
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.6, October 2012

1

Dynamic Mobile Token for Web Security using
MD5 and One Time Password Method

I Gede N. Agung Jayarana

Department of Information
Technology Udayana University,

Bali, Indonesia

A. A. Kt. Agung Cahyawan
Department of Information

Technology Udayana University,
Bali, Indonesia

Gusti Made Arya Sasmita
Department of Information

Technology Udayana University,
Bali, Indonesia

ABSTRACT

Nowadays, websites have been converted from just a display

of information into an online transaction in the form of goods,

services, or money. With that development, the security of the

website is also need to be tightened, not just rely on

usernames and passwords but also to the dynamic code of the

mobile token which is difficult to be cracked [1].

Dynamic mobile token is an application which is planted in

the mobile phone to generate a code that was formed by the

method of one time password and can only be used for one

login session or transaction. Each mobile token has a value in

the "secret" variable that makes it unique or different from the

others, to separate one user access transactions or personal

page.

General Terms

Website Security, Mobile.

Keywords

One Time Password, MD5 Algorithm, Website Security,

Online Transaction Security, Mobile Token.

1. INTRODUCTION
One time password (OTP) is a password that is only valid for

a single login session or transaction [13]. OTP is widely used

as a password that is not planted in the database, but only as a

single use password and immediately forfeited. The benefit of

the OTP is located on the different application with a static

password which is planted in the database. The use of

encrypted static passwords are also not immune from the

attack by using a key logger [2] or sort of it, because if an

attacker managed to get the main password and OTP

password still login and transactions will not be processed

because the password is no longer valid. Code generation as

encryption is using Message-Digest Algorithm 5 (MD5)

which are widely used with 128-bit hash value, this algorithm

has been widely used for security applications, password

encryption, and integrity test of a file [3, 14].

The application of Dynamic Mobile Token uses three codes

consisting of epoch time as the key of one time password, the

value of the “secret” variable in which each user has a

different value so that when it degenerate at the same time, it

will result in different value, and 4 digit random value

between 1000 and 9999 resulting from the website. These

three values are then combined and encrypted with md5

algorithm to generate the output of the value of 128 bits or 32

hexadecimal numbers. Only first 6 digits of the hexadecimal

number are used from the result of the output.

The level security of the password is good enough to double

the security in an account and the login process, because each

password OTP is only valid once and if you do any mistake,

the code generated from the website will change anyway. The

time period of the password’s life span is 180 seconds, the

time to break the OTP password in ratio is 166 = 16,777,216

possibilities in a single input of passwords.

2. MOBILE TOKEN CONCEPT
Dynamic Mobile Token has a concept to secure online

transactions. Mobile Token becomes an additional factor in

the authentication process, to prove that the user who do the

login session or transaction process is a legitimate user.

2.1 Authentication Method
The aim of authentication is to prove that the accessing user is

the real user. There are many methods that can prove it, but

for authentication methods can be seen in the three categories

of methods:

1. Something You Know
It is the most common authentication method. This

method is relying on the confidentiality of information,

such as passwords and PIN. This method assumes that

no one knows the secret unless the user itself.

2. Something You Have
This is usually an additional factor to create a more

secure authentication. This method relies on items

which usually are unique, for examples, the magnetic

card/smartcard, hardware tokens, USB tokens, and else.

This method assumes that no one has the hardware

unless the user itself.

3. Something You Are
This is the most rarely used method because of

technology and the human factor as well. This method

relies on the uniqueness of the body parts that is not

exist in others such as fingerprint, voice, retina or

fingerprint. This method assumes that the parts of the

body such as fingerprints and retina are different with

others.

2.2 Password Mode
Dynamic Mobile Token there are two mode used [4, 12] :

1. Challenge/Response Mode (C/R) [9]

This mode is most often used when doing transaction. In

this mode the server provides a challenge in the form of

a series of numbers. That number must be entered into

the Mobile Token to get an answer (response). Then the

user enters the number that appears on its own Mobile

Token into text box on the website. Mobile Token will

issue a different code though with the same code

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.6, October 2012

2

challenge. Periodically depending on the time when we

answer the challenge in a token.

2. Self Generated Mode (Response Only)
In this mode the server does not give any kind of value

(challenge). Mobile Token users can directly issue a

series of combination of numbers and letters without

having to enter the challenge. As the mode C/R, Mobile

Token also issued different codes periodically

depending on the time when the token is ordered to

produce self-generated code.

2.3 Security Level
At the actual level of security in C/R and Self Generated

(Response Only) mode is nothing but the password as well.

However, it is different from the password used to login,

passwords from Mobile Token has limitation for security

reasons, namely:

1. May only be used one time

Once a password is used, the same password can no

longer be used for the second time. With this way, there

is no point to intercept the degenerated passwords of

Mobile Token because the password cannot be used

again. However, if the password is managed to be

intercepted so it never gets to the server, it is still a

valuable password as the server password has not been

used.

2. May only be used within a limited time span

Mobile Token generated passwords have a very limited

life, probably between 2-3 minutes. When the age

expires, the password cannot be used anymore, although

it has never been used. Time is a very critical element in

this system of Mobile Token

3. May only be used in the narrow context

If the password / PIN used for - login is a free context

password, in the sense that with the password only, it

can do many things, from seeing balances, check

transaction and else. But the token generated password

can only be used in a narrow context, for example, the

password that is used to buy a credit to the number

08123456789, is cannot be used to transfer funds.

3. GENERAL DESIGN SYSTEM

3.1 Authentication Process
Such as passwords in general, on condition that authentication

successful is the password that is sent to the client is the same

passwords stored on the server.

With security reasons rarely server stores user passwords in

plaintext form. Commonly, server stores user passwords in

hash form so it cannot be returned in plaintext form. So

successful authentication requirements can be interpreted as

the result of the calculation hash of the password sent by the

client must be the same with the hash value stored in the

server (see Figure 1).

4880c0340c65d142838ea33ace9b850ad8578edf8458ce06fbc5bb76a58c5ca4

Password

store

“qwerty”

hash function

Do hashes

match

exactly?

Access Denied Access Granted

Wrong password

Hashes don’t match

Saved password

hash

yesno

Proposed

Password

(cleartext)

Figure 1: Hash Password Authentication Process [5]

Mobile Token authentication process on the server has a very

critical time distinction. Users have to match the clock in the

phone with the clock on the server, the difference in hours that

allowed is less than 3 minutes and more than 3 minutes, more

than that is considered wrong or the code has been used.

The chain process of the connection system between the

server, client, user, Mobile Token, and the website has a

strong connection and cannot be separated. If one system

crash, the other series cannot be started or processed [11] (see

Figure 2).

UserPC (Website)

Database
Mobile Token

Enter

value

Send Value

Of Variable

“secret”

C/R or Response

Only Mode

Hash

Code

Enter Hash Code

Take value

Of Variable

“secret”

Figure 2: Connection Process in General

3.2 One Time Password Process
To avoid brute-forces [6] attacks to the hash value stored in

the server, before the user's password is generating its hash

value, firstly, add a random string called the salt. In the

program, the value of salt is the value of the variable in the

Mobile Token secret and also planted in the database. For

example, if the user's password is “qwerty”, before it

generates its hash value, password is added salt in the form

value of the secret variable for example “7fc04db” [10]. So

the hash value will be calculated three values combined into

“qwerty7fc04db” not only “qwerty”.

When viewed from the MD5 value “qwerty7fc04db” is

“77ed461ee664d2bb7ab75c16f338e943”, while the value of

MD5 original password without the combination “qwerty” is

“d8578edf8458ce06fbc5bb76a58c5ca4”. If the passwords do

not use salt, then the attacker can easily decrypt the password

using a brute force attack or rainbow table to get the value of

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.6, October 2012

3

the password in plain-text, since the site to store database

decrypted already widely available. And it is impossible for

attacker to build a database for mapping between the plaintext

and hash completely.

In Self Generated code generation mode with Mobile Token,

the server must be able to give toleration of time, because the

time on the server and also Mobile Token is not always

entirely correct. This time gap between the server’s request

for a password to the user generating the value of Mobile

Token. Steps which have to be taken a note, those are:

1. Seconds when the server request for a password (OTP)

from the user.

2. Seconds when Mobile Token is generating OTP.

3. Seconds when the server receives the OTP from the user

If you see above events then the important thing to note is a

time gap between events 1, 2, and 3. For example, assume that

time server has an exact time with a Mobile Token, if in the 0

second the server asks for a password from the user, because

of the slow internet access, it is on 30th seconds the user be

able to look at the browser that he must enter the OTP from

the token. Later, on the 60th minute the token generates OTP.

In the 65th second, the user submits the OTP value to the

server and will be received by the server at the 90th second.

To overcome the differences in generation time to the time of

submit the OTP value, then, the way to do is examine all OTP

possibilities in the time duration that is considered to be

adequate, for example 180 seconds.

If the system uses granularity 10 seconds then the server must

calculate the OTP value starts from the 0, 10, 20, 30, 40, to

180 second in increments of 10 seconds (see Table 1). In this

system, the generated OTP is in the form of 32 characters, and

is only used 6 first characters of combined MD5. In doing

authentication, the server should be comparing all OTP values

from the 0 second to 180 seconds or up to a maximum

tolerance. In this example the value of the epoch [7] 0 seconds

is EPOCH/10 = 134589691.

Table 1. Authentication Result of OTP Self Generated

Mode

Second EPOCH/10 Combination OTP

0 134589691 7fc04db134589691 7e8970

10 134589692 7fc04db134589692 501e90

20 134589693 7fc04db134589693 672eb5

30 134589694 7fc04db134589694 aae1e7

40 134589695 7fc04db134589695 54358e

50 134589696 7fc04db134589696 1d605d

60 134589697 7fc04db134589697 8f3e13

70 134589698 7fc04db134589698 cb4756

80 134589699 7fc04db134589699 6114ac

90 134589700 7fc04db134589700 39e6f0

100 134589701 7fc04db134589701 ea3b7f

110 134589702 7fc04db134589702 36705b

120 134589703 7fc04db134589703 913a48

130 134589704 7fc04db134589704 6e5673

140 134589705 7fc04db134589705 a3c438

150 134589706 7fc04db134589706 182f7b

160 134589707 7fc04db134589707 298420

170 134589708 7fc04db134589708 1a5e1a

180 134589709 7fc04db134589709 177e2b

In Table 1, the user sends OTP “8f3e13” then the

authentication will be successful when the server calculates

the OTP value on the 60 second since the server request OTP

from the user, but in fact there is the possibility of time

between server and Mobile Token is not exactly 100% so that

the server had to give a time tolerance not only forward, but

also backwards. Because it could be the time at the server is

faster than the time on the token. For example, when the time

on the server shows EPOCH/10 = 134589709, it could be time

token shows EPOCH/10 = 134589699 (Mobile Token’s time

is late 100 seconds).

If a time tolerance is 2 minutes (120 seconds), the server must

provide a tolerance of next 2 minutes and 2 minutes to the

before, relatively to the time when server receives the OTP

from the user and doing authentication. So, if a server

authenticates the EPOCH/10 = 1000, then the server must

calculate the entire value of OTP, starts from EPOCH/10 =

880 until EPOCH/10 = 1120.

Generation and authentication in the Challenge/Response

mode (C/R) is actually similar to the mode Self Generated.

When the self-generated mode has additional salt from the

epoch value, on the C/R mode, it is more salt. Combination is

not only added with the secret variable but also added with the

challenge. In Table 2 servers perform OTP calculations for the

0 second to 180 seconds with a 10 second granularity.

It is assumed that the resulting Challenge value is 7777 with a

secret variable “7fc04db”.

Table 2. Calculation Result of OTP C/R Mode

Second EPOCH/10 Combination OTP

0 134589691 7fc04db1345896917777 b1db26

10 134589692 7fc04db1345896927777 360bac

20 134589693 7fc04db1345896937777 f0c2fd

30 134589694 7fc04db1345896947777 488e38

40 134589695 7fc04db1345896957777 09b65d

50 134589696 7fc04db1345896967777 f706dd

60 134589697 7fc04db1345896977777 3451c3

70 134589698 7fc04db1345896987777 d9c456

80 134589699 7fc04db1345896997777 d9873c

90 134589700 7fc04db1345897007777 86970c

100 134589701 7fc04db1345897017777 fe427b

110 134589702 7fc04db1345897027777 321768

120 134589703 7fc04db1345897037777 fd2e8e

130 134589704 7fc04db1345897047777 1a0346

140 134589705 7fc04db1345897057777 6f6d99

150 134589706 7fc04db1345897067777 8b2beb

160 134589707 7fc04db1345897077777 a6500e

170 134589708 7fc04db1345897087777 f94ee4

180 134589709 7fc04db1345897097777 1da125

On the C/R mode, there is an additional field which has to be

joined before calculating its hash value, the challenge.

Challenge value is known by the server and also by Mobile

Token (when users type challenge to Mobile Token), so that

both token and the server will be able to calculate the same

OTP and proceed the authentication process.

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.6, October 2012

4

3.3 Program Structure
To the application of Dynamic Mobile Token, it has

uniqueness on its secret variable. These variables are planted

in the main class, to create a permanent secret value, the

function fopen() in PHP is used to create a java file. Then the

fwrite() function is used to write a series of program code.

The making of secret variables such as the following

examples on one line of PHP.

$myFile = "MobileToken.java";

$fh = fopen($myFile, "w") or die("can't open file");

fwrite($fh, "int secret = $_SESSION[secret_id];\r\n");

The code program above works to create the variable “secret”

has a different value from any Mobile Token. If the file has

been created, the next file you process is md5.java, this file is

created using the same function fopen() to create a java file

and fwrite() to write a series of md5 algorithm on it.

4. IMPLEMENTATION AND RESULT
In this implementation, the example used is a type of Nokia

C3 mobile phone with the time difference between the server

and the Mobile Token is about 10 seconds.

Figure 3: Pass Code in Self Generated Mode on the Mobile

Token

Figure 3 shows the Mobile Token generate random numbers

with Self Generated Mode. Pass Code then entered into the

website in order to avoid the possibility of life span of OTP

have been expired (see Figure 4).

Figure 4: Entering the Pass Code on the Self Generated

Text Box

The results of Pass Code generation after checking the time in

the period up to EPOCH-180 to EPOCH+180 to avoid any

differences of Mobile Token and server, more or less than 180

seconds (see Figure 5).

Figure 5: Password Calculation Result on Self Generated

Mode

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.6, October 2012

5

Challenge/Response mode (C/R) is not much different from

its application to the Self Generated Mode. Mobile Token can

generate Pass Code if it gets challenge from the server. Figure

6 shows the challenge generated code is “8102”, then the

challenge code is entered into the Mobile Token (see Figure

7) and the result is a Pass Code (see Figure 8) is entered into

the text box pass code.

Figure 6: Challenge Value and Pass Code Input on

Challenge / Response Mode

Challenge Value randomly generated between 1000 to 9999.

When the value of Pass Code on Mobile Token is entered into

the website and the submit button is pressed, then the

counting starts with matching the Pass Code with a value of

OTP

Figure 7: Challenge code is inputted on the Mobile Token

Figure 8 : Pass Code in Challenge/Response on Mobile

Token

The results of the code generation Challenge/Response mode

is then calculated, the Pass Code compatibility with the OTP.

C/R Mode also calculates OTP of EPOCH-180 to

EPOCH+180 (see Figure 9).

Figure 9: Password Calculation Result on

Challenge/Response Mode

In addition, there is a register link at the bottom of the website

(see Figure 4 or Figure 6) to create a new username. When the

newly username created, secret variable is automatically made

randomly by checking first to the database so that there is no

same secret value (see Figure 10).

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.6, October 2012

6

Figure 10: Register Menu

In Figure 10, when the username “Tomy” is made. The

system will automatically create a java file where there are

two files, md5.java and Token.java. Variables secret is

planted in the Token.java file, the user must change the files

using the jar maker because PHP does not support in

compiling java.

5. CONCLUSION

Dynamic Mobile Token based on the previous explanation

and application is helping much in the security level of a

website. In addition, in its application, it can be applied to any

website because the program is made as simple as possible.

Security created by the Mobile Token and OTP are able to

deal with key logger attack, brute force attack, and other

attacks, because the Pass Code is generated in the form of

dynamic passwords with salt, such as epoch time and “secret”

variables [10].

This application emphasizes how a Mobile Token can be run

without the initial authentication process first, so the process

can be shortened to avoid the difficult process of

authentication [12].

6. ACKNOWLEDGMENTS

Our thank goes to Department of Information Technology

Udayana University, Bali, Indonesia who has helped organize

this research.

7. REFERENCES

[1] Kurniawan, Yusuf Ir. MT. 2004. KRIPTOGRAFI

Keamanan Internet dan Jaringan Komunikasi.

Informatika.

[2] Kiddo. 2010. Hacking Website: Menemukan Celah

Keamanan & Melindungi Website dari Serangan Hacker.

Mediakita

[3] Rivest, Ronald L. 1992. The MD5 Message Digest

Algorithm.

[4] N. Haller, Bellcore, and C. Metz. 1996. A One-Time

Password System. Kaman Sciences Corporation.

[5] Friedl, Sthepen J. 2005. An Illustrated Guide to

Cryptographic Hashes.

http://www.unixwiz.net/techtips/iguide-crypto-

hashes.html.

[6] J. Black, M. Cochran, T. Highland. 2006. A Study of the

MD5 Attacks: Insights and Improvements.

[7] Unix Time. http://en.wikipedia.org/wiki/Unix_time

[8] Cheng Fred. July 2010. A Secure Mobile OTP Token.

International Technological University

[9] Arya Sapoetra Y. June 2010. Rancang Bangun Arsitektur

Library Sistem Autentikasi One Time Password

Menggunakan Prosedur Challenge-Response.

Informatics Engineering, Pembangunan Nasional

“Veteran” University, East Java.

[10] Sharma Nidhi, Sharma Alok, and Sharma Monika. 2011.

A More Secure Hashing Scheme for Information

Authentication. Proceedings published in International

Journal of Computer Applications (IJCA).

[11] Mohan R, Partheeban N. April 2012. Secure Multimodal

Mobile Authentication Using One Time Password.

International Journal of Recent Technology and

Engineering (IJRTE), Volume-1, Issue-1.

[12] Fadi Aloul, Syed Zahidi, Wassim El-Hajj. 2009. Two

Factor Authentication Using Mobile Phones. Digital

Library Telkom Institute of Technology (IEEE).

[13] Dr. Mark D. Bedworth PhD BSc FSS. February 2008. A

Theory of Probabilistic One-Time Password. Computer

Science Computer Engineering and Applied Computing,

Security and Management.

[14] MD5 Algorithm. http://en.wikipedia/wiki/MD5

