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ABSTRACT 
The dominating set concept in graphs has been used in many 

applications. In large graphs finding the minimum dominating 

set is difficult. The minimum dominating set problem in 

graphs seek a set D of minimum number of vertices such that 

each vertex of the graph is either in D or adjacent to a vertex 

in D. In a graph on n nodes if there is a single node of degree 

n-1 then that single node forms a minimum dominating set.  In 

the proposed work, a designed network called Graph Neural 

Network (GNN) is used to identify the node of degree N-1 in 

a graph having a single node of degree N-1 as it forms the 

minimum dominating set in the graph.. The network is 

simulated for graphs with nodes varying from 5 to 15. The 

state dimension of the input vectors are analyzed for better 

convergence. It has been found that the minimum dominating 

set was correctly  identified from 80% to 90% of the graphs 

when the state dimension was 2 and 3. It has been observed 

that when the state dimension was 2,  the convergence was 

fast as it requires minimum hidden neurons than other state 

dimensions. It has also been observed that when the state 

dimension was greater than 3,  convergence requires hours of 

time and more number of hidden  neurons. GNN was able to 

identify the minimum dominating set in a graph on n vertices 

which has a single node of degree n-1. 
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1. INTRODUCTION 
Graphs are used to represent many real life situations. The 

dominating set concept in graphs has been used in many 

applications. Positioning of Queens in a N-Queen problem, 

storing location information of the network nodes on mobile 

ad-hoc routing, are some of the applications of dominating 

set. In large graphs finding the minimum dominating set is 

difficult. 

Graph Neural Networks have been recently proposed to 

process very general types of graphs, and can be considered 

an extension of Recursive Neural Networks[1]. In RNNs, the 

input graph to be directed and acyclic[2] [3]  but GNNs have 

no limitations on types of graphs. 

The GNN model implements a function   that maps a graph 

G and one of its nodes into an  n-dimensional Euclidean 

space. The function depends on the node  so that the 

classification  depends on the properties of the node. Scarselli 

et al.[4] have used the GNN model  to learn the rank of the 

web page. This approach simplifies the design of the page 

ranking algorithm by allowing automatic customization, based 

on training examples, of the rank to the particular needs of a 

search engine or internet user. 

GNNs have been proposed to process different types of  graph 

theoretic problems such as subgraph matching [5], clique 

problem[6], Half Hot problem[6],  Mutagenesis problem[5], 

and Tree depth problem[2]. Pucci et al. [7], have tested the 

GNN model  on the Movie Lens data set, and pointed out 

some limitations of Graph Neural Networks when applied to 

recommender system. Muratore et al. [1] have applied GNN 

for sentence extraction in which the features of the sentences 

are taken as node labels and trained to produce the desired 

output on each node, so that GNN can automatically learn to 

predict the importance of each sentence. Uwents et al. [8] 

have compared and discussed GNN and Relational Neural 

Networks(RelNNs) on benchmarks that are commonly used 

by the relational  learning community and have suggested that 

RelNNs and GNNs can be a viable approach for learning on 

relational data.  Hongmei et al. [9]  have proposed a neural 

network model to find the weakly connected dominating set in 

a wireless sensor network. Gabriele Monfardani et al. [10]  

have used GNN to locate face of a popular cartoon character 

in comics. Yong et al. [11] have proposed document mining 

using GNN. They have trained the network to encode and 

process a large set of XML formatted documents. 

In this paper, we are using  GNN model comprising of 

RNN(Transition Network) and FNN(output Network) to 

identify a minimum dominating set in an undirected  graph 

with a single node of degree N-1. The structure of the paper is 

as follows. Section 2  describes minimum dominating set, 

Section 3 gives a brief  description of GNN, Section 4 

explains the generalized delta rule used in the weight  

updation procedure of the networks, Section 5 gives the 

training algorithm for generating the graphs and identifying 

the minimum dominating set in the training data.  

Experimental results are given in section 6. 

  

2. MINIMUM DOMINATING SET 
A dominating set D in a graph G=(V,E) is, a set D   V , 

such that every  vertex v  V \ D is adjacent to at least one 

vertex in D. In a graph, a dominating set  with minimum 

cardinality is called the minimum dominating set. This is 

shown in figure 1. In a chess board, the positions of the 

minimum number of Queens that collectively dominate all 64 

squares form a minimum dominating set in the  corresponding 

graph. If a graph G with N nodes has a node v of degree N-1 

then {v} is a minimum dominating set [12]. 
 

 3. GRAPH NEURAL NETWORKS 
A graph G = (V,E), where V is a set of points called  nodes, E 

is a collection of arcs connecting two nodes of V. Let ne[n] be 

the set of nodes connected to the node n by arcs in E. Figure 2 

represents example graph with 5 nodes. The nodes of G are 

attached with random label 
c

n Rl  . To each node n,  a state 

vector 
s

n Rx   is attached which  represents the 

characteristics of the node (ie. adjacent nodes, degree, label 
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etc.). The state vector of a node with dimension s is computed 

using a feedforward neural network called Transition network 

which implements a local transition function fw. 

 ]n[ne]n[nenwn l,x,lfx                   (1)                                           

    



]n[neu

uunw l,x,lh                (2)   

For each node n, hw is a function of the  state, label of the 

neighboring node and its own label. Each node is associated 

with a feedforward neural network.  Number of input patterns  

of the network depends on its neighbors. hw is considered to 

be a linear function. When  

  nuu,nuunw bxAl,x,lh   

where   
s

n Rb  is defined as the output of feed forward neural 

network called bias network which implements 
sc

w RR:  ,  nwn lb  , sxsu,n RA   is defined as   

the output of the feed forward neural network called forcing 

network which implements 
2ssc2

w RR:  
, 

))l,x,l((resize
ne[n] x s

A uunwu,n 


  

where )1,0( and resize operator allocates s2 elements in the 

output of forcing network to a s x s matrix. 

Let x, l denote the vector constructed by stacking all the states 

and all the node labels respectively of the graph. Then 

Equation (1) can be written as  l,xFx w . Banach fixed 

point theorem ensures the existence and the  uniqueness of 

solution of Equation (1) in the iterative scheme  for computing 

the state  l),t(xF)1t(x w   where x(t) denotes the tth  

iteration of x. Thus the states are computed by iterating 

 ]n[ne]n[nenwn l,x),t(xf)1t(x  . 

This computation is interpreted as a recurrent network that 

consists of units, transition networks, which compute fw  the   

units being connected as per graph topology. 

            The output of each node of a graph is produced by a 

feed forward neural            network called output network 

which takes as input the stabilized state of the node            

generated by the recurrent network and its label. For each 

node n, the output on is computed   by the local output 

function gw as  nnwn l,xgo  .    Figure 3 and figure 4 

represent output network and GNN  for the example graph 

figure 2. 

 

           

 

Fig 1. Minimum Dominating Set 

 

Fig 2. Example graph 

4.GENERALIZED DELTA RULE 

       Weights of both transition network and output network 

are updated using Generalized Delta rule. In the standard 

Backpropagation algorithm, weights(w) are updated using  

gradient descent as 
w

e
)t(w w




   where  is the learning 

rate, ew the cost function given by mean square error 

 



N

1j

2
jjw yd

xN2

1
e   where dj denotes the desired target 

and yj the network output. Considering a fraction of the    

previous weight change, the weight update rule can be taken 

as          1tw
w

e
tw w 




 .        

This weight updation rule is called the Generalized Delta  

rule. The fraction amount  considered in the rule is called 

momentum. This momentum term increases the rate of  

learning, maintaining stability. 

5. TRAINING ALGORITHM 

         Graphs with a single node of degree N-1 has to be 

generated as follows. Graphs with fixed number of nodes (N) 

has to be generated randomly. Each pair of nodes has to be  

connected with  a certain probability. The resulting graph  has 

to be  checked to verify whether it is  connected and if it is 

not, random edges are to be inserted until the condition  is 

satisfied. The graph is then checked whether it has  a single 

 l1 

l2 l5 

l4 l3 

  
e 

b 

c 

d 

f 

g 

 

a 



International Journal of Computer Applications (0975 – 8887) 

Volume 56– No.1, October 2012 

14 

node of degree N-1. If there is no such node, a random vertex 

is chosen and its degree is made N-1. If more than one vertex 

have degree N-1, a new graph has to  be randomly generated 

to satisfy the condition. 

 

Fig 3. Output Network 

 

 

 

 

 

 

 

 

 

 

Fig 4. Graph Neural Network 

 

1. Generate Graphs randomly with N nodes having a single 

node of degree N-1. 

2. Label each node with dimension c by generating numbers  

    randomly. 

3. Assign a target 1 to the node of degree N-1,   which 

constitutes the minimum     dominating set and others 0. 

4. Assume initial values of the state to be a zero s vector. 

5. Generate bias network with c input neurons, h hidden            

    neurons and s output neurons. 

6. Generate single hidden layer transition network  with 2*c+s 

input  neurons h hidden  neurons and s*s output neurons. 

7. Generate output network  with c+s+1 input neurons, h 

hidden neurons and 1 output neuron. 

8. Assign weights randomly for all the network from (0,1). 

9. Calculate output of the bias network and Transition 

network. 

10. Stabilized states of the nodes are calculated by calling the 

Transition network recurrently. 

11. Calculate the output of the output network  by feeding the  

stabilized states and label of the node as input and then 

calculate mean square error. 

12.Weights of all the networks are updated by 

backpropagation technique namely Generalized Delta 

rule. 

13. Repeat steps 9 to 12 until desired accuracy is obtained. 

 

6.RESULTS AND DISCUSSION 

   The GNN model was developed using Matlab code. 

Minimum dominating set  for graphs on N nodes with a single 

node of degree N-1 was identified by this GNN model. 

Graphs were generated randomly with certain probability  . 

As we need only a single node of degree N-1, we set a large 

probability say   = 0.7. All the nodes were  given integer 

labels in the range [0,10]. The data set consisted of 300 

connected random graphs equally divided into a training set, a 

validation set and a test set. The results were averaged over 25 

trails. Both the transition function hw and the output function 

gw were implemented by three layered neural networks. 

Number of hidden neurons of the networks vary depending on 

the number of nodes in the graph considered. Sigmoidal 

activation function was used in the hidden and output layers 

of the network. In this experiment, label dimension(c) was 

considered as 1. Termination condition was fixed as mean 

squared error 0.1. The weights of the networks  were  

initialized  randomly  from (0, 1). Value of   used in the 

function of the transition network was randomly chosen 

between 0 and 1. When the value is more than 0.5, there was 

the possibility of dividing by zero in calculating the state 

vector xn . Hence    was set small as 0.005. The learning 

rate value used in the back propagation formula was 0.1. 

Momentum in these networks was considered as 0.1. The 

learning rate and parameter values were fixed by trial and 

error. The wrongly chosen values made the training diverge. 

The model was trained with various state dimensions starting 

from 2 to 9. The convergence was fast when the state 

dimension was 2. The model was tested for graphs with nodes 

5 to 15. The number of hidden neurons was 5 for graphs with 

nodes 5 to 14 when the state dimension was 2 but it increased 

when the number of nodes of the graph was 15. When state 

dimension was 3, the number of hidden neurons was 5 for 

graphs with nodes 5 to 12 but when the number of nodes 

increased beyond 12, for fast convergence the number of 

hidden neurons were also increased. When the state 

dimension was greater than 3 it has been observed that the  
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GNN consumed huge amount of time for convergence with 

more number of hidden neurons. Table 1 and 2 show the 

number of nodes in the graph, number of hidden neurons in 

the GNN and the accuracies obtained when state dimension 

was considered as 2 and 3 respectively. From the table it has 

been observed that the accuracy is more when s=2 and the 

number of hidden neurons needed for s=3 is more compared 

with s=2. When the termination condition f  used in 

stabilizing the state vector x is reduced, the number of epochs 

needed for the error to converge to 0.1 also decreased (See 

Table 3). The results where averaged over 10 trails. 

Table 1. Accuracies obtained when state dimension s=2 

N h Accuracy(%) 

 5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

9 

88.6 

86.8 

81.8 

82.8 

90.4 

88.6 

84.1 

81.2 

89.5 

82.7 

87.0 

Table 2. Accuracies obtained when state dimension s=3 

N h Accuracy(%) 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

5 

5 

5 

5 

5 

5 

5 

5 

9 

9 

11 

87.8 

84.8 

80.3 

80.8 

86.0 

84.2 

83.3 

80.8 

89.0 

81.5 

86.0 

 

 

 

 

Table 3. Number of epochs when termination condition is 

changed for the state vector 

N f = 0.5 f  = 0.1 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

17 

20 

35 

40 

42 

48 

50 

62 

110 

123 

199 

6 

5 

7 

9 

9 

19 

29 

13 

19 

22 

12 

 

7. CONCLUSION 

          In this paper, Minimum dominating set for the graph 

generated with N nodes and a single vertex of degree N-1 was  

identified using Graph neural network. GNN composed of 

Transition  network, bias network and output network was 

trained to identify the  minimum dominating set in the 

generated graph using GNN training  algorithm and back 

propagation technique. Trained GNN was tested with  newly 

generated graph. It has been found that, an average, the 

minimum dominating set was correctly  identified from 80% 

to 90% of the graphs when the state dimension was 2 and 3. It 

has been observed that when s=2,  the convergence was fast as 

it requires minimum hidden neurons than other state 

dimensions. Also it has  been observed that when the state 

dimension was greater than 3,  convergence requires hours of 

time and more number of hidden  neurons. It has also been 

found that initial weights of the network, parameter in the 

transition network and learning parameter  play an important 

role in convergence at training. 
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