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ABSTRACT 

In this paper we present the various elementary traversal 

approaches for mining association rules. We start with a 

formal definition of association rule and its basic algorithm. 

We then discuss the association rule mining algorithms from 

several perspectives such as breadth first approach, depth first 

approach and Hybrid approach. Comparison of the various 

approaches is done in terms of time complexity and I/O 

overhead on CPU. Finally, this paper prospects the association 

rule mining and discuss the areas where there is scope for 

scalability. 
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1. INTRODUCTION 

Data Mining and Knowledge Discovery in Databases (KDD) 

is an interdisciplinary field merging ideas from statistics, 

machine learning, databases, and parallel computing. Data 

mining refers to the overall process of discovering new 

patterns or building models from a given dataset. There are 

many techniques for mining a dataset such as: Rule discovery, 

classification and regression, sequential patterns and 

clustering. Out of all these, discovery of association rules is an 

important data mining problem. 

Business organizations are depending on sophisticated 

decision-making information to maintain their 

competitiveness in today's demanding and fast changing 

marketplace. Inferring valuable high-level information based 

on large volumes of routine business data is becoming critical 

for making sound business decisions. One of the most difficult 

problems in database mining is the large volume of data that 

needs to be handled in a medium sized business; it is not 

uncommon to collect hundreds of megabytes to a few 

gigabytes of data [1]. Database mining applications often 

perform long-running, complex data analysis over the entire 

database. Given the large database sizes, one of the main 

challenges in database mining is developing fast and efficient 

algorithms that can handle large volumes of data. Mining for 

association rules involves extracting patterns from large 

databases and inferring useful rules from them. The 

prototypical application of association rules is the analysis of 

sales or market basket data [2]. Basket data consists of items 

bought by a customer along with the transaction identifier. 

The most typical example of association rules cases is: "80 

percent of customers buy beers also buy diapers at the same 

time", its intuitive meaning is, how larger the tendency of 

customers buy certain products while they will buy other 

goods. Association rule mining is to help find the relationship 

between the itemset in a large number of databases. By 

describing the potential rules between the items in databases, 

dependencies between multiple domains which meet the given 

support and the confidence threshold are found. Association 

rules have been shown to be useful in domains that range 

from decision support to telecommunications alarm diagnosis, 

and prediction. 

The structure of the rest of the paper is as follows: In section 

II we describe the basic association rule mining. In section III, 

we explore the various scope areas on which we can focus to 

enhance the speed of existing association rule algorithms 

.Section IV gives a description of some algorithms which are 

being used for mining association rules. Section V contains 

conclusion and pointers for further work.  

2. BASICS OF ASSOCIATION RULES  

Association rule mining has attracted tremendous attention 

from data mining researchers and as a result several 

algorithms have been proposed for it. Before going for the 

various approaches towards association rule mining, the basic 

concepts of association rule mining are introduced first. 

The problem of mining associations over basket data was 

introduced in [2].The problem can be formulated as follows: 

Let   I = {i1 ,i2... im} be a set of literals, called items. Let 

database D be a set of transactions, where each transaction T 

is a set of items such that TI. Each transaction is associated 

with a unique identifier, called TID. Let X is a set of items. A 

transaction T is said to contain X if and only if     X T. The 

support of a set of items X given as σ(X) is the number or the 

percentage of transactions in the database that contain X. The 

confidence of the rule is the conditional probability that a 

transaction contains Y, given that it contains X and is given as   

σ (X U Y) / σ (X). A rule is frequent if its support is greater 

than min_sup and strong if its confidence is more than a user-

specified minimum confidence (min_conf).  

Thus the association rule mining is a two-step process: 

1) Find all frequent itemset having minimum support. 

2) Generate strong rules having minimum confidence, from 

the frequent itemset.  

The first step is relatively more time consuming. It is 

candidate large itemset generation process and frequent 

itemset generation process. We call those itemset whose 

support exceed the support threshold as large or frequent 

itemset and those itemset that are expected or have the hope to 

be large or frequent are called candidate itemset. The second 

step is relatively easy, and the present focus in research is to 

find highly efficient algorithm in the first step i.e. to 

effectively find frequent itemset. 
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The performance parameters for comparison will usually be 

time complexity and I/O overhead incurred on the CPU. Since 

the amount of data is scalable, time required for mining 

frequent itemset plays a crucial role in enhancing the 

efficiency.  

3. SCOPE FOR SCALABILITY IN 

MINING FREQUENT ITEMSET 

There are three main areas which can be focused 

upon to find the association rules efficiently. By efficient we 

mean to reduce time complexity, incur less I/O overhead as 

well as to efficiently use the storage space. Due to large 

amount of data available in data warehouses, we should be 

able to mine data that is scalable i.e. that can grow in size.  

As mentioned above, finding frequent itemset is a 

time consuming process.  So the first area of focus should be 

fast generation and pruning of candidate itemset. Thus by 

speeding up this step we will enhance the generation of 

frequent itemset. There are various approaches which have 

been followed such as depth first search, breadth first search, 

hybrid, partitioning the database as well as sampling. A large 

number of increasingly efficient algorithms to mine frequent 

itemset have been developed over the years [3], [4], [5], [6], 

[7]. 

Another area of focus is the data structure which has been 

used for storing the intermediate candidate itemset in the first 

step. It should be such that the data which is stored there can 

be retrieved fast. Several data structures have been used for 

mining frequent itemset. They can be divided into two main 

categories as array-based and tree-based. In array-based 

representation, transactions are stored as arrays of items in the 

memory. For example, H-Mine uses an array structure called 

Hstruct [4]. In tree-based representation, variants of prefix 

trees are used. A prefix tree can be used to organize the 

transactions by grouping and storing transaction data in 

memory. In [6], transactions are first grouped using a 

compressed prefix tree and mapped to an array-based data 

structure, which is then used for the mining process. 

The third issue on which the research is going on is 

parallel mining. Parallelism can be implemented at various 

stages. However synchronization can be problem while 

applying parallelism. But as finding frequent itemset is most 

expensive, since the number of itemset grows exponentially 

with the number of items, time complexity can be greatly 

reduced if parallelism is applied while finding frequent 

itemset. In this paper we mainly concentrate on the first issue 

i.e. quickly finding frequent itemset.    

In this paper we elaborate on the various traversal approaches 

which can be used for finding the candidate itemset. However, 

for mining the frequent itemset efficiently, we have to use a 

combination of effective traversal scheme, an effective but 

simple data structure as well as concepts of parallel mining. 

4. COMMONLY USED ASSOCIATION 

RULE MINING ALGORITHMS 

4.1 Breadth First approach 

In Breadth First or bottom-up approach, the computation 

starts from frequent 1-itemsets (the minimum length frequent 

itemset) and continues until all maximal (length) frequent 

itemset are found. Because of its way of working, it is also 

known as hierarchical algorithm. During the execution, every 

frequent itemset is explicitly considered. Such algorithms 

perform well when all maximal frequent itemset are short. 

However, performance drastically decreases when some of the 

maximal frequent itemset are relatively long. The classical 

Apriori algorithm proposed by Agrawal et al in 1993[8], its 

enhancement AprioriTid algorithm [9] are all examples of 

breadth first approach. Apart from this there are  also hash 

based techniques such as DHP algorithm(Direct hashing and 

pruning) proposed by Park et al in 1995[10] and Tree 

projection algorithm[11].The partition algorithm[12] and 

DIC(Dynamic Itemset counting)[13] are also categorized as 

breadth first algorithms. 

The Apriori and AprioriTid algorithms generate the 

candidate itemset to be counted in a pass by using only the 

itemset found large in the previous pass {without considering 

the transactions in the database.} The basic concept behind 

this is that any subset of a large itemset must be large. The 

AprioriTid [9] algorithm has the additional property that the 

database is not used at all for counting the support of 

candidate itemset after the first pass. Rather, an encoding of 

the candidate itemset used in the previous pass is employed 

for this purpose. AprioriTid has the enhanced feature that it 

replaces a pass over the original dataset by a pass over the 

candidate set. Another algorithm DHP [10] is a hash based 

algorithm and is especially effective for generating candidate 

2-itemsets, where the number of candidate 2-itemsets in terms 

of magnitude is smaller than the previous algorithms, thus 

resolving the performance bottleneck. The DHP algorithm 

(Park et al, 1995) tries to reduce the number of candidates by 

collecting approximate counts in the previous level. Like 

Apriori it requires as many database passes as the longest 

itemset. It also trims the transaction database at a much earlier 

stage of the iteration, thereby reducing the computational cost 

for later stages significantly. The Tree projection 

algorithm[11] proposed by Agrawal et al in 2001 represents 

frequent patterns as nodes of a lexicographic tree and uses the 

hierarchical structure of the lexicographic tree to successively 

project transactions and uses matrix counting on the reduced 

set of transactions for finding frequent patterns. The 

TreeProjection algorithm outperforms the Apriori method by 

more than an order of magnitude. At very low levels of 

support, the Apriori algorithm runs out of memory and is 

unable to run to completion. This behavior illustrates the 

memory advantages of using a lexicographic Tree projection 

algorithm over the hash tree implementation of the Apriori 

algorithm. As shown in [10], Fig.1 compares the Apriori and 

DHP over the various passes on a standard dataset 

T15.14.D100.It is observed that DHP, because of its hashing 

and timely pruning technique requires less than half the 

amount of time as compared to classical Apriori over 5 passes 

of candidate itemset generation. 

 

 

Fig 1: Execution time of Apriori and DHP 
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The partition algorithm proposed in 1995 reads the 

database at most two times to generate all significant 

association rules. Contrast this with the previous algorithms, 

where the database is not only scanned multiple times but the 

number of scans cannot even be determined in advance. All 

the partition algorithms such as the classic partition algorithm 

proposed by Saverese et al [12] and DIC(Direct Itemset 

counting) proposed by Brin [13] work well on large datasets. 

In partition algorithm [12], during the first scan, algorithm 

generates a set of all potentially large itemsets by scanning the 

database once. This set is a superset of all large item sets, i.e. 

it may contain false positives, but no false negatives are 

reported. During the second scan, counters for each of these 

item sets are setup and their actual support is measured in one 

scan of the database. The partition sizes are chosen such that 

each partition can be accommodated in the main memory so 

that the partitions are read only once in each phase. One major 

problem with Partition is that as the number of partitions 

increases, the number of locally frequent itemsets, increases. 

While this can be reduced by randomizing the partition 

selection, randomized partitions will have a large number of 

frequent itemsets in common. Partition can thus spend a lot of 

time in performing these redundant intersections.DIC [13] 

algorithm is also adopted by the thought of dividing the 

database into several partitions, each partition is marked at the 

beginning in the process of scanning the database, candidate 

items can be added in each marked partition, the support can 

be calculated when the itemsets are calculated.DIC separates 

the strict restriction between counting and generating 

candidates. Whenever a candidate reaches min-sup, DIC starts 

generating additional candidates based on it. The main 

bottleneck of data set partitioning algorithm is that the 

execution time is long and frequent itemsets generated are not 

very accurate. But this type of algorithm has a high degree of 

parallelism; just scanning the database twice, greatly reduces  

I / O operation to improve the efficiency of the algorithm. 

Overall, we can conclude that the breadth-first algorithm 

has the shortcoming of generating a large number of candidate 

items and need to repeatedly scan the database. This is 

definitely not suitable for databases with large number of 

itemsets. 

4.2 Depth First Approach 

Depth first search has the advantage that it is not 

necessary to re-create the projected transactions for each 

level-k of a search tree. The depth first projection technique 

provides locality of data access, which can exploit multiple 

levels of cache. Some of the depth first algorithms are FP-

growth [14], OIP [15] DepthProject [16] and Eclat [17]. 

In 2000 Han et al proposed Frequent pattern tree (FP-tree) 

structure, which is an extended prefix tree structure, used for 

mining the complete set of frequent patterns by pattern 

fragment growth. It encodes the dataset using a compact data 

structure FP-tree and extracts frequent itemsets directly from 

this structure. This algorithm is about an order of magnitude 

faster than the Apriori algorithm. However, the number of 

conditional FP-trees is in the same order of magnitude as 

number of frequent itemsets. The algorithm is not scalable to 

sparse and very large databases. The OIP algorithm [15] 

OpportuneProject mines complete set of frequent item sets, 

which is efficient on both sparse and dense databases at all 

levels of support threshold, and scalable to very large 

databases. It opportunistically chooses between two different 

data structures, array based or tree-based, to represent 

projected transaction subsets, and heuristically decides to 

build unfiltered pseudo projection or to make a filtered copy 

according to features of the subsets.DepthProject [16] 

employs a selective projection and uses the horizontal bit 

string representation for projected transaction subsets. Fig.2 

[14] shows the comparison of Tree Projection(Breadth first) 

and FP-Tree(Depth first) approach of runtime on 

T25:I10:D10K with 1K items as dataset. It shows that FP-

growth is better than TreeProjection when support threshold is 

very low and database is quite large. 

 

Fig 2: Execution time of FP Growth and Tree Projection 

The Eclat algorithm[17] proposed by Zaki et al is based 

on a parallel approach and partitions the database. It 

incorporates some features of clustering as well as parallel 

mining.The algorithm uses a scheme to cluster related 

frequent itemsets together, and to partition them among the 

processors. At the same time it also uses a different database 

layout which clusters related transactions together, and 

selectively replicates the database so that the portion of the 

database needed for the computation of association rules is 

local to each processor. After the initial set-up phase, the 

algorithm eliminates the need for further communication or 

synchronization thus eliminating the problem of 

syncronization faced in parallel mining. The algorithm further 

scans the local database partition only three times, thus 

minimizing I/O overheads.The gist is that depth first approach 

works well for large amount of data as compared with bredath 

first approach and so it can be applied for scalable datasets. 

4.3 Hybrid Approach 

There is also a hybrid approach wherein at some point 

breadth first approach is used and at some point depth first 

approach is applied in the same process. Some of the 

algorithms which work on hybrid approach are AprioriHybrid 

[18], Viper[19] , Pincer Search [20]and MaxClique [21].Fig.3 

below shows an example of the two approaches[20].  
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Fig 3: One Way searches 

        AprioriHybrid [18] uses Apriori in initial phase and then 

switch to AprioriTid in later passes .It performs better than 

Apriori and AprioriTid in most of the cases. However   the 

challenge to operate hybrid algorithm is to determine the 

switch over point. The advantage of AprioriHybrid over 

Apriori depends on how the size of the Ck (candidate k 

itemset) decline in the later passes. If Ck remains large until 

nearly the end and then has an abrupt drop, there gain will be 

no gain by using AprioriHybrid since we can use AprioriTid 

only for a short period of time after the switch. Another 

algorithm VIPER [19] is also based on hybrid approach. It is 

general-purpose, making no special requirements of the 

underlying database. VIPER stores data in compressed bit-

vectors called “snakes” and integrates a number of novel 

optimizations for efficient snake generation, intersection, 

counting and storage. There are workload regions where 

VIPER outperforms an optimal, but practically infeasible, 

horizontal mining algorithm. The Pincer Search algorithm 

[20] also combines both the bottom-up and the top-down 

searches. The primary search direction is still bottom-up, but a 

restricted search is also conducted in the top-down direction. 

This search is used only for maintaining and updating a new 

data structure, the maximum frequent candidate set. It is used 

to prune early candidates that would normally encounter in 

the bottom-up search. A very important characteristic of the 

algorithm is that it does not require explicit examination of 

every frequent itemset. Therefore the algorithm performs well 

even when some maximal frequent itemsets are long. As its 

output, the algorithm produces the maximum frequent set, i.e., 

the set containing all maximal frequent itemsets, thus 

specifying immediately all frequent itemsets. MaxClique [21] 

uses a hybrid traversal which contains a look-ahead phase 

followed by a pure bottom-up phase. The look-ahead phase 

consists of extending the frequent 2-itemsets until the 

extended itemset becomes infrequent. After the look-ahead 

phase, an Apriori-like traversal is executed. 

Table 1 gives the performance comparison for some 

major algorithms based on various criteria such as traversal 

technique used,data structures and number of scans. 

Table 1: Comparison of some major algorithms 

Algorithm 
Traversal 

Technique 
Data Structure 

Number of 

database 

scans 

Apriori Breadth First Hash Tree K 

DHP Breadth First Hash Tree K 

Partition Breadth First None 2 

DIC Breadth First Prefix tree <=K 

FP tree Depth First Prefix tree 2 

Eclat Depth First None >=3 

Pincer 
Search Hybrid 

Array and linked 
list >=4 

MaxClique Hybrid None >=3 

 

Fig. 4 shows the current scenario of research done 

on frequent itemset mining [22] in context to year of 

publication and its number of citations. However, as the data 

continue to increase in complexity (which includes size, type, 

and location of data), parallel computing will be essential in 

delivering fast interactive solutions for the overall KDD 

process. Applying parallel mining in collaboration with an 

effective data structure for storing candidate sets can be 

exploited for a scalable approach in mining association rules. 

 

Fig 4: Current status of research 

5. CONCLUSION 

In this paper, we have discussed the various algorithmic 

methods based on the traversal techniques for generating 

candidate itemset. 

We can conclude that there can be a scalable approach for 

mining frequent itemset if we explore the areas of parallel 

mining in combination with an efficient data structure. Also if 

we can efficiently use the main memory for storing the 

database (such as in partitioning) it will highly reduce the I/O 

scans thereby further increasing the speed. From the above 

study we conclude that almost each ARM algorithm has some 

favorable environment that provides high performance and 

faster computation of frequent itemset. These factors vary 

from algorithm to algorithm. Depending upon the application 

and the amount of data available, these various techniques can 

be applied in combination with different data structures. 

Although lot of work has been done in this research area, 

there can be a hybrid approach wherein we can combine the 

hybrid traversal technique along with a data structure and 

mine it in parallel. 
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