
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

1

Enhanced DAGitizer for Grid Computing through the
Discovery of Least Cost Path

D. I. George Amalarethinam, PhD.

Department of Computer Science,
Jamal Mohamed College,

Trichirappalli, Tamil Nadu, India

P. Muthulakshmi

Department of Computer Science
SRM University

Chennai, Tamil Nadu, India

ABSTRACT

The need for scheduling algorithms arise from the

requirement to perform multitasking, essentially for modern

computing systems. Scheduling is the greatest cause that

optimizes the objective function that involved with the

selection of resources. In scheduling, every aspect of

execution is based on decision(s). The general objective of

scheduling algorithms is to effectively use the available

processors to execute parallel programs, possibly in the least

utilization of time. A group of interdependent jobs/tasks forms

the workflow application. Scheduling is to map the jobs/tasks

on to the collection of heterogeneous resources available in a

massive geographic spread. Most complicated applications

consist of interdependent jobs that coordinate to solve a

problem. The completion of a particular job is the criterion

function that has to be essentially met in order to start the

execution of those jobs that depend upon it [1]. This kind of

workflow application may be represented in the form of a

Directed Acyclic Graph (DAG). Grid Workflow is such an

application and is modeled by DAG. DAGitizer could

generate DAG in a random fashion [2]. This paper proposes a

tool (developed using Java) which is an enhanced form of

DAGitizer that could find the least cost path between source

and destination nodes.

Keywords: Grid Workflow, Scheduling, Directed Acyclic

Graph, Randomizer, Communication Cost, Computation Cost,

Cost Matrix, Least Cost Path.

1. INTRODUCTION

Grid computing environments are naturally dynamic and

random environments that enable sharing of services among

numerous, diverse users in wider geographic stretch. Grid

schedulers intend to make the most efficient use of Grid

resources that could provide best performances to the

associated applications. Grid is a collection of resources,

which includes networks, machines, applications and data

store. Furthermore, grid computing enables careful selection,

sharing, coordination of resources; also the integration among

the resources. The aim of such computing technology will be

met only when the resources are effectively allocated with

appropriate jobs. High performance will be achieved only

when the scheduling of group of dependent tasks is

intensively done. In grids, users may face hundreds of

thousands of computers that are available for utilization.

Though it is, it is impossible for anyone to manually assign

jobs to computing resources in grids. And that an automated

means of assigning must be done, which is here meant as

scheduling. An effective scheduling aims at minimum

turnaround time. To show such scheduling through an

illustration, the best ever known possibility is Directed

Acyclic Graph. Grid Workflow scheduling is replicated

through Directed Acyclic Graph, and the paper focuses on the

generation of effective DAG, which is made in a much

automated way through randomizer based on the number of

tasks involved[1] and finding the least cost path between an

arbitrary source node and an arbitrary destination node.

 A directed acyclic graph is a directed graph with no cycles

and is formed by a collection of vertices and directed edges,

each edge connecting one vertex to another, such that there is

no way to start at some vertex v and follow a sequence of

edges, that eventually loops back to v again[3][4][5].

Scheduling decisions in dynamic scheduling algorithms are

made at run time [6]. The objective of dynamic scheduling

algorithms include not only creating high quality task

schedules, but also minimizing the run time scheduling

overheads [7] [8]. The proposed tool generates arbitrary

DAGs with a required number of tasks and finds the least cost

path between the source and destination nodes, which can be

used as test bed to conduct experiments on task scheduling

algorithms.

2. RELATED WORKS

The idea of developing a tool that could generate a DAG had

been derived by (i) PYRROS, a tool developed by Yang and

Gerasoulis [9] is a compile time scheduling and a code

generator, which is consisted with a task graph language with

an interface to C language. The tool could use only a

particular algorithm and is not exclusively a DAG generator;

(ii) The application specification tool in PARSA (software

developed for automatic scheduling and partitioning of

sequential user programs) is accepted with a sequential

program written in the SISAL functional language and

converted into a DAG and is represented in textual form by an

acyclic graphical language called IF1(Intermediate Form 1)

[10]; (iii) The idea proposed by Y. K. Kwok and I. Ahmad

[11] under scheduling arbitrary DAGs without communication

stated that nodes in the DAG can be assigned priorities

randomly; (iv) The node and edge weights are usually

obtained by estimation at compile time.[12]; (v) Hu’s

Algorithm [13] for Tree Structured DAGs, where in-tree

structured DAGs had been proposed with unit computations

and without communications and the number of processors is

assumed to be limited; (vi) Multistage graph problem solved

using the technique of Dynamic Programming [14].

3. ARCHITECTURE AND BEHAVIOR

OF THE TOOL

The proposed tool efficiently generates a DAG for a Random

Workflow and finds least cost path between a pair of nodes

(source, destination). The operational blocks that involved in

building the tool are shown in Figure 1 and are listed as,

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

2

1. Selector

2. Fragmentor

3. Plotter

4. Filter

5. Ascriber

6. Evaluator

7. Tracker

8. Petiter

9. Finalizer

3.1 Architecture of the Tool

Figure 1. Architecture of enhanced DAGitizer

3.1.1 Selector

This block expects the inputs to be given and thereby it starts

functioning. The inputs to be given are (i) number of tasks

(nv) to be in the DAG, (ii) the maximum

COMPCost(MaxCOMPCost), (iii) the maximum

COMMCost(MaxCOMMCost).

The choice of choosing a DAG to be generated is revised to

get either (i) DAG with one vertex each in its first and last

level or (ii) any number of nodes irrespective of levels

3.1.2 Fragmentor

The Height Factor (HF) is generated by the tool which defines

the number of levels to which the DAG has to distribute the

tasks (nodes). This can be defined by the user also. If the user

defines it, the priority is to user’s choice of height factor.

3.1.3 Plotter

Random assignment of number of successors of each node is

done in this block. Each node is identified in a particular level

as vij, where’ vij’ is the vertex at level ‘ i’ and ‘j’ is the

position of the node in the particular level;1≤j≤(number of

nodes in level ‘i’). The tool is carefully devised in such a way

that the nodes of last level cannot have successor. Similarly

there cannot be any parent for the node(s) at the first level.

3.1.4 Filter

As successors are assigned randomly, there might be a

possibility of getting more than one link between the same

child and parent. This block eliminates duplicates and ensures

only one link between a pair of nodes/tasks at different levels.

3.1.5 Ascriber

The summation of COMPCost (TCOMPCost) of all

nodes/tasks and the summation of COMMCost

(TCOMMCost) of all edges are calculated.

3.1.6 Evaluator

The Communication - Computation Ratio (CCR) is calculated

in this block and is defined as the ratio between the average

communication cost of all the edges and the average

computation cost of the nodes.

 And can be shown as,

CCR=Average(∑COMMCost(ei)) / Average(∑COMPCost(vj)) ;
1≤i≤nv, 1≤j≤ne (1)

3.1.7 Tracker

No node will have edges to the nodes in the same level. The

path of a node in a particular level will be extending to the

next successive levels. Every path will have at least two nodes

(a pair of source (node) and the destination (node)), path(s)

Selector (Receives

the number of

tasks and

determines to

generate a DAG

with either (i) Both

first and last level

should have one

node each, (ii) any

number of nodes

irrespective of

levels)

Fragmentor (Determines

the height factor (number

of levels) of DAG based on

number of tasks and

distributes the tasks

randomly to each level)

Plotter (Establishes the

Parent-Child relationship

between the tasks from one

level to another)

Filter (Avoids duplicates, ie.,

more than one edge between

a particular parent and a

particular child is avoided)

Ascriber

(Generates

COMPCost

(weights) for the

tasks and

COMMCost (edge

values) for the

edges)

Evaluator

(Calculates the

Communication

Computation Cost

Ratio(CCR)

Finalizer(Shows the

output in the form

of text (detailing),

graphical(Frame

shows the visuals)

and table(MS

Access table shows

the List of tasks and

dependencies))

Tracker (Finds the

followers of the

each task and

thereby

determining the

path(s) between

one task to

another)

Petiter (Finds the

shortest distance

between the

source (task) and

destination (task)

(among many

existences))

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

3

with more than two nodes will have intermediate nodes

between the source and the destination. A cost matrix will be

displayed showing the matrix values as the

CommCost(Vi,Vj),Vi(v1,v2,v3,…..,vn), Vj(v1,v2,v3,…..,vn), the

cost will be the communication cost between the

source(vi),1≤j≤nv and destination (task),(vj), 1≤j≤nv which are

directly connected (i.e., no intermediate nodes between the

source and the destination). Thereby, it would be easier to find

the path value of path(s) having intermediate nodes.

3.1.8 Petiter

This block is responsible for identifying the path(s) between a

pair of particular source and destination nodes. Path(s) may

include (i) routes having intermediate nodes, (ii) nodes that

are directly connected. The set of paths that are connected by

similar pair of source and destination tasks are grouped

together and displayed. Then, the path that is connecting the

source and destination tasks with a least value of

CommCost(Vi,Vj), Vi(v1,v2,v3,…..,vn), Vj(v1,v2,v3,…..,vn), is

identified as the optimal path in the dynamic environment(it is

obvious that, it would be the least valued path, if the source

and destination are connected by only one path). Finally, all

the information regarding the path viz., path number, source,

destination, number of hops have been tabulated and shown.

3.1.9 Finalizer

Tool is developed using NetBeans IDE. Outputs are shown in

the form of (i) text, (ii) pictorial illustrations and (iii) table

(database).

The text based view is shown in the output container (Figure

3).

The graphical view of the output is shown in the Frame [5],

that contains the tasks (represented by task-id), COMPCost

and COMMCost.

MS-Access is used to store the results in the form the task list.

4. ALGORITHM

1. Algorithm eDAGitizer(n)

2. {

3. // n is the number of nodes that DAG can contain

4. HF=HeightFactor(n);// Calculate Height

Factor(levels)

5. MNPLT=n/HF;// Maximum Nodes Per Level by

Tool

6. read MNPLU;// // Maximum Nodes Per Level by

User

7. if(MNPLT=MNPLU)

8. {

9. Distribute nodes with respect to MNPLT

10. }

11. else

12. {

13. Revise Nodes per level and Height Factor

14. }

15. read choice of constructing DAG (1/0)

16. If (choice =1) then

17. DAG is generated with one node at entry and exit

level each

18. else

19. DAG is generated with any number of nodes (as per

MNPLT/MNPLU) irrespective of levels

20. for (i= 1 to (levels-1)) do // nodes at level having

maximum value will not have successors

21. {

22. for (j=1 to nodesat(i+1))

23. {

24. parent(i+1)(j)=random(node(i)(j))//choose

nodes(parents) from previous levels (predecessors),

path(s) established

25. path=path+1;

26. } // for ‘j’ ends here

27. } // for ‘i’ ends here

28. for(i=1 to path)

29. Write tasklist; // task list will have path id, parent id,

child id

30. for(i=1 to path)

31. {

32. maintaining only one path between a particular

source and a particular destination //Eliminating

multiple paths between the same source and

destination

33. path1=path1+1; // number of paths may be reduced

after avoiding duplicates

34. }

35. for(i=1 to n)

36. {

37. weight(i)=random(MaxWeight);

38. compcost=compcost+weight(i);

39. }

40. for(j=1 to path1)

41. {

42. edgecost(j)=random(MaxCommunicationCost);

//edgecost(source,destination)

43. commcost=commcost+edgecost(j);

44. }

45. Compute CCR=Average(compcost) /

Average(commcost);

46. // displaying cost matrix

47. for(i=1 to n)

48. for(j=1 to n)

49. {

50. if(path(i,j)) //i-source, -destination

51. {

52. write edgecost;

53. } // ‘if’ ends here

54. } // ‘for’ ends here

55. for(all paths)

56. {

57. if(path(source, destination)

58. {

59. Find directpath(s);

60. Find indirectpath(s); // path with intermediate nodes

61. } //’if’ ends here

62. Leastcostpath(source,destination)=Min(Min(pathcos

t(alldirectpath)),Min(pathcost(all indirectpath));

63. }//’for’ ends here

64. }// Algorithm ends here

5. TIME COMPLEXITY

This tool has utilized Random Polynomial Time; An

algorithm is said to be of polynomial time algorithm if its

running time is upper bound by a polynomial expression in

the size of the input for the algorithm, and the time

complexity is found to be, T(n) = O(nk) for some constant k,

where T(n) is the time to run the algorithm with n inputs,

O(nk) is the order of upper bound on the value of T(n)[15].

Random Polynomial Time of an algorithm is the polynomial

times in the input size and thereof the decisions on the size of

outputs are totally based on the randomizer.

http://en.wikipedia.org/wiki/Upper_bound
http://en.wikipedia.org/wiki/Polynomial_expression

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

4

6. IMPLEMENTATION AND RESULTS

The simulation results are shown below; Figure 2 shows the

source code, Figure 3 shows the text description, Figure4

shows the graphic view in the Frame [16], and Figure 5 shows

the stored table view.

(a)

(b)

Figure 2. Development level of the tool

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.4, October 2012

5

(a) (b)

 (c) (d)

Figure3. Sample output (text view)

(a) (b)

Figure 4. Frame with nodes, edges, COMPCost and COMMCost

Summary

Number of tasks =15

Number of edges=43

Total of all WEIGHTS =24

Total of all COMMUNICATION COSTS =101

Average Task Weight =1.0

Average Communication cost =2.0

CCR RATIO:2.0

Table of information related to start, end, cost of path, number of hops

__

path no.------start------end------cost of path---------no. of hops

0---------------0-------------3-------------1---------------1

1---------------0-------------5-------------4---------------2

2---------------0-------------7-------------6---------------3

3---------------0-------------10-------------10---------------4

4---------------0-------------11-------------14---------------5

5---------------0-------------13-------------19---------------6

6---------------0-------------8-------------1---------------1

7---------------0-------------10-------------2---------------2

8---------------0-------------11-------------6---------------3

9---------------0-------------13-------------11---------------4

10---------------0-------------2-------------3---------------1

11---------------0-------------6-------------7---------------2

12---------------0-------------11-------------8---------------3

13---------------0-------------13-------------13---------------4

14---------------1-------------12-------------2---------------1

15---------------1-------------14-------------5---------------2

16---------------1-------------14-------------1---------------1

17---------------1-------------13-------------4---------------1

18---------------1-------------2-------------3---------------1

19---------------1-------------6-------------7---------------2

20---------------1-------------11-------------8---------------3

21---------------1-------------13-------------13---------------4

22---------------1-------------5-------------5---------------1

23---------------1-------------7-------------7---------------2

24---------------1-------------10-------------11---------------3

25---------------1-------------11-------------15---------------4

26---------------1-------------13-------------20---------------5

27---------------1-------------3-------------1---------------1

28---------------1-------------5-------------4---------------2

No of Paths =47

COST MATRIX

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

      0    1    2    3    4    5    6    7    8    9 

0     0    0    6    2    0    0    0    0    5    0 

1     0    0    1    1    2    0    0    4    0    0 

2     0    0    0    0    7    5    0    0    0    0 

3     0    0    0    0    4    6    5    0    0    0 

4     0    0    0    0    0    0    5    5    1    6 

5     0    0    0    0    0    0    1    3    0    5 

6     0    0    0    0    0    0    0    0    7    7 

7     0    0    0    0    0    0    0    0    1    5 

8     0    0    0    0    0    0    0    0    0    0 

9     0    0    0    0    0    0    0    0    0    0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~ 

 

init: 

deps-jar: 

compile-single: 

run-single: 

GOD IS GREAT 

Enter the number of tasks: 

10 

Height Factor(approximated to)3 

tasks per level(approximated to)3 

Enter the maximum number of children: 

3 

 

DO YOU WANT ONE TASK TO BE at the starting level and end level then, 

press 1 to be yes otherwise press 0 

1 

Enter the number of Processors 

2 

Enter the Processing Speed of Processors 

 Processing Speed of Processor  0 

5 

 Processing Speed of Processor  1 

6 

Enter the maximum Weight of the tasks: 

5 

Enter the maximum communication cost of the edges weight: 

8 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 55– No.4, October 2012 

6 

 

Figure 5. View of the table having the task list 

7. CONCLUSION 

DAGs are used to model data flow computation problems that 

involve indeterminism. Scheduling techniques are applied to 

optimize the resource utilization. Grid Computing is a 

technology that supports the arbitrary participation of 

resources and tasks. But resource mapping is still found to be 

very challenging. In this paper, the arbitrary participation of 

tasks is allowed to generate DAG and multiple lists of results 

have been observed by simulating with various different 

inputs. The tool shown in the paper is potentially developed to 

give expected results. The graphic view helps the uses to 

analyze the graph in a better way. The least cost path between 

the nodes improves the efficiency of scheduling in terms of 

communication cost. The cost matrix would be helpful to 

identify the path of no intermediate nodes and path of 

intermediate nodes. Also the least cost path between the 

source and destination nodes is found. The tool will be very 

much helpful to the researchers who are developing task 

scheduling algorithms for multiprocessor systems and for 

Grid computing environment. 

8. ACKNOWLEDGEMENT 

We would like to thank the almighty for being with us and 

making us to find the sparkling line in the midst of dark haze. 

REFERENCES 

[1] Maria M. Lopez, Elisa Heymann, Miquel A. 

Senar,”Analysis of Dynamic Heuristics for Workflow 

Scheduling on Grid Systems”, IEEE  Proceedings of The 

Fifth International Symposium on Parallel and 

Distributed Computing,2006.  

[2]  Dr. D. I. George Amalarethinam, P. Muthulakshmi, 

“DAGITIZER – A Tool to Generate Directed Acyclic 

Graph through Randomizer to Model Scheduling in Grid 

Computing”, Proceedings f the second International 

Conference on Computer Science, Engineering and 

Applications, Vol. 2, Publisher: Springer-Verlag, pp. 

969-978, 2012. 

[3] Christofides, Nicos , Graph theory: an algorithmic 

approach, Academic Press, pp. 170–174, 1975.  

[4]  Thulasiraman, K.; Swamy, M. N. S., "Acyclic Directed 

Graphs", Graphs: Theory and Algorithms, John Wiley 

and Son, ISBN 9780471513568, 1992.  

[5]  Bang-Jensen, Jørgen, "2.1 Acyclic Digraphs", Digraphs: 

Theory, Algorithms and Applications, Springer 

Monographs in Mathematics (2nd ed.), Springer-Verlag, 

pp. 32–34, 2008.  

[6] E. Ilavarasan, P. Thambidurai, R. Mahilmannan, 

“Performance Effective Task Scheduling Algorithm For 

Heterogeneous Computing System”, Proceedings of the 

Fourth International Symposium on Parallel and 

Distributed Computing, France, pp. 28–38, 2005.  

[7] G.C. Sih, E.A. Lee,” A Compile-Time Scheduling 

Heuristic For Interconnection-Constrained 

Heterogeneous Processor Architectures,” IEEE Trans. 

Parallel Distributed Systems, Vol. 4 (2), pp. 175–187, 

1993.  

[8]  J. Kim, J. Rho, J.-O. Lee, M.-C.Ko, CPOC: “Effective 

Static Task Scheduling For Grid Computing,” 

Proceedings of the 2005 International Conference on 

High Performance Computing and Communications, 

Italy, pp. 477–486, 2005.  

[9] Yang, T and Gerasoulis, A, “PYROSS: Static Task 

Scheduling and Code Generation for Message Passing 

Multiprocessors”, Proceedings of 1992 International 

Conference on Super Computing (ICS ’92) Washington 

DC, July 19-23, K. Kennedy and C. D. Polychronopoulos 

Eds. ACM press, New York, pp. 428-437, 1992. 

[10] Shirazi, B, Kavi, K, Hurson, A. R and Biswas, P, 

“PARSA: A Parallel Program Scheduling and 

Assessment Environment”, Proceedings of the 

International Conference on Parallel Processing, CRC 

Press Inc., Boca Raton, FL, pp. 68-72, 1993. 

[11] Yu-Kwong Kwok, Ishfaq Ahmad, “Static Algorithms for 

Allocating Directed Task Graphs to Mutiporcessors,” 

ACM Computing Surveys, Volume 31, No., 4, December 

1999. 

[12] Chu, W. W., Lan, M. T., and Hellerstein, J, “Estimation 

of Intermodule Communication (IMC) and its 



International Journal of Computer Applications (0975 – 8887) 

Volume 55– No.4, October 2012 

7 

Applications in Distributed Processing Systems”, IEEE 

Transactions and Computing C-33, pp. 691-699, 1984. 

[13] Hu, T. C. “Parallel Sequencing and Assembly Line 

Problems”, Operational Research 19,   pp 841-848, 1961. 

[14]  Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, 

“Fundamentals of Computer Algorithms”, Galgotia 

Publications Pvt. Ltd., 2006. 

[15]  Sipser, Michael.” Introduction to the Theory of 

Computation”, Course Technology Inc. ISBN 0-619-

21764-2, 2006. 

[16] Herbert Schildt, “The Complete Reference Java2”, Fifth 

Edition, Tata McGraw Hill Publishing Company, 2002. 

 

 

 

http://en.wikipedia.org/wiki/Michael_Sipser
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-619-21764-2
http://en.wikipedia.org/wiki/Special:BookSources/0-619-21764-2

