model in which the control of real 

time systems is finite.  In fact Timed Automata are 

construction of both finite set of locations and finite set of 

clock variables. Each edge is specified by a label name which 

contains action (that is going to be executed) and clocks 

formula. Those are considered as a guard of the edges and set 

of clocks which are going to be reset. Clock variables, in fact 

capture the time elapsed since the last clocks rest. 

The execution (control) of automaton proceeds along an edge 

only when the valuation on clocks satisfies the corresponding 

constraint.  

A finite timed word over ACT is defined as

  ).......,)(,)(,(, 221100 tatatata  , where a = a1 . . . an is a finite 

sequence of symbols in ACT and t = t1 . . . tn is a finite 

monotone sequence of non-negative real numbers. ti 

represents the time stamp of the occurrence of the event ai.  

For convenience we assume the initial time stamp t0=0, 

prefixed to any sequence of time stamps t.  

A run r of a timed automaton is a sequence of timed 

transitions: 
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With l0 an initial location and ν0 is such that ν0(x) = 0, ∀x ∈ X. 

The run r is accepting iff  ln+1 is a final or terminal location.  

2.3 Durational Actions Timed Automata  

The Durational Actions Timed Automata model DATA* [4] 

is a timed model defined as Timed Automata over an alphabet 

representing actions to be executed. This model takes into 

account the duration of actions based on an intuitive idea: 

temporal and structural non-atomicity of actions.  

Each clock in Durational Actions Timed Automaton is real 

value variable that records the duration of associated action. 

According to this sense, it exist an association between label 

names and clock variables, during its life. 

Illustrate the model with the example above (see Figure 1): 

 

 

 

 

 

Fig 1: DATA* (1). 

The durations associated to the actions are represented by 

constraints on the transitions and in the states targets of each 

of them. In this sense, any enabled transition represents the 

beginning of the action execution. On the target state of 

transition, a timed expression means that the action is possibly 

under execution.  

From operational point of view, each action is associated to a 

clock which is rested to 0 at the start of the action. This clock 

will be used in the construction of the temporal constraints as 

guard of the transitions. 

Figure 1 presents a system of two consecutive actions a and b, 

the clock x is associated to the action a, on the locality s1 the 

temporal formula {x≥2} represents the duration of the action 

a.  

The end of the execution of an action is deduced implicitly in 

the case of causally dependent actions. The action b depends 

on a, so the transition is guarded by the duration constraint of 

a and extended by more time (x≥2). 

Starting from this, we can express different possibilities of 

real time systems behavior like delaying execution of action 

or limiting its offering time by manipulation of clock 

constraints. 

A relevant aspect of real time systems specification is the 

concurrency. Contrary of interleaving semantics based 

models, the true concurrency is specified with elegant and 

natural way by models based on maximality semantics. 

Indeed, using Durational Actions Timed Automata model is 

very suitable to capture the true concurrency in systems 

behavior. Since each locality detain the information about 

current execution of action; when more than one action are 

under execution then on locality, associated temporal formula 

are found. With this simple technique, the true concurrency is 

finely captured without heavy artefact.  

As claimed above, this is inherited from the maximality 

semantics. Concurrent actions have different representation by 

transitions systems from choice on actions [7].  

This model seems interesting and funneling more and more 

research because it coated model of Timed Automata by 

maximality semantics [10, 13, 18, 20, 14].  

The DATA* model, as the timed models, takes in charge the 

notion of urgency; expressed with deadlines as temporal 

constraints of the system.  

2.3.1 Formalization 

Definition 1 : a DATA* A  is a tuple  SD LTXlL ,,,, 0  over 

ACT a finite set of actions, L is a finite set of locations, l0∈ L 

is the initial location, X is a finite set of variables named 

clocks and TD is a set of edges. A subset of L noted Lf for 

terminal locations.  

An edge e=(l,G,D,a,x,l′) represents a transition from location l 

to location l’ on input symbol a, x is a clock  to be reset with 

this transition. G is the corresponding guard which must be 

satisfied to launch this transition. And D specifies the 

deadline. 

Finally, 2: XC
fnS LL   is a maximality function which 

decorates each location by a set of timed formula named 

actions durations, about actions potentially in execution on it. 

      

 

      

 
 S2 

       

 S1 

      

 S0 
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The function used to isolate the cloc;k names about timed 

constraints, named Dom is defined as:

    GtxxGDomthatsuchXCDom iiX   ,  :

 

Definition 2: The semantic of a DATA* A  is defined by 

the Timed transitions system(TTS)  ,, 0sS A  , over ACT

R+. A state of SA (or configuration) is a pair ),( vl  such that l  

is a location of A  and v  is a valuation function over X , with 

initial configuration  ,0l . A terminal (accepting) 

configuration of TTS is a pair  vl,  with l in Lf . 

The transitions on SA are labeled either by a real number 

representing the elapsed time (Time steps), or by an action in 

ACT (Discrete steps). The rules to derive the transitions on SA 

are the following: 

R1  
 ∈         ∀           

(   )
 
→(     )

 

 

R2   
(            )∈              

(   )
 
→ (   [     ] )

 

 

As defined above, a run is manner to capture the behavior of 

automata. A run records the states and the values of all the 

clocks at the end-point of transitions. 

Definition 3: a run r of DATA* A  over a timed word

  ),).......(,)(,)(,(, 221100 nn tatatatata  , is a finite 

sequence: 
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Of states  ii vl ,
 

about locations Lli   an edge 

  Diiiiii TlxaGle  1,,,,  such that 0l is the initial location and

 0 and G  ,0, allfor i  iii xvvnii  . 

R1  
 ∈         ∀           

(   )
 
→(     )

 

 

R2   
(            )∈              

(   )
 
→ (   [     ] )

 

 

In the following example we consider the execution of two 

actions in parallel, each of them has a specific time execution 

and offered delay during which it can start its execution. 

Figure 2 illustrates this behavior. 

The transition from the state    to the state    is labelled by 

the action  , indicating the beginning of its execution while 

respecting a offered delay   units of time expressed by the 

condition      (The clock    serves to count the offer 

delay of the first action, in this case the action        ∈ [   ]) 

; the symbol  meaning that the beginning of   waits for 

the end of no other action and the clock  counting the 

evolution of time from the crossing of this transition. 

The label       , associated to the state    is an 

information on the action execution time of the action  and 

mean that the action  is currently executed, as the clock   

has not overtaken the value    yet. 

 

 

 

 

 

Fig 2: DATA* (2). 

In the state   , the two actions of the same name   can be 

executed in parallel. It is the auto-concurrency, and each of 

them cannot finish that if his clock reaches a value equal to its 

duration. Hence the set of durational conditions         

   . Given that the second action   is offered for   units of 

time, she can start only if her beginning respects the condition 

    . 

3. Timed Safety Automata Model  
Timed Safety Automata (TSA) [11] has been proposed for the 

specification of real-time systems. TSA has been adopted in 

several verification tools for timed automata e.g. UPPAAL1 

[15] and Kornos2 [21].  

Definition 4: A Timed Safety Automaton   is a tuple 

(             ) where: 

   is a set of actions, 

   is a set of locations, 

   ∈   is the initial location, 

   is the set of clocks, 

            
   ( ) is a set of edges. An 

arc (   ′      ) represent a transition from the state 

  to the state  ′ by reading symbol  . The set     

contains the clocks to be reset by this transition, and 

  is a temporal constraint on  . (   ′      )can be 

written  
             
→      ′, and 

    →  ( ) Assigns invariants to locations. 

Invariants are predicates   defined by the following 

grammar: 

                               |      |     

Where  ∈     is an integer and   ∈      . 

A way to model this behavior by Timed Safety Automata  is 

by splitting each action in two instantaneous actions 

corresponding to the beginning and the end, due to the 

supposition of the temporal atomicity of the actions (the 

execution time is zero. The system starts the execution of the 

action when the constraint     is verified. The invariant 

     forces the residence of the system to the state   , once 

this condition is violated, the system has to execute the 

transition     ( ) when the guard      is verified. 

In the example bellow we consider the action   with its two 

parameters, duration of execution and delay of offer have 

respectively    and   units of time. The Timed Safety 

Automata is illustrated by the Figure 3.  

                                                           
1
 www.uppaal.com 

2
 http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/ 
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Fig 3: Timed Automaton. 

Although this solution allows the correct modelling of an 

action with durations, it cannot be accepted by the reason of 

the combinatorial explosion problem which it engenders for 

the state space and the set of alphabet.  

4. TRANSLATION OF DATA* TO TSA 
Our objective is to verify quantitative properties expressed by 

temporal logic TCTL on system behavior witch is expressed 

by DATA*'s model passing by Timed Safety Automata in 

order to use the tool UPPAAL. 

Let's consider the behavior expressing the sequential 

execution of two actions  and   have respective durations 

   and    and respective offered delays   and   the 

behavior of  is represented by DATA* of the Figure 4. 

 

 

 

 

 

Fig 4: Example of a sequential behaviour. 

From initial state    , action   can begin its execution while 

respecting the condition      .  can begin its execution 

since a delay of   units of time from enabling the system has 

not expired. 

The system passes in the state    and cannot leave it before 

the end of action  , the same reasoning applies for the action 

 . 

Let us try now to express this behavior with timed automaton. 

The first passage from    to    can be described by the 

transition   
     ( )       
→              (the transition from the state    

to    begin the action  , the condition represents the garde and 

   is the clock to be reset in zero by this transition to count the 

execution time of the action   ). Once the system is in the 

state    , he cannot leave it neither before ending of   nor after 

the expiration of the offered delay of  , the action   is enable 

at the time of the ending of  , i.e. the offer delay of  begin 

its expiration once   is ended. The passage from    to    can 

be described by the transition   
     ( )           
→                  . 

Clearly it is possible to express the duration without being 

forced to consider each action as two events: the beginning 

and end. 

Therefore, our approach is to model an action, which has two 

optional parameters: offered delay and time execution, with a 

Timed Automaton including:  

 A transition to express the beginning of action (with 

guard if there is, offered delay to respect and reset 

the clock appropriate to capture the instant of 

beginning of action),  

 A state, where the system resides during the 

execution of action (the system is not forced to 

leave this state once the action is complete). 

Therefore, the guard of the next transition that will serve us 

capture both, the end of action (    ) and beginning of 

next action (    ) . Finally we obtain the automata 

representing the global behavior of   in Figure 5. 

 

 

 

 

Fig 5: Timed Automaton obtained after translation. 

Comparing the two models illustrated in Figure 4 and Figure 

5, we able to observe that both express the same behavior 

except that in Timed Safety Automata we have lost 

information about end of the action . 

It is clear that it is impossible to capture the end of last action 

without adding another transition. For that we consider all 

processes expressed by DATA*'s necessarily use particular 

atomic action   to marked its ends. And thus we obtain the 

behavior illustrated by Figure 6.  

 

 

 

 
Fig 6: The Timed Automaton corrected. 

Effectively, the passage from DATA* to Timed automaton, in 

the case of sequential processes, is naturally performed. 

Now we want to know if this approach supports the urgency 

and the parallelism (concurrency). 

4.1 Expressing urgency  
Take the example of Figure 6, action   (respectively  ) must 

occur when the clock    (respectively  ) attained the value   

(respectively  ). 

 The expression of urgency in Timed Safety Automata is done 

by using invariants. Therefore the timed automaton describing 

this behavior is illustrated by Figure 7. 

 

 

 

 
Fig 7: Timed Automaton expressing the urgency. 

4.2 Concurrency 
Let us consider the example of a system   which consists of 

two concurrent subsystems    and   synchronizing on an 

action  . The subsystem    executes the action   followed by 

 , while    executes   then  . 
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Now suppose that actions     and  have respective durations 

      and  . The temporal restriction of the domain of 

sensibilization of the action    is   and   units of time 

following from   of    or   . The global behaviour of   is 

represented by the DATA* in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8: DATA* of behavior . 

Applying the previous reasoning, we obtain the timed 

automaton illustrated by Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9: The Timed Automaton generated. 

4.3 Algorithm of translation  
The translation of Durational Action Timed Automaton 

  (                ) in Timed Safety Automata 

  (             ) equivalent is made while 

applying the following algorithm: 

Begin 

1. The set of locations            
2. The initial control state         
3. The set of the clocks     

4. For all transition (           ′)of      we constructs 

the transition (   ′      )of Timed Safety Automata  

where: 
(a) The source control state (location)      
(b) The target location       
(c) The label of transition is       
(d) The guard of transition      
(e) The initialization of clocks      

 

5. For all state   of the set of states            the 

invariant  ( ) is calculated by the following algorithm : 

(a) For all transition labelled by   and therefore 

of state   do: 

If   is not empty (void) then  

 ( )   ( )     ( ( ))  

Else   ( )         

The global invariant associated to the state   is the 

conjunction of all deadlines calculated for all transitions 

starting from l.   

End. 

 

5. UPPAAL FOR VERIFICATION OF 

DATA* 

5.1 Temporal logics 
Temporal logic has been proposed as a formalism to specify 

and verify the correctness of computer programs in 1977 by 

Pnueli [22]. It supports the formulation of properties on timed 

behavior systems. Different interpretations of temporal logics 

exist; linear and branching temporal logics. The most 

successful propositional temporal logics are LTL (Linear 

Temporal Logic) [22], CTL (Computation Tree Logic) [23] 

and TCTL (Timed Computation Tree Logic) [3]. TCTL is a 

real-time extension of CTL for which model checking 

algorithms and several tools exist. 

The temporal operators: 

   (ne t),  

   (Until), 

   (always or  lobally),  

   (eventually or  uture), 

   (for some path) and 

   (for all paths). 

The formula:  

     means   is verified in the next state,  

    , to all future states,  

    , to some future state, and  

  , to all future states until a certain condition 

becomes valid. 

Example of TCTL formula: every transmission of a 

message is followed by a reply within 5 units of time. 

Formally: 

  [    ( )              (  )] 

In the following, we focus only in verification of the bounded 

liveliness property. The formula         is true, for 
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execution  , iff there exists a state    located within   time 

units from the initial state verifying   and such as all previous 

states along   verify  . 

5.2 Verification 
Let's consider the actions     and   has respective durations 

      and   and are offered for the following durations      

and  . 

The timed automaton generated from DATA* is described by 

Figure 10. 

 

 

 

Fig 10: Example of Timed Automaton to simulate. 

First, we will proceed with the transformation of bounded 

liveness property by a simple safety property for reasons of 

performance. This step is inspired by the works [17].  

For this purpose, we increase the model by two variables: 

 A clock time, to overcome the problem of lost 

information of time past, following the reuse clocks. 

Therefore time is a reference clock. 

 A boolean variable bool. 

We must first examine time zones generated using the 

UPPAAL simulator in order to explain the usefulness of time 

and bool. 

A zone associated with a state  , defined by a clock constraint, 

describes the maximum time that the system can stay in this 

state. These zones are a symbolic representation and its 

construction is on the fly algorithms (For more details, the 

reader is referred to the work on graph regions [2]). 
Suppose we want to verify that the time between the 

beginnings of the two actions   and    illustrated in the Figure 

10  respect an interval [   ]. 

First initialize the clock time. If the initialization is made on 

the first transition    to   , the duration for which action   is 

offered will not be detected by the clock time, for this 

initialization time is made before crossing the transition    to 

  . 

The zones calculated by UPPAAL are as follows: 

 

{
      
   

      
 
          ( )    
→        {

 
      
   

           [   ]
 

          ( )    
→         {

 
       

   
           [     ]

 

          ( )    
→        {

 
       

   
           [     ]

 

 

          ( )    
→         {

 
       

   
             

 

 

 

The zone    (corresponds to state  ) described by the 

constraints            allow the system to stay 

indefinitely and it corresponds to the semantics model. About 

the constraint      , it expresses as time passes the same 

way for both clocks namely      and  . Now see the 

constraint             [   ] of   . We know that action   

can start if it respects the interval [   ]. Observing other 

zones, the interval given by        always corresponds to 

earliest and later start dates. Effectively   begins at the 

earliest at time   (end of  ) and at least        

   ( and   delays are committed by the actions   and  ,    is 

the execution time of  ). Action   begins after the end of   so 

at the earliest after            and at least        

        using the same reasoning before. 

This information is very useful for verification, it suffices to 

initialize the variable bool by   (true) the entrant transition to 

the state   , triggering the start of  , and   (false) on outgoing 

transition. Thus we can use the formula of safety 

  [](                   ) to verify that the 

beginning of   meets an interval after the beginning of  . 

The automaton increased by time and bool is illustrated by 

Figure 11. 

 

 

 

 

Fig 11: The Timed Automaton increased. 

In the case of parallelism, this approach remains valid. The 

verification of the same property i.e. the beginnings of the two 

actions   and   illustrated in the Figure 9 respects an interval 

[   ].    
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The only constraint we are interested among those that 

constitute the zone corresponding to the state   is:      

     [     ] the lower bound represents the maximum 

between duration of action   and   namely    and    which 

represents the earliest start of action  . For the upper bound, 

this represents the maximum delay that can be done and this 

corresponds to the minimum (due to synchronization) 

between        and       . So the property to verify 

is formulated as follows:   [](                   ). 

6. CASE STUDY 
The purpose of this section is to show how to specify a system 

behavior in DATA* model. Then, we present our verification 

approach of quantitative properties based on DATA* model. 

We take as example the gas burner, which is a classic example 

widely used as case study for the specification of real-time 

systems. This example was introduced in [9] where the 

specification is written in the formal specification Duration 

Calculus [9]. A simplified schema is given in Figure 12. 

 
Fig 12: Primitive scheme of gas burner. 

6.1 Verification 
In our case, we adopt an approach of verification by model 

checking [8]. Using our approach we verify the quantitative 

properties of a reactive system amounts to the model by a 

DATA* as described in Figure 13 then transformed into timed 

automaton.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 13: DATA* of gas burner. 

6.2 Bounded liveness property verified 
1. «The burner should trigger a spark ignition after a request 

from the user in    seconds».  

We begin by increased timed automaton result by two 

variables time and b (see Figure 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 14: The timed automaton increased with time and b.  

The property to verify:  

  [](                    ) 

2. «A request ignition can always be satisfied in interval of  

     seconds to    seconds» 

We will verify the property:  

 [](                                     ) 

after increasing the timed automaton by two variables time 

and c (see Figure 15). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 15: The timed automaton increased with time and c. 
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The results obtained using the tool UPPAAL are represented 

in Figure 16. 

 
 

Fig 16: The results of the verification. 

7. CONCLUSION AND PERSPECTIVES  
In this paper, we have proposed an approach for verifying real 

time systems. The systems are modelled by Durational Action 

Timed Automata (DATA*). Properties are expressed in 

temporal logic TCTL(Timed Computation Tree Logic). 

Our approach is based on the translation of DATA*’s in 

Timed Safety Automata.  

As we have demonstrated in this work, the interest of this 

translation is twofold. First, the advantage offered by 

DATA*s model in which only the beginnings of the actions 

are considered. Second, this translation allowed the use of 

UPPAAL tool. Since the model resulting is Timed Safety 

Automata.         

As perspective, we plan to apply our study on other systems, 

such as real-time communication protocols, examples of 

"academic" as the media stream (Multimedia Stream) etc...  . 

Also the use of translation approach for testing real time 

system. 
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