
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.1, October 2012

12

Graph Neural Network for Minimum Dominating Set

GnanaJothi R.B.
Department of Mathematics V.V.Vanniaperumal

College for Women, Virudhunagar-626 001
Tamil Nadu, India

Meena Rani S.M
Department of Mathematics V.V.Vanniaperumal

College for Women, Virudhunagar-626 001
Tamil Nadu, India

ABSTRACT
The dominating set concept in graphs has been used in many

applications. In large graphs finding the minimum dominating

set is difficult. The minimum dominating set problem in

graphs seek a set D of minimum number of vertices such that

each vertex of the graph is either in D or adjacent to a vertex

in D. In a graph on n nodes if there is a single node of degree

n-1 then that single node forms a minimum dominating set. In

the proposed work, a designed network called Graph Neural

Network (GNN) is used to identify the node of degree N-1 in

a graph having a single node of degree N-1 as it forms the

minimum dominating set in the graph.. The network is

simulated for graphs with nodes varying from 5 to 15. The

state dimension of the input vectors are analyzed for better

convergence. It has been found that the minimum dominating

set was correctly identified from 80% to 90% of the graphs

when the state dimension was 2 and 3. It has been observed

that when the state dimension was 2, the convergence was

fast as it requires minimum hidden neurons than other state

dimensions. It has also been observed that when the state

dimension was greater than 3, convergence requires hours of

time and more number of hidden neurons. GNN was able to

identify the minimum dominating set in a graph on n vertices

which has a single node of degree n-1.

General Terms

Neural Networks

Keywords
Minimum dominating set, Graph neural network, State

dimension, Feedforward neural network, Recursive neural

network.

1. INTRODUCTION
Graphs are used to represent many real life situations. The

dominating set concept in graphs has been used in many

applications. Positioning of Queens in a N-Queen problem,

storing location information of the network nodes on mobile

ad-hoc routing, are some of the applications of dominating

set. In large graphs finding the minimum dominating set is

difficult.

Graph Neural Networks have been recently proposed to

process very general types of graphs, and can be considered

an extension of Recursive Neural Networks[1]. In RNNs, the

input graph to be directed and acyclic[2] [3] but GNNs have

no limitations on types of graphs.

The GNN model implements a function  that maps a graph

G and one of its nodes into an n-dimensional Euclidean

space. The function depends on the node so that the

classification depends on the properties of the node. Scarselli

et al.[4] have used the GNN model to learn the rank of the

web page. This approach simplifies the design of the page

ranking algorithm by allowing automatic customization, based

on training examples, of the rank to the particular needs of a

search engine or internet user.

GNNs have been proposed to process different types of graph

theoretic problems such as subgraph matching [5], clique

problem[6], Half Hot problem[6], Mutagenesis problem[5],

and Tree depth problem[2]. Pucci et al. [7], have tested the

GNN model on the Movie Lens data set, and pointed out

some limitations of Graph Neural Networks when applied to

recommender system. Muratore et al. [1] have applied GNN

for sentence extraction in which the features of the sentences

are taken as node labels and trained to produce the desired

output on each node, so that GNN can automatically learn to

predict the importance of each sentence. Uwents et al. [8]

have compared and discussed GNN and Relational Neural

Networks(RelNNs) on benchmarks that are commonly used

by the relational learning community and have suggested that

RelNNs and GNNs can be a viable approach for learning on

relational data. Hongmei et al. [9] have proposed a neural

network model to find the weakly connected dominating set in

a wireless sensor network. Gabriele Monfardani et al. [10]

have used GNN to locate face of a popular cartoon character

in comics. Yong et al. [11] have proposed document mining

using GNN. They have trained the network to encode and

process a large set of XML formatted documents.

In this paper, we are using GNN model comprising of

RNN(Transition Network) and FNN(output Network) to

identify a minimum dominating set in an undirected graph

with a single node of degree N-1. The structure of the paper is

as follows. Section 2 describes minimum dominating set,

Section 3 gives a brief description of GNN, Section 4

explains the generalized delta rule used in the weight

updation procedure of the networks, Section 5 gives the

training algorithm for generating the graphs and identifying

the minimum dominating set in the training data.

Experimental results are given in section 6.

2. MINIMUM DOMINATING SET
A dominating set D in a graph G=(V,E) is, a set D  V ,

such that every vertex v V \ D is adjacent to at least one

vertex in D. In a graph, a dominating set with minimum

cardinality is called the minimum dominating set. This is

shown in figure 1. In a chess board, the positions of the

minimum number of Queens that collectively dominate all 64

squares form a minimum dominating set in the corresponding

graph. If a graph G with N nodes has a node v of degree N-1

then {v} is a minimum dominating set [12].

 3. GRAPH NEURAL NETWORKS
A graph G = (V,E), where V is a set of points called nodes, E

is a collection of arcs connecting two nodes of V. Let ne[n] be

the set of nodes connected to the node n by arcs in E. Figure 2

represents example graph with 5 nodes. The nodes of G are

attached with random label
c

n Rl  . To each node n, a state

vector
s

n Rx  is attached which represents the

characteristics of the node (ie. adjacent nodes, degree, label

mailto:Gnanajothi_pcs@rediffmail.comMeena
mailto:Gnanajothi_pcs@rediffmail.comMeena

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.1, October 2012

13

etc.). The state vector of a node with dimension s is computed

using a feedforward neural network called Transition network

which implements a local transition function fw.

 ]n[ne]n[nenwn l,x,lfx  (1)

  



]n[neu

uunw l,x,lh (2)

For each node n, hw is a function of the state, label of the

neighboring node and its own label. Each node is associated

with a feedforward neural network. Number of input patterns

of the network depends on its neighbors. hw is considered to

be a linear function. When

  nuu,nuunw bxAl,x,lh 

where
s

n Rb  is defined as the output of feed forward neural

network called bias network which implements
sc

w RR:  ,  nwn lb  , sxsu,n RA  is defined as

the output of the feed forward neural network called forcing

network which implements
2ssc2

w RR:  
,

))l,x,l((resize
ne[n] x s

A uunwu,n 




where)1,0( and resize operator allocates s2 elements in the

output of forcing network to a s x s matrix.

Let x, l denote the vector constructed by stacking all the states

and all the node labels respectively of the graph. Then

Equation (1) can be written as  l,xFx w . Banach fixed

point theorem ensures the existence and the uniqueness of

solution of Equation (1) in the iterative scheme for computing

the state  l),t(xF)1t(x w where x(t) denotes the tth

iteration of x. Thus the states are computed by iterating

 ]n[ne]n[nenwn l,x),t(xf)1t(x  .

This computation is interpreted as a recurrent network that

consists of units, transition networks, which compute fw the

units being connected as per graph topology.

 The output of each node of a graph is produced by a

feed forward neural network called output network

which takes as input the stabilized state of the node

generated by the recurrent network and its label. For each

node n, the output on is computed by the local output

function gw as  nnwn l,xgo  . Figure 3 and figure 4

represent output network and GNN for the example graph

figure 2.

Fig 1. Minimum Dominating Set

Fig 2. Example graph

4.GENERALIZED DELTA RULE

 Weights of both transition network and output network

are updated using Generalized Delta rule. In the standard

Backpropagation algorithm, weights(w) are updated using

gradient descent as
w

e
)t(w w




 where  is the learning

rate, ew the cost function given by mean square error

 



N

1j

2
jjw yd

xN2

1
e where dj denotes the desired target

and yj the network output. Considering a fraction of the

previous weight change, the weight update rule can be taken

as    1tw
w

e
tw w 




 .

This weight updation rule is called the Generalized Delta

rule. The fraction amount  considered in the rule is called

momentum. This momentum term increases the rate of

learning, maintaining stability.

5. TRAINING ALGORITHM

 Graphs with a single node of degree N-1 has to be

generated as follows. Graphs with fixed number of nodes (N)

has to be generated randomly. Each pair of nodes has to be

connected with a certain probability. The resulting graph has

to be checked to verify whether it is connected and if it is

not, random edges are to be inserted until the condition is

satisfied. The graph is then checked whether it has a single

 l1

l2 l5

l4 l3

e

b

c

d

f

g

a

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.1, October 2012

14

node of degree N-1. If there is no such node, a random vertex

is chosen and its degree is made N-1. If more than one vertex

have degree N-1, a new graph has to be randomly generated

to satisfy the condition.

Fig 3. Output Network

Fig 4. Graph Neural Network

1. Generate Graphs randomly with N nodes having a single

node of degree N-1.

2. Label each node with dimension c by generating numbers

 randomly.

3. Assign a target 1 to the node of degree N-1, which

constitutes the minimum dominating set and others 0.

4. Assume initial values of the state to be a zero s vector.

5. Generate bias network with c input neurons, h hidden

 neurons and s output neurons.

6. Generate single hidden layer transition network with 2*c+s

input neurons h hidden neurons and s*s output neurons.

7. Generate output network with c+s+1 input neurons, h

hidden neurons and 1 output neuron.

8. Assign weights randomly for all the network from (0,1).

9. Calculate output of the bias network and Transition

network.

10. Stabilized states of the nodes are calculated by calling the

Transition network recurrently.

11. Calculate the output of the output network by feeding the

stabilized states and label of the node as input and then

calculate mean square error.

12.Weights of all the networks are updated by

backpropagation technique namely Generalized Delta

rule.

13. Repeat steps 9 to 12 until desired accuracy is obtained.

6.RESULTS AND DISCUSSION

 The GNN model was developed using Matlab code.

Minimum dominating set for graphs on N nodes with a single

node of degree N-1 was identified by this GNN model.

Graphs were generated randomly with certain probability  .

As we need only a single node of degree N-1, we set a large

probability say  = 0.7. All the nodes were given integer

labels in the range [0,10]. The data set consisted of 300

connected random graphs equally divided into a training set, a

validation set and a test set. The results were averaged over 25

trails. Both the transition function hw and the output function

gw were implemented by three layered neural networks.

Number of hidden neurons of the networks vary depending on

the number of nodes in the graph considered. Sigmoidal

activation function was used in the hidden and output layers

of the network. In this experiment, label dimension(c) was

considered as 1. Termination condition was fixed as mean

squared error 0.1. The weights of the networks were

initialized randomly from (0, 1). Value of  used in the

function of the transition network was randomly chosen

between 0 and 1. When the value is more than 0.5, there was

the possibility of dividing by zero in calculating the state

vector xn . Hence  was set small as 0.005. The learning

rate value used in the back propagation formula was 0.1.

Momentum in these networks was considered as 0.1. The

learning rate and parameter values were fixed by trial and

error. The wrongly chosen values made the training diverge.

The model was trained with various state dimensions starting

from 2 to 9. The convergence was fast when the state

dimension was 2. The model was tested for graphs with nodes

5 to 15. The number of hidden neurons was 5 for graphs with

nodes 5 to 14 when the state dimension was 2 but it increased

when the number of nodes of the graph was 15. When state

dimension was 3, the number of hidden neurons was 5 for

graphs with nodes 5 to 12 but when the number of nodes

increased beyond 12, for fast convergence the number of

hidden neurons were also increased. When the state

dimension was greater than 3 it has been observed that the

1

h

1

.

.

.

.

.

.

.

.

.

ln(1)

ln(d)

xn(1)

xn(s)

1(bias)
bias

fw

fw

fw

fw

fw

fw

fw

fw

l1,x2, l2

l1,x5, l5

fw

fw

fw

fw

fw

fw

fw

fw

gw

gw

gw

gw

l2,x1, l1

l2,x3, l3

l2,x5, l5

l1

l2

l3

l4

 l3,x2, l2

 l3,x4, l4

l4,x3, l3

l4,x5, l5

O1

O2

 O3

 O4

…

…

…

…

fw

fw

fw

fw

gw

 …

O5

l5

l5,x1, l1

l5,x2, l2

l5,x4, l4

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.1, October 2012

15

GNN consumed huge amount of time for convergence with

more number of hidden neurons. Table 1 and 2 show the

number of nodes in the graph, number of hidden neurons in

the GNN and the accuracies obtained when state dimension

was considered as 2 and 3 respectively. From the table it has

been observed that the accuracy is more when s=2 and the

number of hidden neurons needed for s=3 is more compared

with s=2. When the termination condition f used in

stabilizing the state vector x is reduced, the number of epochs

needed for the error to converge to 0.1 also decreased (See

Table 3). The results where averaged over 10 trails.

Table 1. Accuracies obtained when state dimension s=2

N h Accuracy(%)

 5

6

7

8

9

10

11

12

13

14

15

5

5

5

5

5

5

5

5

5

5

9

88.6

86.8

81.8

82.8

90.4

88.6

84.1

81.2

89.5

82.7

87.0

Table 2. Accuracies obtained when state dimension s=3

N h Accuracy(%)

5

6

7

8

9

10

11

12

13

14

15

5

5

5

5

5

5

5

5

9

9

11

87.8

84.8

80.3

80.8

86.0

84.2

83.3

80.8

89.0

81.5

86.0

Table 3. Number of epochs when termination condition is

changed for the state vector

N f = 0.5 f = 0.1

5

6

7

8

9

10

11

12

13

14

15

17

20

35

40

42

48

50

62

110

123

199

6

5

7

9

9

19

29

13

19

22

12

7. CONCLUSION

 In this paper, Minimum dominating set for the graph

generated with N nodes and a single vertex of degree N-1 was

identified using Graph neural network. GNN composed of

Transition network, bias network and output network was

trained to identify the minimum dominating set in the

generated graph using GNN training algorithm and back

propagation technique. Trained GNN was tested with newly

generated graph. It has been found that, an average, the

minimum dominating set was correctly identified from 80%

to 90% of the graphs when the state dimension was 2 and 3. It

has been observed that when s=2, the convergence was fast as

it requires minimum hidden neurons than other state

dimensions. Also it has been observed that when the state

dimension was greater than 3, convergence requires hours of

time and more number of hidden neurons. It has also been

found that initial weights of the network, parameter in the

transition network and learning parameter play an important

role in convergence at training.

8.REFERENCES

[1] Muratore, D., Hagenbuchner, M., Scarselli, F., Tsoi,

A.C., 2010. Sentence extraction by graph neural network,

Proceedings of the 20th International conference on

Artificial neural networks, Springer-Verlag, Berlin,

Heidelberg, ISBN: 3-642-15824-2 978-3-642-15824-7

[2] Frasconi, M., Gori, M., Sperduti, A., 1998. A general

framework for adaptive processing of Data Structures.

IEEE Trans. Neural Networks, 9: 768-786.

DOI: 10.1109/72.712151

[3] Sperduti, A., Starita, A., 1997. Supervised Neural

networks for the classification of structures. IEEE Trans.

Neural Networks, 8: 714-735. DOI: 10.1109/72.572108.

[4] Scarselli, F., Yong, S.L., Gori, M. Hagenbuchner, M.,

Tsoi, A.C., Maggini, M., 2005. Graph Neural Networks

for Ranking Web Pages, in : Proceedings of the 2005

IEEE/WIC/ACM Int. Conf. on Web Intelligence.

DOI: 10.1109/WI.2005.67

http://dx.doi.org/10.1109/72.712151
http://dx.doi.org/10.1109/72.572108
http://dx.doi.org/10.1109/WI.2005.67

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.1, October 2012

16

[5] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M.,

Monfardini, G., 2009. The Graph neural network model.

IEEE Trans. Neural Networks, 20: 61 - 78.

DOI:10.1109/TNN.2008.2005605

[6] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M.,

Monfardini, G., 2009. Computational capabilities of

Graph neural networks. IEEE Trans. Neural Networks,

20: 81 - 102. DOI:10.1109/TNN.2008.2005141

[7] Pucci, A., Gori, M., Hagenbuchner, M., Scarselli, F.,

Tsoi, A.C., 2006. Applications of Graph neural networks

to large-scale recommender systems some results.

Proceedings of International Multiconference on

Computer Science and Information Technology pp: 189-

195. www.proceedings2006.imcsit.org

[8] Uwents, W., Monfardini, G., Blockel, H., Gori, M.,

Scarselli, F., 2010. Neural networks for relational

learning: an experimental comparison, Machine

learning, DOI:10.1007/s10994-010-5196-5

 [9] Hongmei, Zhenhuan Zhu, Erkki Makinen, 2009. A

Neural network model to minimize the connected

dominating set for self-configuration of wireless sensor

networks. IEEE Trans. Neural Networks, 20: 973-982.
DOI:10.1109/TNN.2009.2015088

[10] Manfordini G., Di Massa, V., Scarselli, F., Gori, M.,

2006, Graph neural network for object localization, Fifth

International workshop of the initiative for the evaluation

of XML retrieval. DOI 10.1007/978-3-540-73888-6_43.

[11] Yong, S.L., Hagenbuchner, M., Tsoi, A.C., Scarselli, F.,

Gori, M., 2007, Document mining using Graph neural

network, Comparative evaluation of XML retrieval

system, Lecture notes in Computer Science, 4518 :

pp458 – 472.

[12] Gary Chartrand., Ping Zhang 2006. Introduction to Graph

theory, Tata McGraw-Hill, India, ISBN: 0-07-061608-6,

pp. 361.

http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/TNN.2008.2005141
http://www.proceedings2006.imcsit.org/pliks/57.pdf
http://dx.doi.org/10.1007/s10994-010-5196-5
http://dx.doi.org/10.1109/TNN.2009.2015088

