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ABSTRACT
this paper describes a new video segmentation method obtained
by minimizing an extension of Mumford-Shah functional used for
2D+time partitions. This extension permits to write the Mumford-
Shah functional as an amultiscale energy, which is minimized on a
2D+time persistent hierarchy. The building of this hierarchy based
on connected components of spatio-temporal regions.
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1. INTRODUCTION
Image segmentation is intended to group perceptually similar
pixels into 2D regions, and the corresponding border is gained
at the same time. Video segmentation generalizes this concept to
the grouping of pixels into spatio-temporal regions that exhibit
coherence in both appearance and motion, but this generalization
pose the complexity of spatio-temporal grouping, and in order to
overcome this complexity, the existing video segmentation meth-
ods use two Techniques; frame-by-frame and volumetric clus-
tering (3D). Frame-by-frame Techniques filter each frame as an
isolated image [1, 2]. Intuitively, these techniques under-exploit
the available information and then create associations between
regions over time to identify sporadic regions [3, 4, 5]. Although
this filtering improves stability, temporal coherence is not en-
sured because the region map for each frame is formed inde-
pendently without knowledge of the adjacent frames. Volumetric
approaches cluster pixels in 3D space (x, y, t), using unsuper-
vised clustering techniques to group space-time pixels [6, 7, 8],
such as mean-shift [9, 10], multi-label propagation [11], or gaus-
sian mixture models [12]. Consequently, these approches treat
the temporal coherence as spatial coherence which can not al-
ways enforce the consistency of region boundaries over time, and
forms disconnected space-time volumes in small or fast moving
objects.
This paper presents an efficient and scalable method for spatio-
temporal segmentation obtained by minimizing a 2D+time ex-
tention of the simplified Mumford-Shah functional. This exten-
sion permits to write the Mumford-Shah functional as an amul-
tiscale energy, and using the theory of optimization of amulti-
scale energy on a hierarchy, we compute a video segmentation
by selecting a partition of video domain, which minimizes the
amultiscale energy of 2D+time Mumford-Shah Functional on a
2D+time hierarchy.
The outline of the paper is as follows. In section 2, we extend
the simplified Mumford-Shah functional for 2D+time video seg-
mentation, and we transform the 2D+time Mumford-Shah seg-
mentation problem to an optimization problem of 2D+time affine

energy. The theory of optimization of affine energy on a hierar-
chy is described in section 3. In section 4 we give a sufficient
condition to guarantee that the 2D+time affine energy is amul-
tiscale energy and we present our video segmentation algorithm
on 2D+time hierarchy. The building of 2D+time hierarchy is dis-
cussed in section 5, and we show experimental results in section
6. Finally, the paper closes with some conclusions in section 7.

2. EXTENSION OF MUMFORD-SHAH
FUNCTIONAL FOR 2D+TIME
SEGMENTATION

The Mumford Shah functional was introducted by Mumford and
Shah in 1989 [13]. It follows:

MSλ(f̃ , C) = λH(C) +

∫
Ω−C

(f̃(x)− f(x))2dx. (1)

Like before, f is our image function. We have Ω = Ω1 ∪ Ω2 ∪
... ∪ Ωn ∪ C in which Ω is the domain of our image, Ωi is the
region in our image that represents a section Oi which does not
including the boundaries, and C is the set of smooth arcs that
make up boundaries for the Ωi. H(C) denotes the length of the
system of curves C. The function f̃ is a piecewise constant im-
age, i.e., constant on each region of Ω − C, and λ > 0 is a
parameter. Mumford-Shah segmentation of image f is defined
by a pair (C, f̃), witch minimize the Mumford Shah functional
MSλ(f̃ , C) [14].
Let f : Ω × [Ti, Tf ] → R be a video sequence with spatial do-
main Ω and temporal interval [Ti, Tf ]. We shall assume that the
time is discrete {tn}n∈[1,N ]. Our goal is to compute a segmen-
tation of video sequence f(~x, tn) defined by a pair (C, f̃), such
that:

• f̃ is piecewise regular function in (Ω× [Ti, Tf ])− C:

f̃ : (Ω× [Ti, Tf ])− C −→ R
(~x, tn) 7−→

∑
vm∈V f̃mχvm(~x, tn),

where V is a 2D+time partition of Ω× [Ti, Tf ].

• C is the set of boundaries where f̃ is discontinuous.

Notice that, the set of boundaries C represents the 2D+time par-
tition V = {vm}m∈[1,M ], where vm is a 2D+time section, which
does not including the boundaries, and defined by the 2D section
On,m at each time tn,

vm =

N⋃
n=1

On,m. (2)
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REMARK 2.1. At each time tn, the set {On,m}m∈[1,M ] is a
partition of Ω, that generates a set of boundaries. We note Cn
this set of boundaries.

Hence, the C is defined by the sets Cn,

C =

N⋃
n=1

Cn. (3)

We extend 2D simplified Mumford-Shah functional (1) for com-
puting a segmentation of video sequence defined by a pair (C, f̃),
and we propose the following model:

Eλ(f̃ , C) = λ

N∑
n=1

H(Cn) +

N∑
n=1

∫
Ω−Cn

(
f̃(~x, tn)− f(~x, tn)

)2

d~x

+

N∑
n=1

M∑
m=1

∫
Ω

(
f(~x, tn)χOn,m(~x)

−f(φn(~x), tn+1)χOn+1,m
(φn(~x))

)2

d~x,

where, λ ∈ R+, H(Cn) is measure of Cn and φn(~x) represents
the trajectory of the particle which was in the position ~x at time
tn, and corresponds tn+1. We modeliez the trajectory φn with
an affine model defined by:

φn(x1, x2) = (un+1δnt+ x1, vn+1δnt+ x2), (4)

Where δnt = tn+1− tn, and (un+1, vn+1) is the components of
optical flow in the horizontal and vertical direction respectively
at time tn+1 and location (x1, x2).

REMARK 2.2. We observe that, given C, the minimum of
Eλ(f̃ , C) with respect to the variablef̃m is explicitly given by

f̃m =
1∑N

n=1 |On,m|

N∑
n=1

∫
On,m

f(~x, tn)d~x. (5)

This observation permits to write our model of 2D+time
Mumford-Shah functional Eλ(f̃ , C), as a 2D+time affine energy
of C and denote it by Eλ ≈ (C,D, λ),

Eλ(C) = λC(C) +D(C), (6)

where C(C) =
∑N
n=1H(Cn),

D(C) =
N∑
n=1

∫
Ω−Cn

(
f̃(~x, tn)− f(~x, tn)

)2

d~x

+

N∑
n=1

M∑
m=1

∫
Ω

(
f(~x, tn)χOn,m(~x)

−f(φn(~x), tn+1)χOn+1,m
(φn(~x))

)2

d~x.

According to remark 2.2, the minimizing of 2D+time affine en-
ergy (6) permit to compute a segmentation of video sequence,
defined by a video partition, solution of the following optimiza-
tion problem:

min
P
Eλ(C), (7)

where P is a video partition, and C is is the set of boundaries of
the video partitionP . In the following sections, we show how, we
can compute a solution of this optimization problem on 2D+time
hierarchy of video partitions.

3. OPTIMIZATION OF AN AFFINE ENERGY ON
A HIERARCHY

Let ελ ≈ (C,D, λ) be an affine energy, defined on the set of
partitions of domain X ,

ελ : Part(X) −→ R+

P 7−→ λC(P ) +D(P ),
(8)

where D and C are two functions on Part(X), and λ ∈ R+.
Find the partition P ∈ Part(X) which minimizes the affine
energy ελ is usually a difficult problem. However, if there exists
a hierarchy of partitions of X , then the problem is easily solved
by a dynamic programming algorithm [15].

DEFINITION 1 [16]. Let P ∈ Part(X). We say that H is
hierarchy of partitions of X constructed over P if H is a family
of nonempty subsets of X such that

• X ∈ H;
• Any two sets inH are either nested or disjoint;
• Any set in H contains a set in P ;

We call X the root of hierarchy, the set B(H) = {{s}}s∈P is
called the base of the hierarchy. For any x ∈ H, the subsetH(x)
ofH determined by

H(x) = {y ∈ H | y ⊆ x}, (9)

is also a hierarchy of partitions of x. We call H(x) the partial
hierarchy on the subset x.

DEFINITION 2. [15, 16] A cut ofH is a partition ofX whose
elements are inH.

We note Cut(H) the set of cuts ofH. It is the set of partitions of
X that we can build fromH. We shall assume thatH has a finite
number of elements. In this case,H is a tree whose nodes are the
subsets of X inH.

DEFINITION 3. [16] We say that G : Part(X) → R+ is
separable, if there exists a function on the subsets ofX which we
denote by Ḡ such that:

G(P ) =
∑
p∈P

Ḡ(p), ∀P ∈ Part(X);

We say that G is subadditive if

Ḡ(S ∪R) ≤ Ḡ(S) + Ḡ(R), ∀S,R ∈ X,S ∩R = ∅;

We say that affine energy ελ ≈ (C,D, λ) is amultiscale energy,
if C,D are separable and C is subadditive.

From now on we assume that ελ be an amultiscale energy. For
any λ, let Γ∗λ(H) be the cut ofH minimizing ελ,

Γ∗λ(H) = arg min
Γ∈Cut(H)

ελ(Γ). (10)

Let L∗λ(H) the set of nodes ofH which are locally optimal inH
for the energy ελ,

L∗λ(H) = {x ∈ H | ∀y ∈ Cut(H(x)), ελ(x) ≤ ελ(y)}.
(11)

For any x ∈ H, let

∆∗(x) = {λ| x ∈ L∗λ(H)}. (12)

The set ∆∗(x) represents the set of scales for which x is locally
optimal in H for the amultiscale energy ελ. ∆∗(x) is an interval
of the form [a,+∞) [15].

PROPOSITION 1. [15, 16] For any x ∈ H,

• ∆∗(x) = [λ+(x), λ−(x)), where λ−(x) =
mins∈H,x⊆s λ

+(s).
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• Γ∗λ(H)) = {x ∈ H| λ+(x) ≤ λ ≤ λ−(x)}.

We call the interval [λ+(x), λ−(x)) the interval of persistence
of the region x, λ+(x) is the scale of apparition of node x, and
λ−(x) is the scale of disappearance of node x.

DEFINITION 4. [15] The persistent hierarchy obtained from
H and ελ is

H∗ = {X ∈ H : ∆∗(X) 6= ∅}. (13)

REMARK 3.1. [15] On the persistent hierarchyH∗ we have

λ−(x) = λ+(xf ), (14)

where xf denotes the father of x inH∗.

Since ελ is an amultiscale energy, there exists two functions on
the subsets of X which we denote by ḠC and ḠD such that:

• C(P ) =
∑
p∈P ḠC(p), ∀P ∈ Part(X);

• D(P ) =
∑
p∈P ḠD(p), ∀P ∈ Part(X);

For each node x ∈ H, we define

εx : λ 7→ λḠC(x) + ḠD(x). (15)

We define also the partial energy ε∗x(λ) of the node x ∈ H as the
energy of the optimal cut of the partial hierarchyH(x):

ε∗x(λ) = ελ(Γ∗λ(H(x))). (16)

Observe that for any element of base B(H) = {{s}}s∈X of the
hierarchy, we have

ε∗s(λ) = εs(λ). (17)

PROPOSITION 2. [15, 16] The partial energies ε∗x(λ) of the
nodes ofH are related by the dynamic programming equation:

ε∗x(λ) = inf{εx(λ);
∑
s∈F(x)

ε∗s(λ)}, (18)

where F(x) is the family of children of x.

PROPOSITION 3. [15, 16] For any x ∈ H,

ε∗x(λ) =

{∑
s∈F(x) ε

∗
s(λ), λ < λ+(x);

εx(λ), λ ≥ λ+(x);
(19)

where F(x) is the family of children of x.
If C is strictly subadditive, then λ+(x) ∈ R and is the only
solution of

εx(λ) =
∑
s∈F(x)

ε∗s(λ). (20)

4. VIDEO SEGMENTATION ALGORITHM
In this section we propose a new segmentation method of video
sequence. The idea is the computing a video segmentation by
selecting a 2D+time partition of Ω × [Ti, Tf ], using the mini-
mization of the affine energy Eλ on a 2D+time persistent hier-
archy. In the first we give a sufficient condition to guarantee that
the 2D+time affine energy associated to our extended Mumford-
Shah FunctionalEλ(C) = λC(C)+D(C), is amultiscale energy.

PROPOSITION 4. If the measure H is separable and strictly
subadditive, then the 2D+time affine energy Eλ(C) = λC(C) +
D(C) is amultiscale energy, and C is strictly subadditive.

Proof
Let us prove first that, the function C is separable and strictly

subadditive. Since H is strictly subadditive , there exists a func-
tion Ḡ of the subsets of Ω, such that, for any set of boundaries β
of a partition P of image domain Ω:

H(β) =
∑
p∈P

Ḡ(p) (21)

Ḡ(p ∪ p′) < Ḡ(p) + Ḡ(p
′
) ∀p, p′ ∈ Part(Ω), p ∩ p′ = ∅.

(22)
Let C = {Cn}n∈[1,N ] be the set of boundaries of 2D+time par-
tition V = {vm}m∈[1,M ] of Ω × [Ti, Tf ]. The 2D+time section
vm is defined by 2D sections On,m ⊆ Ω at each time tn,

vm =

N⋃
n=1

On,m. (23)

Hence, in each time tn the set Cn represents the boundaries of
the partition {On,m}m∈[1,M ] of image domain Ω. According to
the property (21), we verify that

C(C) =

N∑
n=1

H(Cn) =

N∑
n=1

M∑
m=1

Ḡ(On,m) =

M∑
m=1

¯̄G(vm),

(24)
where ¯̄G is function of the subsets of Ω× [Ti, Tf ], defined by:

¯̄G(vm) =

N∑
n=1

(Ḡ(On,m). (25)

Let vm, vm′ be two subset of Ω × [Ti, Tf ]. According to the
property (22), we verify that

¯̄G(vm ∪ vm′ ) =

N∑
n=1

Ḡ(On,m ∪ On,m′ ) <
¯̄G(vm) + ¯̄G(vm′ ).

(26)
Then the function C is separable and strictly subadditive.
Now, prove that the function D is separable. Let R̄ be a function
of the subsets of Ω× [Ti, Tf ], defined by

R̄(vm) =

N∑
n=1

∫
On,m

(
f̃(~x, tn)− f(~x, tn)

)2

d~x+

N∑
n=1

∫
Ω

(
f(~x, tn)χOn,m(~x)− f(φn(~x), tn+1)χOn+1,m

(φn(~x))
)2

d~x.

Hence D(C) =
∑M
m=1 R̄(vm).

Then the 2D+time affine energy Eλ is amultiscale energy. �
Therefore, if the measureH is separable and strictly subadditive,
we can use the theory of optimization of an affine energy on a
hierarchy, for gave a solution of optimization problem (7).
let �V = {V̄m}m∈[1,M ] be a 2D+time persistent hierarchy of
video domain Ω× [Ti, Tf ]. In the following,, we assume that the
measure H is separable and strictly subadditive, then Eλ(C) =
λC(C) +D(C) is amultiscale energy, and C is strictly subaddi-
tive, and the combining of the results of Propositions 1, 2 and 3
permit to construct an algorithm of video segmentation, that can
compute a solution for the optimization problem (7) on �V . The
implementation of this video segmentation algorithm is based
on four steps. In the first step we compute the partial energy E∗m
by a rise on the tree of�V , using the dynamic programming equa-
tion of Proposition 2. We initialize the computing with the partial
energy of base elements of �V , given by equation (17). In second
step we compute the scale of apparition for each node. SinceC is
strictly subadditive, the scale of apparition for each node are cal-
culated by intersection between Em and

∑
s∈F(m)E

∗
s (Propo-

sition 3). In third step we compute the scale of disappearance
for each node by a down on the tree of �V , using Proposition 1.
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In fourth step we store the nodes which satisfy the condition of
Proposition 1. Finally we compute the optimal cut Γ∗λ(�V), that
is a solution for the optimization problem of video segmentation
(7).

Video segmentation algorithm

INPUT: �V = {V̄m}m∈[1,M ]: 2D+time persistent hierarchy.
Step 1:
for m = 1 to M
do { compute E∗m using the dynamic programming
equation of Proposition 2}
end for
Step 2:
for m = 1 to M
do { compute λ+

m using the intersection between Em
and

∑
s∈F(m)E

∗
s (Proposition 3)}

end for
Step 3:
for m = 1 to M
do { comput λ−m using Proposition 1}
end for
Step 4:
for m = 1 to M
if {λ+

m ≤ λ ≤ λ−m}
do { Store V̄m }
end if
end for
OUTPUT: Γ∗λ(�V) = {V̄ Stored} (Proposition 1).

Therefore, if we can build a 2D+time persistent hierarchy, we can
use this video segmentation algorithm for compute a 2D+time
segmentation of video sequence. In the following sections, we
show, how we can build a 2D+time persistent hierarchy of video
domain.

5. 2D+TIME PERSISTENT HIERARCHY.
Now we propose an approach to build a 2D+time persistent hier-
archy of Ω×[Ti, Tf ]. Our approach is based on the 2D-shapes of
frames of video sequence, and Scale-invariant feature transform
(SIFT).

5.1 Tree of image shapes
The shapes of an image are built from the connected components
of level sets. It is well known that connected components of level
sets have a tree structure [16][17, 18]. Image f is characterized
by its upper ( lower) level sets

[f ≥ µ] = {p ∈ Ω, f(p) ≥ µ}; (27)

[f < µ] = {p ∈ Ω, f(p) < µ}. (28)

DEFINITION 5. [16] We say that sat : Part(Ω) →
Part(Ω) is operator of saturation if:

• ∀A ⊂ Ω, Ω\sat(A) is either ∅ ; or a connected component of
Ω\A;
• ∀A ⊂ Ω, sat(Ω\sat(A)) = Ω or ∅;
• A ⊂ B =⇒ sat(A) ⊂ sat(B);

• sat ◦ sat = sat.

DEFINITION 6. We call shapes of inferior (resp. superior)
type the sets

sat(CC([f < µ])) (29)

sat(CC([f ≥ µ]))). (30)

THEOREM 7. [16] Any two shapes are either disjoint or
nested.

From this result, we can conclude that the set of shapes of an
image has an inclusion tree structure. For simplicity, we assume
that our image is discrete. Then we can represent the tree as a fi-
nite structure; the shapes are the tree nodes and the parent-child
relation- ship, represented by the links between nodes, is deter-
mined by inclusion (the child A being a shape contained in the
father Af with no other shape B such that A ∈ B ∈ Af ). The
root of the tree is

Ω̄ = Sat([f ≥ minΩf ]) (31)

5.2 Scale-invariant feature transform (SIFT).
The Scale-invariant feature transform is an algorithm in com-
puter vision to detect and describe local features in images. The
algorithm was published by David Lowe in 1999 [19]. this al-
gorithm transforms image data into scale-invariant coordinates
relative to local features. An important aspect of this transform
is that it generates large numbers of features that densely cover
the image over the full range of scales and locations [20]. Fol-
lowing are the major stages of Scale-invariant feature transform
[20]:
• Scale-space extrema detection: The first stage of computation
searches over all scales and image locations. It is implemented
efficiently by using a difference-of-Gaussian function to identify
potential interest points, which are called keypoints in the SIFT
framework.
• Keypoint localization: Scale-space extrema detection pro-
duces too many keypoint candidates. At each candidate location,
a detailed model is fit to determine location and scale. Keypoints
are selected based on measures of their stability.
• Orientation assignment: In this step, each keypoint is as-

signed one or more orientations based on local image gradient
directions. This is the key step in achieving invariance to rota-
tion as the keypoint descriptor can be represented relative to this
orientation and therefore achieve invariance to image rotation.
• Keypoint descriptor: The previous operations have assigned
an image location, scale, and orientation to each keypoint. These
parameters impose a repeatable local 2D coordinate system in
which to describe the local image region, and therefore provide
invariance to these parameters. The next step is to compute a
descriptor for the local image region that is highly distinctive yet
is as invariant as possible to remaining variations, such as change
in illumination or 3D viewpoint.
•Keypoints matching: Given a set of keypoint descriptors com-
puted from two different images, these keypoint descriptors can
be mutually matched by for each point finding the point in the
other image domain that minimizes the Euclidean distance be-
tween the descriptors represented as 128-dimensional vectors.
To suppress matches that could be regarded as possibly ambigu-
ous, Low only accepted matches for which the ratio between the
distances to the nearest and the next nearest points is less than
0.8. Fig 1 gives the result of keypoints matching obtained by by
Lowes software [20].

5.3 2D hierarchy
5.3.1 Merging algorithm . Let S(fn) be the tree of the shapes
of image fn = f(., tn) of video sequence {f(~x, tn)}1≤n≥N ,
and Pn be a partition of fn in S(fn). We suppose here that
the tree of the shapes have a finite number of elements, then
Pn =

⋃J
j=1Rn,j , where Rn,j are the regions of the partition

Pn. For any region Rn,j , let {B1, ..., Bp} be a set of sibling
regions of Rn,j , and A be the father of Rn,j in the tree of the
shapes S(fn). We define a new partition P ′n by merging the re-
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Fig. 1. The top row presents keypoints of two images of video
sequence. The keypoints matching are show in last row.

gions {B1, ..., Bp, Rn,j}.

P ′n =
{
Pn\{B1, ..., Bp, Rn,j}

}
∪A (32)

let ∆Ē(Pn, Rn,j) = Ēλ(Pn)− Ēλ(P ′n).
Where

Ēλ(Pn) = λH(Pn) +

∫
Pn

(
f̃(~x, tn)− f(~x, tn)

)2

d~x (33)

merging algorithm

INPUT: P0,n =
⋃J
j=1Rn,j .

Step 1:
for j = 1 to J
do { compute ∆Ē(P0,n, Rn,j) and insert Rn,j in a queue
Q = {qj , j = 1, ..., J} with priority ∆Ē(P0,n, Rn,j)

end for
Step 2: Iterate the following procedure
if ∆E(Pi,n, q1) > 0

do { define Pi+1,n = {Pi,n\{B1, ..., Bp, q1}} ∪A
end if
We stop when no node q1 exists with ∆Ē(Pi,n, q1) > 0.
OUTPUT: �Pn = Pif ,n is a partition.

The last partition obtained �Pn determines by the father regions
of the regions {Rn,j}j∈[1,J].

5.3.2 Building of 2D hierarchy . For each image fn, we start
with initial scale value λ0, and a initial partition �P0,n = P0,n of
S(fn). Let �P1,n be the partition obtained by merging algorithm
in �P0,n. We continue iteratively the process of merging algo-
rithm by minimizing the function Ēλk+1

, λk+1 = 2λk on the

partition �Pk,n. The iterative process may be stopped either when
the value of λk attains a maximum scale value λK−1, finally we
add the root partition �PK,n = Ω.
Since, the partitions obtained {�Pk,n}0≤k≤K are defened by
shapes of the tree S(fn), and any two shapes are either disjoint
or nested, the partitions obtained {�Pk,n}0≤k≤K determine a 2D
hierarchy of image fn.

5.4 2D+time hierarchy
Now we show, how we can build a 2D+time hierarchy of video
domain. In the first step, for the frames f1 and f2 we built
a 2D hierarchys defined by K partitions {�Pk,1}0≤k≤K and
{�Pk,2}0≤k≤K obtained by merging algorithm, and we compute

the keypoints {p1,i}1≤i≤I1 and {p2,i}1≤i≤I2 in the SIFT frame-
work of image f1 and f2, and for all keypoint {p1,i}1≤i≤I1 we
search the matching keypoints in {p2,i}1≤i≤I2 . The matching be-
tween two keypoints of two images is found with minimum eu-
clidean distance for the invariant descriptor vector.
In the second step, we compute the temporarily connected re-
gions in {�Pk,1}0≤k≤K and {�Pk,2}0≤k≤K :

• We compute the similar regions in �P0,1 and �P0,2 and we tem-
porarily connect these similar regions.

• Each non-similar region R0,1,j ∈ �P0,1 is character-
ized by a set {p1,i}1≤i≤I0,j of keypoints {p1,i}1≤i≤I1 .
Let {p′2,i}1≤i≤I ′0,j be the matching keypoints of keypoints
{p1,i}1≤i≤I0,j in image f2. Let M(R0,1,j) be the set of

matching regions of R0,1,j in �P0,2,

M(R0,1,j) =
{
R2 ∈ �P0,2 : ∃p ∈ {p′2,i}1≤i≤I ′0,j , p ∈ R2

}
.

(34)
We note F(M(R0,1,j)) the father regions of the set regions
M(R0,1,j) in the 2D hierarchy {�Pk,2}0≤k≤K . and we de-
fine a new partition �P ′0,2 by replacing the set of matching re-
gionsM(R0,1,j) by F(M(R0,1,j)) and we temporarily con-
nect connect R0,1,j with F(M(R0,1,j)).

We continue this process for computing the temporarily con-
nected partitions �P ′k,2 for each partition level k ∈ {1, ...,K}.
We continue the process of the first and second step for com-
puting the temporarily connected partitions between each two
successive frames fn and fn+1. We observe that, For each time
tn, The last partitions obtained {�P ′k,n}1≤k≤K determine a 2D
hierarchy of Ω, and for each partition level k ∈ {1, ...,K}, the
regions of {�P ′k,n}1≤n≤N are temporarily connected. So V0 =

{�P ′k,n}1≤k≤K,1≤n≤N is a 2D+time hierarchy of Ω× [Ti, Tf ].

5.5 Transform the 2D+time hierarchy to 2D+time
persistent hierarchy

let V0 = {vs}1≤s≤S be the 2D+time hierarchy of Ω × [Ti, Tf ]
given in precedent section. The nodes non-persistence of V0 are
not important for the minimization of amultiscale energy Eλ on
2D+time hierarchy V0. So it is natural to remove these nodes and
transform 2D+time hierarchy V0 to a 2D+time persistent hierar-
chy by the following Greedy algorithm.
let ∆E(V, vs) = Eλ(V)−Eλ(V \ {vs}).

Greedy algorithm
INPUT: V0 = {vs}j∈[1,S].
Step 1:

for s = 1 to S
do { compute ∆E(V0, vs) and insert vs in a queue
Q = {qn, n = 1, ..., S} with priority ∆E(V0, vs)}
end for
Step 2: Iterate the following procedure
if ∆E(Vi, q1) > 0

do { define Vi+1 = Vi \ q1 }
end if
We stop when no node q1 exists with ∆E(Vi, q1) > 0.
OUTPUT: Vi is a persistent hierarchy.

The last tree obtained Vi determines a 2D+time persistent hierar-
chy. It is a local optimal solution of 7, in the sense that any other
merging of regions increases the energy.
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Fig. 2. Video segmentation results of Hamburg taxi sequence with various values of λ. The top row presents four frames of video sequence, the
motion fields (optical flow) of these four frames are showed in second row. The remaining four rows illustrate 2D Mumford-Shah

frame-by-frame segmentation and result of the proposed approach, with two values of λ.

6. EXPERIMENTAL RESULTS
In this section we present some experimental results obtained us-
ing the video segmentation procedure described. In the first we
compared the results derived by our method with those obtained
by 2D Mumford-Shah frame-by-frame approach. Fig 2 demon-
strates segmentation results of Hamburg taxi sequence with var-
ious values of λ. The top row presents four frames of video se-
quence, the motion fields (optical flow) of these four frames are
showed in second row. The third row illustrates 2D Mumford-
Shah frame-by-frame segmentation, the result of the proposed
approach is show in last row. We observe that in our video seg-
mentation, it is possible to follow the movements. Unlike, the
2D Mumford-Shah frame-by-frame approach give a segmenta-
tion without considering the movement, the reason is the absence
of the movements in 2D Mumford-Shah Functional. and we ob-
serve that With our approach, modes span space and time and
temporal coherence is naturally achieved because our video seg-
mentation is obtained by selecting a Spatio-temporal partition on
2D+time hierarchy that ensures temporal and spatial connected-
ness of regions.
In fig 3 and 4, we compare our results of Monkey bar and Dance
sequences, against others on the leading methods that treat the

video as a 3D space-time volume; Streaming Mean-Shift ap-
proach (SMS) [22], and Hierarchical Graph-Based ( HGB) [21].
Fig 3 tests on fast moving footage containing small objects. We
observe that the fine scale features are retained when they are in
motion ( man’s face ) Unlike to MSN and HGB methods these
fine scale features are absent, and our segmentation successfully
separates the motion layers while providing more details than
other approaches (compare footwear and hat of the man). Simi-
larly, in fig 4 our segmentation successfully separates the motion
layers while providing more details than other approaches, and
we observe that in our segmentation method spatio-temporal co-
herence is naturally achieved, this is shown by temporal stability
of the background.

7. CONCLUSION
We have developed a 2D+time extension of Mumford-Shah
Functional, and a new approach of construction of a 2D+time
hierarchy, this approach is based on the 2D-shapes of images
of video sequence, and Scale-invariant feature transform (or
SIFT). The minimization of 2D+time extension of Mumford-
Shah Functional on this hierarchy permit the computing a video
segmentation by selecting a partition of video domain.
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Fig. 3. Comparing the accuracy and coherence of the proposed approach on the Dance sequence, to Hierarchical Graph-Based approach (
HGB) [21], and Streaming Mean-shift Approach (SMS) [22].

Input HGB approach SMS approach Our approach

Fig. 4. Comparing the accuracy and coherence of the proposed approach on the Monkey bar sequence, to Hierarchical Graph-Based approach
( HGB) [21], and Streaming Mean-shift Approach (SMS) [22].
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