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ABSTRACT 
Enzymatic hydrolysis of cellulose is a complex process 

because of a number of inhibition and enzyme inactivation 

reactions which happen during hydrolysis. Artificial Neural 

Networks (ANNs) are very effective in developing predictive 

models for processes involving complex reaction kinetics that 

would otherwise be difficult to be modeled by more 

traditional deterministic approaches. The present investigation 

was carried out to study the application of Artificial Neural 

Network as a tool for predicting glucose production by 

enzymatic hydrolysis of pure cellulose and comparison with 

mathematical models and experimental results. A feed 

forward neural network with one hidden layer was trained and 

used to predict the glucose production. Comparing the R2 

(coefficient of determination), MSE (mean square error) and 

ARD (average relative deviation) values of the neural network 

model with the mathematical model, it was concluded that the 

neural network is more accurate than the mathematical 

models. The obtained results show that the ANN can be a 

useful method for the design of the enzymatic hydrolysis. 
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1. INTRODUCTION 
Enzymatic hydrolysis of cellulose to produce reducing sugars 

has long been pursued because of its potential importance in 

bioethanol production. Bioethanol can be a sustainable 

substitute for petroleum-derived products [1]. The advantages 

of enzymatic hydrolysis of cellulose over other hydrolysis 

methods such as acid hydrolysis are lower utility ( cooling 

water, gas, electricity ) and disposal costs and no corrosion 

issues for the equipments [2]. The enzyme system for  

conversion of cellulose to glucose comprise endo-1,4-β-

glucanase, cellobiohydrolase and β-glucosidase ( also called 

cellobiase), which act sequentially and cooperatively to 

degrade crystalline cellulose to glucose [3]. In approaching 

the process design for the enzymatic hydrolysis of celluloses, 

it is important to be able to predict processing outputs in 

response to different input variables, such as substrate initial 

concentration, enzyme activity and hydrolysis time. The 

process of the enzymatic hydrolysis is highly complex, 

rendering it difficult to set a model for confident prediction. 

Enzymatic hydrolysis kinetics of cellulose have been studied 

for many years [4], but the development of accurate 

mathematical models for this reaction is still a critical 

challenge . An alternative approach to obtain a model of the 

reaction would be the use of Artificial Neural Networks 

(ANNs).  

ANNs can handle incomplete data and deal with nonlinear 

problems. It can also perform prediction and generalization 

immediately after the training process [5]. Artificial NNs 

seem to be a feasible alternative in several instances, and their 

application for biotechnological processes is continuously 

growing [6]. With respect to biotechnological processes in 

particular, several studies can be found in literature, such as 

the description of the α-amilase inactivation, the prediction of 

the final concentration of ethanol in a batch fermentation 

process and as a soft-sensor [7-9]. ANN models are generally 

used for prediction, function approximation, classification, 

and clustering [10].  However, few papers were reported 

about ANN-basedmodel for enzymatic hydrolysis. The aim of 

the present study is to check the validity of ANN to predict 

the glucose production under various enzymatic hydrolysis 

conditions with available experimental data and compare 

ANN results with kinetic model results.  

2. THEORETICAL 

2.1 Mathematical modeling 
Modeling of the enzymatic hydrolysis of cellulose has been 

studied in numerous published works. The mathematical 

models employed in this work for the enzymatic hydrolysis 

were adapted from Nidetzky et al. [11] and Movagharnejad et 

al. [12], where the conversion of  microcrystalline cellulose 

(Merck , Germany) and microcrystalline cellulose (Sigmacell; 

Sigma, Deisenhofen, Germany) to glucose were investigated, 

respectively. The information about process conditions of the 

enzymatic hydrolysis can be found in Table 1. More details 

about the experiments are available in Nidetzky et al. [11] and 

Movagharnejad et al. [12]. 
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Table 1: Process conditions in the enzymatic hydrolysis 

Process parameter Value Ref 

Temperature (°C) 

Initial solid concentration (g.L-1) 

Enzyme loading: 

Celluclast (CCN 3000/85-4) 

FPU/g 

Novozym188 (DCN 003/87-11) 

IU/g 

Operating time (h) 

pH 

50 

40-80-120-160 

 

6.25-8.33-12.5-25 

 

6.25-8.23-12.5-25 

200 

4.8 

 

 

 

[11] 

Temperature (°C) 

Initial solid concentration (g.L-1) 

Enzyme loading: 

Celluclast (CCN 3000/85-4) 

FPU/g 

Novozym188 (DCN 003/87-11) 

IU/g 

Operating time (h) 

pH 

50 

10-20-50 

 

3.7-9.25-18.5 

 

8-20-40 

24 

5 

 

 

 

 

[12] 

 

Note: FPU=filter paper unit; IU= International unit of enzyme activity.  

Two mathematical model for enzymatic hydrolysis were used 

in this work [11, 12]. In the model conceived by Nidetzky 

et.al in order to describe the hydrolysis of microcrystalline 

cellulose, an effective substrate concentration was defined 

which deviates from bulk concentration of cellulose. They 

considered following assumptions in their model: two 

fractions of substrate, the enzyme-to-substrate ratio, and the 

effective substrate concentration. The results showed that the 

model predictions matched the experimental hydrolysis data 

very well over a wide range of substrate and enzyme 

concentrations. This model involves the hydrolysis kinetic for 

microcrystalline: definition of an effective substrate 

concentration [Eq. (1)], relation of substrate hydrolysis to 

product formation [Eq. (2)], and the effective substrate 

concentration in presence of cellobiose [Eq. (3)]. 
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The mathematical model developed by Movagharnejad et al. 

was based on the shrinking particle concept. To consider the 

usually neglected particle size reduction during the hydrolysis, 

they assumed that these particles shrink. In another word, the 

particle size reduces while the particle shape remains 

constant. This assumption allowed them to simplify a very 

complicated three dimensional model to a much simpler one 

dimensional model. Their main assumptions may be listed as 

below: 

1. A fraction of the cellulose enzymes is absorbed 

instantly on the particle surface 

2. Some parts of the particles which are occupied by 

non-cellulosic materials are totally inert to the 

hydrolysis reaction.  

3. The number of sites available for enzymes is 

proportional to the effective external surface of the 

particles. 

4. Transfer of enzymes from the solution to the 

particle surface is very rapid so that it does not 

affect the hydrolysis rate. 

5. Product inhibition negatively affects the rate of 

hydrolysis and enzyme activity. 

6. Particles shrink during the hydrolysis reaction. 

 

This mathematical model gives different equations for two 

stages of the process. In the first stage of the process the 

particles shrink without any considerable enzyme desorption 

(return of absorbed enzymes to the solution), while in the 

second stage a part of the absorbed enzymes return to the 

solution and the equations would be different. 

The equation (4) is derived for the first stage:
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Where t is time, y is the ratio of substrate concentration to the 

initial substrate concentration, and  ,    ,    
  and    are 

model parameters. 

The following equation is developed for the second stage of 

the model: 
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Where
3/1yz  , and  ,    and    are expressions which 

have different definitions in different conditions. 

2.2 Neural Network Model  
Artificial neural network (ANN) is a mathematical tool, which 

tries to represent low-level intelligence in natural organisms 

and it is a flexible structure, capable of making a non-linear 

mapping between input and output spaces [13]. Applications 

of ANN models include fermentation, extrusion processes, 

filtration, drying process, etc. [13-16]. Artificial neural 

networks have been successfully applied to modeling of 

various biological processes in recent years. They are one of 

the most popular artificial learning tools in biotechnology, 

with applications ranging from pattern recognition in 

chromatographic spectra and expression profiles, to functional 
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analyses of genomic and proteomic sequences. All neural 

networks consist of three main layers (input, hidden and 2 [17, 

18] and many simple computational elements, \called nodes or 

neurons, arranged in layers and operating in parallel. The 

ANN weights, which define the strength of the connection 

between the nodes, are estimated from empirical data [6]. 

There are several types of Artificial Neural Network. The 

most common type of ANN in chemical engineering 

application is multilayer perceptron (MLP) [19]. In this study 

multi-layer feed forward neural network based on back 

propagation learning rule was used to predict glucose 

production of pure cellulose. 

2.2.1 Multilayer perceptron (MLP) network 
This NN consists of one input and one output layer, with 

several-but usually only one- hidden layer [20] and 

information moves in only one direction, forward from the 

input layer, through the hidden layer and then to the output 

[17]. Many studies showed that three layers (only one hidden 

layer) could model the continuous functions of any accuracy. 

The schematic of the MLP network with one hidden layer is 

shown in Fig. 1. 

 

 

Fig. 1: Architecture of ANN used in developing model 

It is necessary to train an artificial neural network before 

using it for a specific application [17]. The network needs to 

be trained using a training algorithm such as back 

propagation, cascade correlation and conjugate gradient [13]  

among which, the back propagation method is the most 

commonly used. MLP training begins by applying the input 

vector, to the input layer having network-processing element 

[19]. Training is a step by step method for the calculation of 

the weight factors and biases. During the training, network 

learns to generate new outputs through an iterative method 

[17]. Basically the objective of training patterns is to reduce 

the global error. The goal of every training algorithm is to 

decrease this global error by adjusting the weights and biases 

[13]. 

2.3 Verification of predicted data 
In the present work, to test the prediction capabilities of the 

models, the predicted values obtained from mathematical 

models and ANN were compared with the experimental 

values. The coefficient of determination (R2), mean square 

error (MSE), and average relative deviation (ARD) were 

determined and used to compare ANN and mathematical 

model. The R2, MSE, and ARD were calculated by following 

Eq. (6), (7) and (9) respectively: 
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Where ipreX ,  is the predicted output from observation i, 

iX exp, is the experimental (target) output from observation i, 

X  is the average value of experimental output, and n is the 

total number of data. R2 must be close to 1.0, the MSE and the 

ARD between the predicted and experimental data must be as 

small as possible. 

3. RESULTS AND DISCUSSION 

3.1 Comparison of prediction ability of 

mathematical models  

Two mathematical models were employed to model the 

enzymatic hydrolysis of microcrystalline cellulose. The 

Nidetzky’s and Movagharnejad’s models were compared for 

their prediction ability of glucose concentration.  

 

Fig. 2: The values of glucose concentration predicted by 

two mathematical models versus experimental values 
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Fig. 2. illustrates the comparative parity plot for Nidetzky’s 

and Movagharnejad’s predictions for the glucose 

concentration. Movagharnejad’s model fitted the experimental 

data with an excellent accuracy, while Nidetzky’s prediction 

showed greater deviations. 

MSE, ARD, and R2  values were calculated for the accuracy 

of each model. The mean square error (MSE) for 

Movagharnejad’s model and Nidetzky’s model is 4.9850 and 

29.622, the coefficient of determination (R2) is 0.9892 and 

0.9363, and the average relative deviation (ARD) is 7.007 and 

24.67, respectively. The statistical results of the two 

mathematical models showed that Movagharnejad’s model is 

more accurate than Nidetsky’s model. 

3.2 Neural network model prediction 

MATLAB 7.7.0. was used to generate a feed-forward back-

propagation neural network which predicted the glucose 

production during enzymatic hydrolysis. The number of nodes 

in the input layer corresponds to the number of input 

variables; the number of nodes in the output layer is equal to 

the number of output variables. In this case, the input 

variables were the activity of added enzyme (Fpu/g substrate 

for celluclast and IU /g substrate for Novozyme 188), 

substrate initial concentration and time and the output variable 

was glucose concentration. The number of neurons in the 

hidden layer was determined by calibration through several 

run tests. The input data were randomly divided into three 

sets: training, validating and testing ones [21]. The first 

dataset  was used for computing the gradient and updating the 

network weights and biases. The second dataset was used to 

prevent over fitting. The last dataset was not used during the 

training, but used to compare different models [10]. Usually 

30% of data are used for testing and the remaining 70% for 

training and validation [18].  

Experimental data obtained from literature [11, 12] were used 

to train, validation and test artificial neural networks (MLP) 

for prediction of glucose concentration during enzymatic 

hydrolysis. Totally, 65 data were collected for different 

experiments. Due to the different ranges of each input as seen 

in Table 2, the inputs were normalized into the interval [0 1] 

before feeding into the network by Eq. (9). 

Table 2: Range of experimental data used in this study 

Parameter Time 

(hr) 

Celluclast 

loading 

(FPU/g ) 

Novozyme 

loading 

(IU/g ) 

Cc,0 

Range 0-172 3.7-25 6.25-40 10-160 

 

  1.08.0 





eactualvalueactualvalu

eactualvaluvalue
value

MinMax

MinActual
Scaled        (9) 

In this network, Levenberg-Marquardt algorithm was used as 

a training algorithm .The most common transfer function is 

sigmoid function. In this work, we used sigmoid function for 

transfer function in hidden layer and purelin function for 

transfer function of output layer. In order to optimize the 

number of neurons in hidden layer, average relative deviation 

(ARD) of testing data versus the number neurons in hidden 

layer is plotted (Fig. 3). ARD has been calculated by means of 

Eq.3. Results showed 4-7-1 is the best topology of the neural 

network. 

 
Fig. 3: ARD of testing data versus the number of neurons 

in hidden layer 

The results for training and testing data are summarized and 

presented in Table 3. The scatter diagram of predicted values 

versus experimental values is also shown in Fig. 4. It shows 

that the neural network model prediction fits well with the 

experimental values. 

 

 

Fig. 4: The values of glucose concentration predicted 

versus experimental values for training and testing dataset 

using ANN 

 

Table 3: Performance of Neural Network model 

The best 

architecture 

Statistical 

Parameter 

Training 

data 

Testing 

data 

Overall 

 

4-7-1 

R2 

MSE 

ARD 

0.9969 

1.4642 

6.6240 

0.9974 

1.1528 

2.5304 

0.9970 

1.3934 

5.6504 
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3.3 Comparison of mathematical and ANN 

models 

In this study, modeling of enzymatic hydrolysis of cellulose 

was investigated. A comparative study was performed 

between two mathematical models and multi-layer feed-

forward neural network to estimate their abilities for 

prediction of glucose concentration. MSE, R2 and ARD were 

used together to compare the mathematical models and ANN 

model. The Statistical values of mathematical models and 

ANN model are given in Table 4. Higher R2, lower MSE and 

ARD values were obtained by ANN model compared to those 

of mathematical models. Thus the accuracy of neural network 

model was more desired. Fig. 5 shows the plot of predicted 

glucose concentration by mathematical models and ANN 

against the experimental values. The ANN represents a better 

agreement between observed and predicted values than 

mathematical models. On the other hand, we may also 

conclude that the ANN model is more general than these two 

mathematical methods.  Each of these two models is 

compared by its own experimental data. It is clear that each 

researcher designs the experimental procedures and conditions 

in a way to obtain a better agreement with model predictions. 

So the model predictions in each of these conventional models 

are compared with their individual experimental data, but we 

did not perform any independent experiments for this study 

and so the data used for training, testing and validation of 

ANN model was extracted from the experimental results 

designed for each of these two previous conventional models. 

Therefore it can be claimed that the present model is not only 

more accurate but also more general.  Numerous models have 

been reported in the scientific literature in recent years. Most 

of these models are accompanied by a set of experimental 

data, but it is difficult to compare or to make any correlation 

between the results from these independent and isolated 

datasets. We think that ANN models may act as something 

more basic than just a correlating or prediction device. ANN 

models may be considered as an interconnecting device 

between isolated experimental results and further work on this 

area may lead to a kind of synergy between isolated sets of 

experimental data.  In this study, we have tried to make some 

connections between two different sets of data and 

corresponding applied models. These two individual studies 

have been selected among many others because the 

enzyme/substrate systems were very similar to each other and 

it would be logical to use them as the first step to make 

connection between the isolated sets of data about cellulose 

enzymatic hydrolysis. However, using more versatile sets of 

data might need to introduce more complicated ANN models 
with respect to inputs, outputs or architectures. The results of 

this work show the ability of an ANN-based model to deal 

with two datasets from separate works where the outcome of 

such model is superior to their own developed models. 

Table 4: Statistical measures for mathematical models 

Statistical 

Parameter 

Nidetzky et 

al., 

Movagharnejad 

et al., 

ANN 

Model 

R2 

MSE 

ARD 

0.9363 

29.622 

24.67 

0.9892 

4.985 

7.007 

0.9970 

1.3934 

5.6504 

 

 

 

Fig. 5: The scatter plot of mathematical models and ANN 

model predicted values versus experimental values 

4. CONCLUSION 
Neural network and two mathematical models were compared 

for prediction of glucose concentration during the enzymatic 

hydrolysis of microcrystalline cellulose. Mathematical models 

are usually judged based on the agreement with experimental 

data. In this study, a unique experimental data set was used to 

compare different mathematical model and ANN model.  

Results of this work have clearly shown that the ANN model 

is more accurate in comparison to mathematical models. The 

neural network model is not complex because the estimation 

is realized by simple arithmetic operations. It is claimed that 

ANN models may act as a connection between isolated 

experimental data and led to a synergy between the 

independent studies. The applications of the artificial neural 

networks can be used for the on-line state estimation and 

control of enzymatic hydrolysis processes successfully. 
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