A New Class sc*g-Set Weaker Form of Closed Sets in Topological Spaces

A. Pushpalatha Department of Mathematics, Government Arts College Udumalpet-642126, Tirupur District Tamilnadu, India

ABSTRACT

In this paper, we have introduced a new classes of closed sets, as weaker forms of closed sets namely sc*g-closed sets and continuous functions in topological spaces.

Keywords

scg-closed, scg- continuous functions.

AMS SUBJECT CLASSIFICATION (2000): 54A40, 03F55

1. INTRODUCTION

In 1970, Levine[1] first considered the concept of generalized closed(briefly,g-closed) sets were defined and investigated. Negaveni[10]investigated weakly generalized closed sets(sg-closed sets). Tong [8] and Hatir et al [4] introduced B-sets and t-sets and α^* -sets respectively. t-sets and α^* -sets are weak forms of open sets. In this paper, we have introduced a new class of sets called scg-closed, sc*g-closed, sc(s) g-closed Sets and study some of their properties.

2. PRELIMINARIES

Definition: 2.1 A subset of a topological space(X, τ) is called

(i) Generalized closed(g-closed)[1] if $cl(A) \subseteq U$ whenever $A \subseteq U$, and U is open in X.

(ii)Semi-generalizedclosed(sg-closed)[9]if $scl(A) \subseteq U$ whenever $A \subseteq U$, and U is semi open in X.

(iii) Generalized semi preclosed[12]if spcl(A) \subseteq U whenever A \subseteq U, and U is open in X.

(iv) Weakly generalized closed[10] if $cl(int(A)) \subseteq U$ whenever $A \subset U$, and U is open in X.

Definition: 2.2 For a subset A of X, the preclosure of A[11], denoted by pcl(A), is defined as the intersection of all preclosed sets containing A in X and the preinterior of A[11], denoted by pint(A), is defined as the union of the preopen sets contained in A in X. semi closure of A[16], denoted by scl(A), semi interior of A, denoted by sint(A) are defined similarly.

Result: 2.3 For a subset S of X

(a) pcl(A) = A U cl(int(A))[11](b) pint(A) = A I int(cl(A))[11](c) scl(A) = A U int(cl(A))[17](d) sint(A) = A I cl(int(A))[17] R. Nithyakala Department of Mathematics Vidyasagar college of Arts and Science Udumalpet, Tirupur (District) Tamilnadu India

Definition: 2.4 For a subset S of X is called

(a) a t-set in X[8] if int(A) = int(cl(A)),

(b) a B-set in X[8] if A = GI F where G is open and F is a t-set in X,

(c) an α^* -set in X[4] if int(A) = int(cl(int(A))),

(d) a C-set(Due to Sundaram)[7] if A = G I F where

G is g-open and F is a t-set in X,

(e) a C-set (Due to Hatir, Noiri and Yuksel)[4] if A

= GI F where G is open and

F is an α^* -set in X,

(f) a C*-set in X[5] if A= G I F where G is g-open and F is a α^* -set in X,

Definition: 2.5 A map f: $X \rightarrow Y$ is called

- (a) semicontinuous[1] if $f^{-1}(F)$ is semiclosed in X for each closed set F in Y,
- (b) generalized continuous (g-continuous)[14] if f⁻¹(F) is g-closed in X for each closed set F in Y,
- (c) α -generalized continuous (α gcontinuous)[15] if f⁻¹(F) is α g-closed in X for each closed set F in Y,
- (d) generalized semicontinuous (gscontinuous)[6] if $f^{-1}(F)$ is gs-closed in X for each closed set F in Y,
- (e) closed map if for each closed set F in X, f(F) is a closed set in Y.
- (f) open map if for each open set F in X, f(F) is a open set in Y.

3. sc*g SETS IN TOPOLOGICAL SPACES

Definition: 3.1 A subset A of X is called

(i) a scg-closed set if $scl(A) \subseteq U$ whenever, $A \subseteq U$ and U is C-set in X.

Remark : 3.2

(i) The complement of scg-closed set is scg-open set in X.

Theorem : 3.3 Every closed set in X is sc*g-closed set in X but not conversely.

Proof :- Let A be a closed set in X. Let U be a sc*g-closed set such that $A \subseteq U$. Since A is closed, cl(A) = A, $cl(A) \subseteq U$. But $scl(A) \subseteq cl(A) \subseteq U$. Hence $scl(A) \subseteq U$. Therefore A is sc*g-closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example : 3.4 Consider the topological space

X = {a,b,c} with the topology $\mathcal{T} = \{ \varphi, X, \{a, b\} \}$. The set {a, b} is sc*g-closed sets but not a closed set in X.

Theorem : 3.5 The Union of two sc*g-closed sets is sc*g-closed in X.

Proof :- Let A and B be sc^*g -closed sets in X. Let U be a sc^*g -closed set in X such that AUB \subseteq U. Then A \subseteq U and B \subseteq U. Since A and B are sc^*g -closed set, $scl(A) \subseteq$ U and $scl(B) \subseteq$ U. Hence scl(AUB) = scl(A) U $scl(B) \subseteq$ U.

Therefore AUB is sc*g-closed in X.

Theorem : 3.6 Every g-closed set in X is sc*g-closed set in X but not conversely.

Proof :- Let A be a g-closed set in X. Let $A \subseteq U$, U is a sc*g-closed set, and U is a C* set,

 $U = PI \quad Q \text{ where } P \text{ is } g\text{-open, } Q \text{ is } \alpha^*\text{-set. Hence } U \\ \subseteq P \text{ and } U \subseteq Q, \quad A \subseteq U \subseteq P, P \text{ is } g\text{-open. Now,} \\ cl(A) \subseteq P, \quad scl(A) \subseteq cl(A) \subseteq U \subseteq P. \text{ Hence } \\ scl(A) \subseteq U. \text{ Therefore } A \text{ is } sc^*g\text{-closed set in } X.$

The converse of the above theorem need not be true as seen from the following example.

Example : 3.7 Consider the topological space $X = \{a, b, c\}$ with the topology $\tau = \{ \varphi, X, \{a, b\} \}$. The set $\{a, b\}$ is sc*g-closed set but not a g-closed set in X.

Theorem : 3.8 Every gs-closed set in X is sc*g-closed set in X but not conversely.

Proof :- Let A be a gs-closed set in X. Let $A \subseteq U$, and U is

a C* set, U = P I Q where P is g-open, Q is α^* -set. Therefore U \subseteq P and U \subseteq Q, A \subseteq U \subseteq P,

> P is g-open. Now, $cl(A) \subseteq P$, $scl(A) \subseteq cl(A) \subseteq U$ $\subseteq P$. Hence $scl(A) \subseteq U$. Therefore A is sc^*g -closed set in X.

> The converse of the above theorem need not be true as seen from the following example.

Example : 3.9 Consider the topological space $X = \{a,b,c\}$ with the topology $\tau = \{\varphi, X, \{a, b\}\}$. The set $\{a, b\}$ is sc*g-closed set but not a gs-closed set in X.

Theorem : 3.10 Every ag-closed set in X is sc*g-closed set in X but not conversely.

Proof :- Let A be a α g-closed set in X. Let A \subseteq U, Since U

is a C* set, U = P I Q where P is g-open, Q is α^* -set. Therefore U \subseteq P and U \subseteq Q, A \subseteq U \subseteq P, P is g-open. Now, $cl(A) \subseteq P$, $scl(A) \subseteq cl(A) \subseteq U \subseteq P$. Hence $scl(A) \subseteq U$.

Therefore A is sc*g-closed set in X. The converse of the above theorem need not be true as seen from the following example.

Example : 3.11 Consider the topological space $X = \{a,b,c\}$ with the topology $\tau = \{ \varphi, X, \{a, b\} \}$. The set $\{a, b\}$ is sc*g-closed set but not a α g-closed set in X.

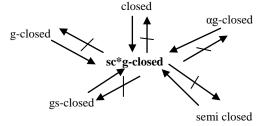
Theorem : 3.12 Every semi closed set in X is sc*g-closed set in X but not conversely.

Proof :- Let A be a semi closed set $scl(A) \subseteq U$, $A \subseteq U$, U is a C* set.Since $cl(int(A)) \subseteq U$. Therefore AU $cl(int(A)) \subseteq U$. Hence $scl(A) \subseteq U$. Therefore A is sc^*g -closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example : 3.13 Consider the topological space $X = \{a, b, c\}$ with the topology $\mathcal{T} = \{ \varphi, X, \{a, b\} \}$. The set $\{a, b\}$ is sc*g-closed set but not semi closed set in X.

We illustrate the relations between various sets in the following diagram:



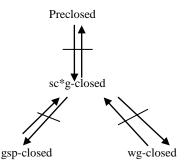
In the above diagram none of the implications can be reversed.

Example : 3.15 Consider the topological space $X = \{a,b,c\}$ with the topology $\tau = \{\varphi, X, \{a, b\}\}$. In this topology $\{a\}$, $\{b\}$ are preclosed set but not sc*g-closed set and the set $\{a, b\}$ is sc*g-closed set but not a preclosed set.

Example : 3.16 Consider the topological space $X = \{a,b,c\}$ with the topology $\tau = \{\varphi, X, \{a, b\}\}$. In this topology $\{a\}$, $\{b\}$ are gsp-closed set but not sc*g-closed set and the set $\{a, b\}$ is sc*g-closed set but not a gsp-closed set.

Example : 3.17 Consider the topological space $X = \{a,b,c\}$ with the topology $\mathcal{T} = \{ \varphi, X, \{a, b\} \}$. In this topology $\{a\}$, $\{b\}$ are wg-closed set but not sc*g-closed set and the set $\{a, b\}$ is sc*g-closed set but not a wg-closed set.

Remark : 3.14 From the above examples we obtain the following diagram with independent sets.



4. sc*g CONTINUOUS MAPPINGS IN TOPOLOGICAL SPACES

In this section we introduce acg continuous mappings.

Definition : 4.1 A map $f: X \rightarrow Y$ from a topological space X in to a topological space Y is called sc*g-continuous if the inverse image of every closed set in Y is sc*g-closed in X.

Theorem : 4.2 If a map $f : X \rightarrow Y$ is continuous, then it is sc*g-continuous but not conversely.

Proof: Let $f : X \to Y$ be a continuous map. Let F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is closed in Y. Since every closed set is sc*g-closed set, $f^{-1}(F)$ is sc*g-closed set in X. Therefore, f is sc*g-continuous.

The converse of the above theorem need not be true as seen from the following

example.

Example : 4.3 Let $X = Y = \{a,b,c\}$, $\mathcal{T} = \{ \varphi, X, \{a, b\} \}$, $\sigma = \{ \varphi, Y, \{a\} \}$. Let $f : (X, \mathcal{T}) \rightarrow (Y, \sigma)$ be the identity map. Then f is sc*g-continuous but not continuous. For, the closed

set {b, c} in Y, but $f^{-1}(\{b, c\}) = \{b, c\}$ is not closed in X. Therefore, f is not continuous.

Theorem : 4.4 If a map $f : X \rightarrow Y$ is g-continuous, then it is sc*g-continuous but not conversely.

Proof: Let $f: X \to Y$ be a g-continuous map. Let F be any gclosed set in Y, then the inverse image $f^{-1}(F)$ is g-closed in Y. Since every g-closed set is sc*g-closed set, $f^{-1}(F)$ is sc*gclosed set in X. Therefore, f is sc*g-continuous.

The converse of the above theorem need not be true as seen from the following example.

Example : 4.5 Let $X = Y = \{a,b,c\}$, $T = \{ \varphi, X, \{a, b\} \}, \sigma =$

 $\{ \varphi, Y, \{c\} \}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Then f is sc*g-continuous but not g-continuous. For, the closed set

 $\{a, b\}$ in Y, but $f^{-1}(\{a, b\}) = \{a, b\}$ is not g-closed in X. Therefore, f is not g-continuous.

Theorem : 4.6 If a map $f: X \rightarrow Y$ is αg -continuous, then it is sc*g-continuous but not conversely.

Proof: Let $f: X \to Y$ be a α g-continuous map. Let F be any α g-closed set in Y, then the inverse image $f^{-1}(F)$ is α g-closed in Y. Since every α g-closed set is s*cg-closed set, $f^{-1}(F)$ is sc*g-closed set. Therefore, f is sc*g-continuous.

The converse of the above theorem need not be true as seen from the following example.

Example : 4.7 Let $X = Y = \{a,b,c\}$, $T = \{ \varphi, X, \{a, b\} \}$, $\sigma =$

 $\{ \varphi, Y, \{c\} \}$. Let $f : (X, \mathcal{T}) \rightarrow (Y, \sigma)$ be the identity map. Then f is sc*g-continuous but not α g-continuous. For, the closed set

{a, b} in Y, but $f^{-1}(\{a, b\}) = \{a, b\}$ is not αg -closed in X. Therefore, f is not αg -continuous.

Theorem : 4.8 If a map $f: X \rightarrow Y$ is semi continuous, then it is sc*g-continuous but not conversely.

Proof: Let $f: X \to Y$ be a semi continuous map. Let F be any semi closed set in Y, then the inverse image $f^{-1}(F)$ is semi closed in Y. Since every semi closed set is s*cg-closed set, $f^{-1}(F)$ is sc*g-closed set. Therefore, f is sc*g-continuous.

The converse of the above theorem need not be true as seen from the following example.

Example : 4.9 Let $X = Y = \{a,b,c\}$, $\tau = \{\varphi, X, \{a\}\}$, $\sigma = \{\varphi, Y, \{a, b\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is sc*g-continuous but not semi continuous. For, the closed set

{b, c} in Y but $f^{-1}({b, c}) = {b, c}$ is not semi closed in X. Therefore, f is not semi continuous.

Theorem : 4.10 If a map $f : X \rightarrow Y$ is gs-continuous, then it is sc*g-continuous but not conversely.

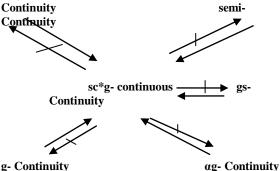
Proof: Let $f: X \to Y$ be a gs-continuous map. Let F be any gs-closed set in Y, then the inverse image $f^{-1}(F)$ is gs-closed in Y. Since every gs-closed set is sc^*g -closed set, $f^{-1}(F)$ is sc^*g -closed set. Therefore, f is sc^*g -continuous.

The converse of the above theorem need not be true as seen from the following example.

Example : 4.11 Let $X = Y = \{a,b,c\}$, $\tau = \{\varphi, X, \{a, b\}\}$, $\sigma = \{\varphi, Y, \{c\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is sc*g-continuous but not gs-continuous. For, the closed set

 $\{a, b\}$ in Y, but f⁻¹($\{a, b\}$) = $\{a, b\}$ is not g-closed in X. Therefore, f is not gs-continuous.

We illustrate the relations between various generalizations of continuous functions in the following diagram:



In the above diagram none of the implications can be reversed.

5 . sc*g-closed maps and sc*g-open maps in Topological spaces

Malghan [17] introduced and investigated some properties of generalized closed maps in topological spaces. The concept of generalized open map was introduced by Sundaram [6]. Biswas [18]defined semi open mappings as a generalization of open mappings and studied several of its properties.

In this section, we introduced the concepts of sc*gclosed maps and sc*g-open maps in topological spaces.

Definition :5.1 A map $f : X \rightarrow Y$ is called sc*g-closed map if for each closed set F in X, f(F) is a sc*g-closed set in Y.

Theorem : 5.2 If $f : X \rightarrow Y$ is a closed map, then it is sc*gclosed but not conversely.

Proof : Since every closed set is sc*g-closed the result follows.

The converse of the above theorem need not be true as seen from the following example.

Example : 5.3 Consider the topological spaces $X=Y=\{a, b, c\}$ with topologies $\tau = \{\varphi, X, \{a\}\}$ and $\sigma = \{\varphi, Y, \{a, b\}\}$. Here $C(X, \tau) = \{\varphi, X, \{b, c\}\}, C(Y, \sigma) = \{\varphi, Y, \{c\}\}$ and

sc*g-(Y, σ) = { φ , Y, {c}, {a, b}, {b, c}, {a, c}}. Let f be the

identity map from X onto Y. Then f is sc*g-closed but not a closed map, since for the closed set {b, c} in (X, τ), f((b, c)) = (b, c) is not a closed set in X

 $f({b, c}) = {b, c}$ is not a closed set in Y.

Definition : 5.4 A map $f : X \rightarrow Y$ is called a sc*g-open map if f(U) is sc*g-open in Y for every open set U in X.

Theorem : 5.5 If $f : X \rightarrow Y$ is an open map, then it is sc*g-open but not conversely.

Proof : Let $f : X \to Y$ be an open map. Let U be any open set in X. Then f(U) is an open set in Y. Then f(U) is sc*g-open, since every open set is sc*g-open. Therefore f is sc*g-open.

The converse of the above theorem need not be true as seen from the following example.

Example : 5.6 Consider the topological spaces $X=Y=\{a, b, c\}$ with topologies $\tau = \{\varphi, X, \{a\}\}$ and $\sigma = \{\varphi, Y, \{a, b\}\}$. Here sc*g-(Y, σ) = { φ , Y, {a}, {b}, {c}, {a, b}}. Then the identity function f: X \rightarrow Y is sc*g-open but not open, since for the open set {a} in (X, τ), f({a}) = {a} is sc*g-open but not open in (Y, σ). Therefore f is not an open map.

Theorem : 5.7 A map $f : X \to Y$ is sc*g-closed iff for each subset S of Y and for each open set U containing $f^{-1}(S)$ there is a sc*g-open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof : Suppose f is sc*g-closed. Let S be a subset of Y and U is an open set of X such that

 $f^{-1}(S) \subseteq U$. Then V = Y - f(X-U) is a sc*g-open set containing S such that $f^{-1}(V) \subseteq U$. Conversely, suppose that F is a closed set in X. Then $f^{-1}(Y-f(F)) = X - F$ and X - F is open. By hypothesis, there is a sc*g-open set V of Y such that Y- $f(F) \subseteq V$ and $f^{-1}(V) \subseteq X - F$. Therefore $F \subseteq X - f^{-1}(V)$. Hence

 $Y - V \subseteq f(F) \subseteq f(X - f^{-1}(V)) \subseteq Y - V$, which implies f(F) = Y - V. Since Y - V is sc*g-closed and thus f is sc*g-closed map.

Theorem : 5.8 If $f : X \to Y$ is g-continuous and sc*g-closed and A is a sc*g-closed set of X, then f(A) is sc*g-closed in Y. **Proof :** Let $f(A) \subseteq O$ where O is an g-open set of Y. Since f is g-continuous, $f^{-1}(O)$ is an g-open set containing A. Hence $cl(A) \subseteq f^{-1}(O)$ as A is a sc*g-closed set. Since f is sc*gclosed f(cl(A)) is a sc*g-closed set contained in the g-open set O, which implies that $cl(f(cl(A)) \subseteq O$ and hence $cl(f(A)) \subseteq$ O. So f(A) is a sc*g-closed set in Y.

Corollary : 5.9 If $f : X \rightarrow Y$ is continuous and closed and A is a sc*g-closed set of X, then f(A) is sc*g-closed in Y.

Proof: Since every continuous map is g-continuous and every closed map is sc*g-closed, by above theorem the result follows.

Theorem : 5.10 If $f: X \rightarrow Y$ is a closed map and $h: Y \rightarrow Z$ is a sc*g-closed then $h: Y \rightarrow Z$ is sc*g-closed then $h \circ f: X \rightarrow Z$ is a sc*g-closed.

Proof : If $f: X \to Y$ is a closed map and $h: Y \to Z$ is a sc*gclosed map. Let V be any closed set in X. Since $f: X \to Y$ is closed, f(V) is closed in Y and since $h: Y \to Z$ is sc*g-closed, h(f(V)) is a sc*g-closed set in Z. Therefore $h Of: X \to Z$ is a sc*g-closed map.

Theorem : 5.11 If $f: X \rightarrow Y$ is a sc*g-closed and A is closed set in X. Then $f_A: A \rightarrow Y$ is sc*g-closed.

Proof: Let V be closed set in A. Then V is closed in X. Therefore it is sc*g-closed in X. By Theorem 5.8, f(V) is sc*g-closed. That is $f_A(V) = f(V)$ is sc*g-closed in . Therefore $f_A: A \rightarrow Y$ is sc*g-closed.

The next theorem shows that normality is preserved under continuous and sc*g-closed maps.

Theorem : 5.12 If $f : X \rightarrow Y$ is a continuous, sc*g-closed map from a normal space X onto a space Y, then Y is normal.

Proof : Let A, B be disjoint closed set Y. Then $f^{-1}(A)$, $f^{-1}(B)$ are disjoint closed sets of X. Since X is normal, there are disjoint open sets U, V in X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. By Theorem 5.7, and since f is sc*g-closed, there are sc*g-closed sets G, H in Y such that $A \subset G$,

B⊆H and f⁻¹(G) ⊆U and f⁻¹(H) ⊆V. Since U, V are disjoint, int(G) and int(H) are disjoint open sets. Since G is sc*g-open, A is closed and A⊆G ⇒A⊆int(G). Similarly B ⊆int(H). Hence Y is normal.

6. CONCLUSION

In this paper we have introduced $sc^*(s)g$ -closed sets and continuous functions in topological spaces and studied some of its basic properties. Also we have studied the relationship between sc^*g -closed sets and continuous functions with some of the sets already exist. in topological spaces.

7. REFERENCES

- Levine , N., Semi-open sets and semi-continuity in topological spaces, Amer.Math.Monthly,70(1963),36-41.
- [2] Levine, N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970),89-96.
- [3] Maki., Devi, R., and Balachandran, K., Generalized αclosed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
- [4] Hatir, E., Noiri, T., and Yuksel, S., A decomposition of continuity, ActaMath. Hungar.,70(1996),145-150.
- [5] Rajamani, M., Studies on decompositions of generalized continuous maps in topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, (2001).
- [6] Sundaram, P., Studies on generalizations of continuous maps in topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore,(1991).
- [7] Sundaram, P., On C-continuous maps in topological spaces, Proc. of 82nd session of the Indian Science Congress, Calcutta (1995),48-49.
- [8] Tong, J., On decomposition of continuity in topological spaces, ActaMath. Hungar.,54(1989),51-55.
- [9] Bhattachraya and Lahiri, B.K., Semi-generalized closed sets in topology, Indian J.Math., 29(3)375-382(1987)
- [10] Nagaveni, N., Studies on Generalizations of Homeomorphisms in Topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, (1999).
- [11] Andrijevic, D., Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [12] Dontchev, J., On generalizing semi-pre open sets, Mem. Fac. Sci. Kochi Univ. Ser. A.

International Journal of Computer Applications (0975 – 8887) Volume 55– No.4, October 2012

Math., 16(1995), 35-48.

[13] Nithyakala, R., scg, sc*g, sc(s)g-closed sets in Topological spaces, Proc. Of 99th Indian

Science Congress, Bhubaneswar(2012), 89.

- [14] Balachandran, K., Sundaram, P., and Maki, H., On generalized continuous maps in Topological spaces, Mem. Fac. Kochi Univ. Ser. A. Math., 12(1991), 5-13.
- [15] Maki, H., Devi, R., and Balachandran, K., Associated topologies of generalized α-closed sets and αgeneralized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15 (1994), 51-63.
- [16] Crossley, S.G., and Hildebrand, S.K., Semi-closure, Texas J. Sci., 22 (1971), 99-112.
- [17] Malghan, S. R., Generalized closed maps, J. Karnataka Univ. Sci., 27(1982), 82-88.
- [18] Biswas, N., On some mappings in topological spaces, Bull. Cal. Math. Soc., 61(1969), 127-135.
- [19] Crossley, S.G., and Hildebrand, S.K., Semi-topological properties, Fund. Math., 74(1972), 233-254.
- [20] Gentry, K. R. and Hoyle, H.G., Somewhat continuous functions, Czechoslovak Math. J.,(1971), 5-12.