
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.7, October 2012

28

Efficiently Mining Frequent Itemsets using Various
Approaches: A Survey

C. A. Dhote, PhD.

System Manager
PRMITR

 Badnera, India

Sheetal Rathi
PhD Research Scholar

SGBAU
Amravati, India

ABSTRACT

In this paper we present the various elementary traversal

approaches for mining association rules. We start with a

formal definition of association rule and its basic algorithm.

We then discuss the association rule mining algorithms from

several perspectives such as breadth first approach, depth first

approach and Hybrid approach. Comparison of the various

approaches is done in terms of time complexity and I/O

overhead on CPU. Finally, this paper prospects the association

rule mining and discuss the areas where there is scope for

scalability.

General Terms

Data Mining, Association Rule Mining.

Keywords

Frequent itemset mining; breadth first; depth first; hybrid

approach.

1. INTRODUCTION

Data Mining and Knowledge Discovery in Databases (KDD)

is an interdisciplinary field merging ideas from statistics,

machine learning, databases, and parallel computing. Data

mining refers to the overall process of discovering new

patterns or building models from a given dataset. There are

many techniques for mining a dataset such as: Rule discovery,

classification and regression, sequential patterns and

clustering. Out of all these, discovery of association rules is an

important data mining problem.

Business organizations are depending on sophisticated

decision-making information to maintain their

competitiveness in today's demanding and fast changing

marketplace. Inferring valuable high-level information based

on large volumes of routine business data is becoming critical

for making sound business decisions. One of the most difficult

problems in database mining is the large volume of data that

needs to be handled in a medium sized business; it is not

uncommon to collect hundreds of megabytes to a few

gigabytes of data [1]. Database mining applications often

perform long-running, complex data analysis over the entire

database. Given the large database sizes, one of the main

challenges in database mining is developing fast and efficient

algorithms that can handle large volumes of data. Mining for

association rules involves extracting patterns from large

databases and inferring useful rules from them. The

prototypical application of association rules is the analysis of

sales or market basket data [2]. Basket data consists of items

bought by a customer along with the transaction identifier.

The most typical example of association rules cases is: "80

percent of customers buy beers also buy diapers at the same

time", its intuitive meaning is, how larger the tendency of

customers buy certain products while they will buy other

goods. Association rule mining is to help find the relationship

between the itemset in a large number of databases. By

describing the potential rules between the items in databases,

dependencies between multiple domains which meet the given

support and the confidence threshold are found. Association

rules have been shown to be useful in domains that range

from decision support to telecommunications alarm diagnosis,

and prediction.

The structure of the rest of the paper is as follows: In section

II we describe the basic association rule mining. In section III,

we explore the various scope areas on which we can focus to

enhance the speed of existing association rule algorithms

.Section IV gives a description of some algorithms which are

being used for mining association rules. Section V contains

conclusion and pointers for further work.

2. BASICS OF ASSOCIATION RULES

Association rule mining has attracted tremendous attention

from data mining researchers and as a result several

algorithms have been proposed for it. Before going for the

various approaches towards association rule mining, the basic

concepts of association rule mining are introduced first.

The problem of mining associations over basket data was

introduced in [2].The problem can be formulated as follows:

Let I = {i1 ,i2... im} be a set of literals, called items. Let

database D be a set of transactions, where each transaction T

is a set of items such that TI. Each transaction is associated

with a unique identifier, called TID. Let X is a set of items. A

transaction T is said to contain X if and only if X T. The

support of a set of items X given as σ(X) is the number or the

percentage of transactions in the database that contain X. The

confidence of the rule is the conditional probability that a

transaction contains Y, given that it contains X and is given as

σ (X U Y) / σ (X). A rule is frequent if its support is greater

than min_sup and strong if its confidence is more than a user-

specified minimum confidence (min_conf).

Thus the association rule mining is a two-step process:

1) Find all frequent itemset having minimum support.

2) Generate strong rules having minimum confidence, from

the frequent itemset.

The first step is relatively more time consuming. It is

candidate large itemset generation process and frequent

itemset generation process. We call those itemset whose

support exceed the support threshold as large or frequent

itemset and those itemset that are expected or have the hope to

be large or frequent are called candidate itemset. The second

step is relatively easy, and the present focus in research is to

find highly efficient algorithm in the first step i.e. to

effectively find frequent itemset.

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.7, October 2012

29

The performance parameters for comparison will usually be

time complexity and I/O overhead incurred on the CPU. Since

the amount of data is scalable, time required for mining

frequent itemset plays a crucial role in enhancing the

efficiency.

3. SCOPE FOR SCALABILITY IN

MINING FREQUENT ITEMSET

There are three main areas which can be focused

upon to find the association rules efficiently. By efficient we

mean to reduce time complexity, incur less I/O overhead as

well as to efficiently use the storage space. Due to large

amount of data available in data warehouses, we should be

able to mine data that is scalable i.e. that can grow in size.

As mentioned above, finding frequent itemset is a

time consuming process. So the first area of focus should be

fast generation and pruning of candidate itemset. Thus by

speeding up this step we will enhance the generation of

frequent itemset. There are various approaches which have

been followed such as depth first search, breadth first search,

hybrid, partitioning the database as well as sampling. A large

number of increasingly efficient algorithms to mine frequent

itemset have been developed over the years [3], [4], [5], [6],

[7].

Another area of focus is the data structure which has been

used for storing the intermediate candidate itemset in the first

step. It should be such that the data which is stored there can

be retrieved fast. Several data structures have been used for

mining frequent itemset. They can be divided into two main

categories as array-based and tree-based. In array-based

representation, transactions are stored as arrays of items in the

memory. For example, H-Mine uses an array structure called

Hstruct [4]. In tree-based representation, variants of prefix

trees are used. A prefix tree can be used to organize the

transactions by grouping and storing transaction data in

memory. In [6], transactions are first grouped using a

compressed prefix tree and mapped to an array-based data

structure, which is then used for the mining process.

The third issue on which the research is going on is

parallel mining. Parallelism can be implemented at various

stages. However synchronization can be problem while

applying parallelism. But as finding frequent itemset is most

expensive, since the number of itemset grows exponentially

with the number of items, time complexity can be greatly

reduced if parallelism is applied while finding frequent

itemset. In this paper we mainly concentrate on the first issue

i.e. quickly finding frequent itemset.

In this paper we elaborate on the various traversal approaches

which can be used for finding the candidate itemset. However,

for mining the frequent itemset efficiently, we have to use a

combination of effective traversal scheme, an effective but

simple data structure as well as concepts of parallel mining.

4. COMMONLY USED ASSOCIATION

RULE MINING ALGORITHMS

4.1 Breadth First approach

In Breadth First or bottom-up approach, the computation

starts from frequent 1-itemsets (the minimum length frequent

itemset) and continues until all maximal (length) frequent

itemset are found. Because of its way of working, it is also

known as hierarchical algorithm. During the execution, every

frequent itemset is explicitly considered. Such algorithms

perform well when all maximal frequent itemset are short.

However, performance drastically decreases when some of the

maximal frequent itemset are relatively long. The classical

Apriori algorithm proposed by Agrawal et al in 1993[8], its

enhancement AprioriTid algorithm [9] are all examples of

breadth first approach. Apart from this there are also hash

based techniques such as DHP algorithm(Direct hashing and

pruning) proposed by Park et al in 1995[10] and Tree

projection algorithm[11].The partition algorithm[12] and

DIC(Dynamic Itemset counting)[13] are also categorized as

breadth first algorithms.

The Apriori and AprioriTid algorithms generate the

candidate itemset to be counted in a pass by using only the

itemset found large in the previous pass {without considering

the transactions in the database.} The basic concept behind

this is that any subset of a large itemset must be large. The

AprioriTid [9] algorithm has the additional property that the

database is not used at all for counting the support of

candidate itemset after the first pass. Rather, an encoding of

the candidate itemset used in the previous pass is employed

for this purpose. AprioriTid has the enhanced feature that it

replaces a pass over the original dataset by a pass over the

candidate set. Another algorithm DHP [10] is a hash based

algorithm and is especially effective for generating candidate

2-itemsets, where the number of candidate 2-itemsets in terms

of magnitude is smaller than the previous algorithms, thus

resolving the performance bottleneck. The DHP algorithm

(Park et al, 1995) tries to reduce the number of candidates by

collecting approximate counts in the previous level. Like

Apriori it requires as many database passes as the longest

itemset. It also trims the transaction database at a much earlier

stage of the iteration, thereby reducing the computational cost

for later stages significantly. The Tree projection

algorithm[11] proposed by Agrawal et al in 2001 represents

frequent patterns as nodes of a lexicographic tree and uses the

hierarchical structure of the lexicographic tree to successively

project transactions and uses matrix counting on the reduced

set of transactions for finding frequent patterns. The

TreeProjection algorithm outperforms the Apriori method by

more than an order of magnitude. At very low levels of

support, the Apriori algorithm runs out of memory and is

unable to run to completion. This behavior illustrates the

memory advantages of using a lexicographic Tree projection

algorithm over the hash tree implementation of the Apriori

algorithm. As shown in [10], Fig.1 compares the Apriori and

DHP over the various passes on a standard dataset

T15.14.D100.It is observed that DHP, because of its hashing

and timely pruning technique requires less than half the

amount of time as compared to classical Apriori over 5 passes

of candidate itemset generation.

Fig 1: Execution time of Apriori and DHP

0

10

20

30

40

50

Apriori DHP

PASS4-5

PASS3

PASS2

PASS1

Ex
ec

u
ti

o
n

 T
im

e

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.7, October 2012

30

The partition algorithm proposed in 1995 reads the

database at most two times to generate all significant

association rules. Contrast this with the previous algorithms,

where the database is not only scanned multiple times but the

number of scans cannot even be determined in advance. All

the partition algorithms such as the classic partition algorithm

proposed by Saverese et al [12] and DIC(Direct Itemset

counting) proposed by Brin [13] work well on large datasets.

In partition algorithm [12], during the first scan, algorithm

generates a set of all potentially large itemsets by scanning the

database once. This set is a superset of all large item sets, i.e.

it may contain false positives, but no false negatives are

reported. During the second scan, counters for each of these

item sets are setup and their actual support is measured in one

scan of the database. The partition sizes are chosen such that

each partition can be accommodated in the main memory so

that the partitions are read only once in each phase. One major

problem with Partition is that as the number of partitions

increases, the number of locally frequent itemsets, increases.

While this can be reduced by randomizing the partition

selection, randomized partitions will have a large number of

frequent itemsets in common. Partition can thus spend a lot of

time in performing these redundant intersections.DIC [13]

algorithm is also adopted by the thought of dividing the

database into several partitions, each partition is marked at the

beginning in the process of scanning the database, candidate

items can be added in each marked partition, the support can

be calculated when the itemsets are calculated.DIC separates

the strict restriction between counting and generating

candidates. Whenever a candidate reaches min-sup, DIC starts

generating additional candidates based on it. The main

bottleneck of data set partitioning algorithm is that the

execution time is long and frequent itemsets generated are not

very accurate. But this type of algorithm has a high degree of

parallelism; just scanning the database twice, greatly reduces

I / O operation to improve the efficiency of the algorithm.

Overall, we can conclude that the breadth-first algorithm

has the shortcoming of generating a large number of candidate

items and need to repeatedly scan the database. This is

definitely not suitable for databases with large number of

itemsets.

4.2 Depth First Approach

Depth first search has the advantage that it is not

necessary to re-create the projected transactions for each

level-k of a search tree. The depth first projection technique

provides locality of data access, which can exploit multiple

levels of cache. Some of the depth first algorithms are FP-

growth [14], OIP [15] DepthProject [16] and Eclat [17].

In 2000 Han et al proposed Frequent pattern tree (FP-tree)

structure, which is an extended prefix tree structure, used for

mining the complete set of frequent patterns by pattern

fragment growth. It encodes the dataset using a compact data

structure FP-tree and extracts frequent itemsets directly from

this structure. This algorithm is about an order of magnitude

faster than the Apriori algorithm. However, the number of

conditional FP-trees is in the same order of magnitude as

number of frequent itemsets. The algorithm is not scalable to

sparse and very large databases. The OIP algorithm [15]

OpportuneProject mines complete set of frequent item sets,

which is efficient on both sparse and dense databases at all

levels of support threshold, and scalable to very large

databases. It opportunistically chooses between two different

data structures, array based or tree-based, to represent

projected transaction subsets, and heuristically decides to

build unfiltered pseudo projection or to make a filtered copy

according to features of the subsets.DepthProject [16]

employs a selective projection and uses the horizontal bit

string representation for projected transaction subsets. Fig.2

[14] shows the comparison of Tree Projection(Breadth first)

and FP-Tree(Depth first) approach of runtime on

T25:I10:D10K with 1K items as dataset. It shows that FP-

growth is better than TreeProjection when support threshold is

very low and database is quite large.

Fig 2: Execution time of FP Growth and Tree Projection

The Eclat algorithm[17] proposed by Zaki et al is based

on a parallel approach and partitions the database. It

incorporates some features of clustering as well as parallel

mining.The algorithm uses a scheme to cluster related

frequent itemsets together, and to partition them among the

processors. At the same time it also uses a different database

layout which clusters related transactions together, and

selectively replicates the database so that the portion of the

database needed for the computation of association rules is

local to each processor. After the initial set-up phase, the

algorithm eliminates the need for further communication or

synchronization thus eliminating the problem of

syncronization faced in parallel mining. The algorithm further

scans the local database partition only three times, thus

minimizing I/O overheads.The gist is that depth first approach

works well for large amount of data as compared with bredath

first approach and so it can be applied for scalable datasets.

4.3 Hybrid Approach

There is also a hybrid approach wherein at some point

breadth first approach is used and at some point depth first

approach is applied in the same process. Some of the

algorithms which work on hybrid approach are AprioriHybrid

[18], Viper[19] , Pincer Search [20]and MaxClique [21].Fig.3

below shows an example of the two approaches[20].

0

20

40

60

80

100

120

0.1 0.3 0.5 0.7 0.9

Ex
e

cu
ti

o
n

 T
im

e

Support Threshold(%)

Tree
Projection

FP
Growth

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.7, October 2012

31

Fig 3: One Way searches

 AprioriHybrid [18] uses Apriori in initial phase and then

switch to AprioriTid in later passes .It performs better than

Apriori and AprioriTid in most of the cases. However the

challenge to operate hybrid algorithm is to determine the

switch over point. The advantage of AprioriHybrid over

Apriori depends on how the size of the Ck (candidate k

itemset) decline in the later passes. If Ck remains large until

nearly the end and then has an abrupt drop, there gain will be

no gain by using AprioriHybrid since we can use AprioriTid

only for a short period of time after the switch. Another

algorithm VIPER [19] is also based on hybrid approach. It is

general-purpose, making no special requirements of the

underlying database. VIPER stores data in compressed bit-

vectors called “snakes” and integrates a number of novel

optimizations for efficient snake generation, intersection,

counting and storage. There are workload regions where

VIPER outperforms an optimal, but practically infeasible,

horizontal mining algorithm. The Pincer Search algorithm

[20] also combines both the bottom-up and the top-down

searches. The primary search direction is still bottom-up, but a

restricted search is also conducted in the top-down direction.

This search is used only for maintaining and updating a new

data structure, the maximum frequent candidate set. It is used

to prune early candidates that would normally encounter in

the bottom-up search. A very important characteristic of the

algorithm is that it does not require explicit examination of

every frequent itemset. Therefore the algorithm performs well

even when some maximal frequent itemsets are long. As its

output, the algorithm produces the maximum frequent set, i.e.,

the set containing all maximal frequent itemsets, thus

specifying immediately all frequent itemsets. MaxClique [21]

uses a hybrid traversal which contains a look-ahead phase

followed by a pure bottom-up phase. The look-ahead phase

consists of extending the frequent 2-itemsets until the

extended itemset becomes infrequent. After the look-ahead

phase, an Apriori-like traversal is executed.

Table 1 gives the performance comparison for some

major algorithms based on various criteria such as traversal

technique used,data structures and number of scans.

Table 1: Comparison of some major algorithms

Algorithm
Traversal

Technique
Data Structure

Number of

database

scans

Apriori Breadth First Hash Tree K

DHP Breadth First Hash Tree K

Partition Breadth First None 2

DIC Breadth First Prefix tree <=K

FP tree Depth First Prefix tree 2

Eclat Depth First None >=3

Pincer
Search Hybrid

Array and linked
list >=4

MaxClique Hybrid None >=3

Fig. 4 shows the current scenario of research done

on frequent itemset mining [22] in context to year of

publication and its number of citations. However, as the data

continue to increase in complexity (which includes size, type,

and location of data), parallel computing will be essential in

delivering fast interactive solutions for the overall KDD

process. Applying parallel mining in collaboration with an

effective data structure for storing candidate sets can be

exploited for a scalable approach in mining association rules.

Fig 4: Current status of research

5. CONCLUSION

In this paper, we have discussed the various algorithmic

methods based on the traversal techniques for generating

candidate itemset.

We can conclude that there can be a scalable approach for

mining frequent itemset if we explore the areas of parallel

mining in combination with an efficient data structure. Also if

we can efficiently use the main memory for storing the

database (such as in partitioning) it will highly reduce the I/O

scans thereby further increasing the speed. From the above

study we conclude that almost each ARM algorithm has some

favorable environment that provides high performance and

faster computation of frequent itemset. These factors vary

from algorithm to algorithm. Depending upon the application

and the amount of data available, these various techniques can

be applied in combination with different data structures.

Although lot of work has been done in this research area,

there can be a hybrid approach wherein we can combine the

hybrid traversal technique along with a data structure and

mine it in parallel.

6. REFERENCES

[1] R. Agrawal, H.Mannila, R. Srikant, H. Toivonen, and A.

I.Verkamo, 1996,Fast discovery of association rules, In

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.7, October 2012

32

Advances in Knowledge Discovery and Data Mining,

MIT Press.

[2] R. Agrawal, T. Imielinski, and A.Swami,1993,Mining

association rules between sets of items in large databases,

In ACM SIGMOD Intl. Conf. Management of Data.

[3] J. Han, J. Pei, and Y. Yin,2000,Mining Frequent Patterns

without Candidate Generation, Proc. of the ACM

SIGMOD, Dallas, TX.

[4] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang,

2001,HMine:Hyper-Structure Mining of Frequent

Patterns in Large Databases, Proc. of IEEE ICDM, San

Jose, California.

[5] R. Agrawal and R. Srikant,1994,Fast Algorithms for

Mining Association Rules, Proc. of the 20th Int. Conf. on

VLDB, Santiago, Chile.

[6] Y. G. Sucahyo and R. P. Gopalan,2003,CT-ITL:

Efficient Frequent Item Set Mining Using a Compressed

Prefix Tree with Pattern Growth, Proc. of 14th

Australasian Database Conference, Adelaide, Australia.

[7] M. J. Zaki,2000,Scalable Algorithms for Association

Mining, IEEE Transactions on Knowledge and Data

Engineering, (12, May/June 2000) 372-390.

[8] Agrawal R, Imielinski T, Swami A, 1993,Mining

Association Rules between Sets of Items in Large

Databases, Proc. of the 1993 ACMSIGMOD Conference.

Washington D C, 207-216.

[9] Agrawal R, Srikant R,1994,Fast Algorithm for Mining

Association Rules, Proc of the 20th Very Large Data

Bases (VLDB 94) Conference. Santiago, Chile.

[10] Park J S, Chen M S, Yu P S, 1995, An effective hash

based algorithm for mining association rules, In Proc. Of

1995 ACM SIGMOD. San Jose, 175-186.

[11] Agarwal R, Aggarwal C, Prased V V V,2001,A tree

projection algorithm for generation of frequent itemsets,

Parallel and distributed Computing, 61(3): 350-371.

[12] Savasere A, Omieeinski E, Navathe S,1995,An efficient

algorithm for mining association rules in large databases,

Proc. of the 21st International Conference on Very Large

Databases. Zurich, Switzerland, 432-443.

[13] Brin S, Motwani R, Ullman J D,1997,Dynamic Itemset

counting and implication rules for market basket data,

Proc. of the 1997 ACM SIGMOD International

Conference on Management of Data.

[14] Han J, Pei J, Yin Y, 2000, Mining frequent patterns

without candidate generation, In Proc. of the 2000 ACM

SIGM0D Conference on Management of Data. Dallas,

TX.

[15] Liu J, Pan Y, Wang K, et al, 2002,Mining frequent item

sets by opportunistic projection,Proc Of the Eighth ACM

SIGKDD Intl. Conf on Knowledge Discovery and Data

Ming. Alberta, Canada, 229-238.

[16] R. Agarwal, C. Aggarwal and V. V. V. Prasad,2000,

Depth first generation of long patterns, in Proc.of

SIGKDD Conference.

[17] Mohammed Javeed Zaki, Srinivasan Parthasarathy and

Wei Li,1997,A Localized Algorithm for Parallel

Association Mining, Proc. of 9th Annual ACM

Symposium on Parallel Algorithms and Architectures,

321-330.

[18] Agrawal R, Srikant R,1994,Fast Algorithm for Mining

Association Rules in Large Databases, San Jose, IBM

Alma den Research Center.

[19] Pradeep Shenoy, Jayant Harista, S.Sudarshan, Gaurav

Bhalotia, Mayank Bawa, Devavrat Shah,2000,Turbo-

charging vertical mining of large databases, Proc. of

2000 ACM SIGMOD International conference on

Management of Data, Pg 22-33.

[20] Dao-I Lin, Zvi M. Kedem,2002,Pincer-Search: An

Efficient Algorithm for Discovering the Maximum

Frequent Set, IEEE Transactions on Knowledge and Data

Engineering, Vol 14 ,(May 2002),Pg. 552-566.

[21] M. Zaki, S. Parthasarathy, M. Ogihara, and

W.Li,1997,New algorithms for fast discovery of

association rules, In Proc. 3rd KDD.

[22] R.Shrikant and R.Agrawal ,1996,Mining quantitative

association rules in large relational tables, SIGMOD

1996.

