
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.18, October 2012

34

Regression Testing: A Spectrum-based Approach

Shailesh Tiwari
CSED

MNNIT Allahabad

K.K Mishra
CSED

MNNIT Allahabad

A.K. Misra
CSED

MNNIT Allahabad

ABSTRACT

Regression testing involves re-run of all test suite or selective

run of a sub-set of existing test cases on the modified version

of program to reveal the regression faults due to changes in

code and use of these non obsolete test cases from pre-

existing test suite to explore and eradicate regression faults.

This paper addresses the fundamental limitations of

conventional regression testing approach and presents a

spectrum-based fault localization strategy by which the stated

limitations are resolved in effective manner. Spectrum-based

fault localization strategy utilizes various program spectra to

identify the behavioral differences between old and new

version of the program under test. This comparison is also

useful in pinpointing the cause of failures or errors and

presence of difference in program spectra may indicate those

test cases for which the construction of expected output or

oracle or specification is not needed. The present approach

can identify and localize the faults effectively and also

identify those test cases from pre-existing test suite available

for existing program that exercise the changed behavior of the

modified code. Further the developer can easily identify

whether the differences recorded in modified version of code

is due to regression faults or due to changes made in the code.

Keywords

Regression Testing, Fault Localization, Program Spectrum,

Behavioral Regression Testing.

1. INTRODUCTION
Software systems are maintained by developers by doing

regression test periodically in hope to find errors caused by

changes and provide confidence that modifications made in

the software are correct. Developers often create an initial test

suite and then reuse it for regression testing [1]. These initial

test suites are generally saved by the developers in order to

reuse these test suites in regression testing as their software

evolves. This reuse of test suites is pervasive in software

industries [2].

A wide variety of research topics on regression testing are

given in the literature. Some focus on test environments and

automation of regression testing process [4, 8, 9] while others

investigate automated capture playback mechanisms and test

suite management [10]. Various algorithms are also given in

literature that addresses test suite management [6, 7]. Another

algorithm was presented in [5] that constructs a reduce size

version of modified program for use in regression testing.

Regression testing tasks constitute a significant percentage of

the costs of software testing as cost always increases when

modifications are made in later stages of software

development. A major difference between regression testing

and development testing is that during regression testing a

well established test suite is available for reuse. A basic

strategy for regression testing is retest-all strategy i.e. retest

all the test of test suite but it may consume excessive time and

resources which may lead to increase in cost. On the other

side, regression test selection strategy reduces the time

required to retest a modified program by selecting some

subset of the existing test suite. Therefore the methods that

reduce the cost of regression testing tasks are always valuable.

Most recent researches in regression testing concerns selective

retest techniques. Selective regression testing approaches are

described in [3]. But there are some fundamental limitations

with the conventional test selection techniques discussed in

section II.

When software system evolves, regression testing is done to

compare the behavior of the modified version to the behavior

of its previous version. This comparison is also useful in

pinpointing the cause of failures or errors [11]. The behavior

of the program can be measured by characterizing the

program spectrum. In literature, the program spectra can be

characterized in many ways: path profiling, path spectra, node

spectra, edge spectra, branch spectra, complete path spectrum,

data dependence spectra, output spectrum, execution trace

spectrum, value spectra, block spectra etc. [12, 13]. The

analysis of program spectra provides an understanding to

testing and maintenance tasks. Presence of difference in

program spectra may also indicate those test cases for which

the construction of expected output or oracles or

specifications is not needed. This may also help developers to

locate the faults in the program [11].

Various program spectrum-based fault localization

approaches has been discussed in literature [11, 14] in which

program spectra are used to capture the execution information

from the successful and failed test cases. The behavior of the

program is characterizes in terms of program spectra from

different executions of the test cases on the source code.

Program spectra are also used to quantify the quality of fault

localization.

This paper proposes an approach for program spectrum-based

fault localization in regression testing that identify the

behavioral differences between two versions of programs,

pinpoint the faults, and identify those test cases that exercise

the changed behavior of the modified version of the program.

2. PROBLEM ANALYSIS

2.1 Regression Testing
Regression testing is considered as a test cycle by which a

new version of program is tested to ensure that newly added

or modified code behaves correctly as well as unchanged

previous version of code continues to behave correctly. It is

also referred as ‘Program Revalidation’. The behavior of the

old and new version of program under test (PUT) has been

compared by running same test on these two versions of

program. If they produce different output on same test then

deviation in behavior has been exposed. The developer can

easily detect the faults by considering the behavioral

deviations between old and new version of program.

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.18, October 2012

35

Regression testing is a process to uncover errors by partially

retesting a modified program. Regression testing is done after

modification is made in the implemented program. This can

be done by rerunning the existing test suites against the

modified code to determine whether the changes affects

anything that worked properly prior to the change or writing

new test cases where necessary. Adequate coverage should be

primary consideration when conducting regression tests [15].

For simplification:

Let P be the program and P' be the modified program; let T be

the set of test cases for P then T′ is selected from T that is

subset of T for executing P′, establishing T′ correctness with

respect to P′, if necessary, create T′′ and execute T′′ on P′,

establishing T′′ correctness with respect to P′, if necessary,

create T′′′ and execute T′′′ on P′, establishing T′′′ correctness

with respect to P′. Each of these steps is involved with some

problems of selective retest technique: Regression test

selection problem, Coverage identification problem, Test suite

execution problem and Test suite maintenance problem [15].

Regression testing can be distinguished in two phases: a

preliminary phase and a critical phase. In preliminary phase,

test history and code analysis information is gathered to

enhance and correct the software while in critical phase

regression testing is done. If the information gathered in

preliminary phase is used in critical phase then the cost of

critical phase of regression testing can be reduced [15].

In conventional regression testing approach, developers

generally re-run all test suite or selectively run a set of

existing test cases i.e. T′ from existing test suite on the

modified version P'. After executing T′ over P', developer may

reveal the regression faults due to changes in code and use

these non obsolete test cases from pre-existing test suite to

explore and eradicate regression faults [29]

Conventional regression testing approaches that depend only

on pre-existing test suite have some fundamental limitations

derived from test set problem [12] and oracle problem [12,

13]:

 If the pre existing test suite i.e. T is lacking in quality then

regression testing may become ineffective as it completely

rely on the pre existing test suite T [18].

 If pre existing test suite is manually generated then it is

very difficult and time consuming to achieve high

structural coverage of non trivial program [18].

 Be short of test cases that exercised a changed behavior of

the existing and changed version of program. [29]

 Be short of a test oracle or comparator that can classify

changed behavior of the existing and changed version of

the program. [29].

 If, new test case generation process is required then how it

will be initiated.

Consider a program that has changed from P to P', and having

a test suite T created for and already executed on P, a

regression testing process typically involves [19, 20, 21]:

I. Maintaining T to get T': identifying redundant and

obsolete test cases and repairing or discarding them.

II. Optimizing T' to get T'': selecting a subset of test

cases and prioritizing the selected test cases.

III. Running T'' on P': checking the results, and

identifying failures.

IV. Creating a new test suite T''', if needed, to test P'.

V. Running T''' on P': checking the results and

identifying potential failures.

VI. Aggregating T'' and T''' to get T''' and saving it for

future.

We have the following observations from the above

regression testing process:

O1. If the pre existing test suite is lacking in quality then

regression testing may become ineffective as it

completely relies on the pre existing test suite T.

O2. In that case there is no need to remove obsolete and

redundant test cases from the test suite initially.

O3. If somehow, pre-existing test suite is capable then it

may be short of test cases that exercise the changed

behavior of the code as test result is completely

relies on deviation of outputs.

O4. How failures are identified and localized if the

program is non-trivial?

After concretely analyzing these observations, we concentrate

on latest existing work on spectrum-based fault localization

and its implementation in regression testing. Program

spectrum-based fault localization approaches are heuristic

approaches that utilize various program spectra acquired

dynamically from software testing. It is simple, easy to use,

and effective and also has become a promising technique.

2.2 Program Spectra
The term program spectra come from path profiling in which

distribution of the paths derived from run of the program. A

program spectrum tracks the program’s run-time behavior by

recording the execution information of a program in certain

aspects such as execution of conditional branches or execution

of intra-procedural paths or execution of def-use pairs etc.

[13, 22]. Various program spectra have been given in

literature [11, 22] used as a component to quantify the quality

of fault localization approach by deriving its correlation with

the program’s behavior. We consider ten distinct types of

program spectra that are widely used in literature.

Table 1 Types of program spectra

 Name Description

BHS Branch Hit Spectra
Conditional Branches that

are executed

BCS Branch Count Spectra

Number of times each

conditional branch is

executed

CPS Complete Path Spectra
Complete path that is

executed

PHS Path Hit Spectra
Loop-free path that is

executed

PCS Path Count Spectra
Number of times each

loop-free path is executed

DHS
Data-dependence Hit

Spectra

Definition-use pairs that

are executed

DCS
Data-dependence

Count Spectra

Number of times each

definition-use pair is

executed

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.18, October 2012

36

OPS Output Spectra Output that is produced

ETS
Execution Trace

Spectra

Execution trace sequence

that is produced

DVS Data Value Spectra
Values of variables in the

execution

Initially, path profiling [12, 24] is used as path spectra to track

intra-procedural paths in the program. Harrold et al. [11]

proposed first nine kind of program spectra listed in Table 3.1.

These spectra are constructed on the basis of node, edge,

output and execution trace etc. They also define the empirical

view of the relationships among these nine types of spectra.

Out of these nine types of spectra, output spectra can be

referred as semantic spectra, which consist of the outputs

(values) produced by the program execution and rest of the

spectra can be referred as syntactic spectra, which consist of

signature of structural entities exercised by the program

execution [25]. Bowring et al. [26] suggest new spectrum

called data value spectra that track the transition of the values

in variables as program executes. We next describe these

spectra in brief.

Branch Hit Spectra: If, for each conditional branch in

program P, the branch hit spectra (BHS) merely record

whether that branch is exercised or not. It records the

conditional branches that are covered by the test execution.

Branch Count Spectra: If, for each conditional branch in

program P, branch count spectra (BCS) merely record number

of times that branch is exercised by the test execution.

Path Hit Spectra: If, for each loop-free, intra-procedural path

in control flow graph G of program P, path hit spectra merely

record whether that path is exercised or not. It records the

loop-free, intra-procedural paths that are covered by the test

execution.

Path Count Spectra: If, for each loop-free intra-procedural

path in control flow graph G of program P, path count spectra

merely record the number of times that path is exercised by

the test execution.

Complete Path Spectra: records the complete path traversed

by the test execution.

Data-dependence Hit Spectra: If, for each definition-use

pair in program P, the data-dependence hit spectra merely

record whether that definition-use pair is exercised or not. It

records the definition-use pairs that are covered by the test

execution.

Data-dependence Count Spectra: If, for each definition-use

pair in program P, the data-dependence count spectra merely

record the number of times that definition-use pair is

exercised by the test execution.

Output Spectra: It records the outputs (values) produced by

the test executions.

Execution-trace Spectrum: It records the sequence of each

program statement traversed by the test execution. Complete

path spectra (CPS) and execution-trace spectrum (ETS) may

appear to be similar as both records the complete control flow

path through program P. The difference is that execution-trace

spectrum (ETS) records the actual instructions executed along

the path whereas complete path spectra (CPS) doesn’t.

Data Value Spectra: It records the transition of the values of

variable [databin]. When a test case is executed, the transition

sequence of values of variables are recorded, which is one of

the data value spectra representation.

Harrold et al. [EIPS] empirically investigate the co

relationship between program spectra differences and

exposure of program failure behavior. They utilize two

measures to investigate and quantify the relationship exists

between inputs that cause program P and faulty program P' to

produce different program spectra and inputs that cause

program P and faulty program P' to produce different failure

behavior. These measures are:

Given program P, faulty version of program P' and an input

set I for program P. Let FR(P, P', I) be the set of input test

cases in I that cause program P' to fail. For such spectra S, let

SR(P, P', I) be the set of inputs in I that produce spectra

differences on program P and faulty version of program P'.

Degree of Imprecision: For spectra type S, any test input i in

‘I’ that is in SR(P, P', I) but not in FR(P, P', I) exhibits a

spectra difference under S that is not correlated with a failure.

For such a test input i, spectra comparison is ‘imprecise’ and

the degree of imprecision of S-spectra with respect to P, P',

and I is given by the equation:

Degree of Unsafety: For spectra type S, any input i in ‘I’ that

is in FR(P, P', I) but not in SR(P, P', I) exhibits a failure that is

not correlated with a spectra difference of type S. For such

test input i, spectra difference is ‘unsafe’ and degree of

unsafety of S-spectra difference with respect to P, P' and I is

given by the equation:

Peifung Hu [27] extends the degree of imprecision and degree

of unsafety of S-spectra in terms of successful and failed test

inputs by giving following equations:

Let SR(P, P', IS) be the set of test inputs in IS that produce

spectra difference on program P and faulty version of program

P' and SR(P, P', IF) be the set of test inputs in IF that produce

spectra difference on program P and faulty version of

program P'. Now, the equation (1) can be written as:

Similarly, equation (2) can be written as:

On the empirical investigation of these equations, Peifung Hu

[27] argues that a good spectrum which can be used for fault

localization should have: low degree of imprecision and

unsafety.

3. PROPOSED APPROACH
A novel spectrum-based fault localization approach has been

proposed that identify behavioral differences between existing

and modified version of program. Goal of proposed approach

is to accurately identify behavioral differences between two

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.18, October 2012

37

versions of program on the basis of program spectra by means

of static analysis of source code. This may also help

developers to localize the faults in a program. Presence of

difference in program spectra may also indicate those test

cases for which the construction of expected output or oracles

or specifications is not needed. Test cases that reflect the

spectra differences are considered as fault or modification

revealing test cases as they exercised the changed behavior of

the source code. They also have greater fault detection

capability as compared to other test cases as they capture

changes in the source code.

3.1 Why these Spectra?
As discussed in previous section of this chapter, a good

spectrum which can be used for fault localization approach

should have: low degree of imprecision and unsafety. But, it is

impractical to calculate the degree of imprecision and

unsafety for each spectra on a specific program with its test

suite as we do not have the correct version of existing

program P in practical debugging situation.

To use good spectra in our fault localization approach, we

conduct an experiment on printtokens, printtokens2, replace,

schedule, schedule2, tcas, and totinfo with 25,542 input

universe size, taken from Software-artifact Infrastructure

Repository [28]. Table 2 shows the evaluated degree of

imprecision and degree of unsafety of each spectrum.

Table 2 Evaluated degree of imprecision and unsafety

 Name
Degree of

Imprecision

Degree of

Unsafety

BHS Branch Hit Spectra 16% 13%

BCS
Branch Count

Spectra
19% 8%

CPS
Complete Path

Spectra
24% 8%

PHS Path Hit Spectra 6% 14%

PCS Path Count Spectra 15% 29%

DHS
Data-dependence

Hit Spectra
43% 22%

DCS
Data-dependence

Count Spectra
44% 18%

OPS Output Spectra 0% 0%

ETS
Execution Trace

Spectra
0 % 92%

DVS Data Value Spectra 0 % 95%

On the basis of these experimental results, following spectrum

are selected for proposed fault localization approach in

regression testing:

1) Branch Count Spectra (BCS): It has higher

possibility of having failed test cases having a different

spectra on program P and modified version of program P' as it

have lower degree of unsafety as compared to other spectra

whereas it has lower degree of imprecision as compared to

other spectra except BHS and PHS. Therefore, BCS is

selected.

2) Branch Hit Spectra (BHS): It has higher possibility

of a spectra difference correlated to a regression failure as it

have lower degree of imprecision as compared to other

spectra except PHS whereas it has lower degree of unsafety as

compared to other spectra except BCS, PHS, PCS, and CPS.

Therefore, BHS is considered for the proposed approach.

3) Path Hit Spectra (PHS): It has higher possibility of a

spectra difference correlated to a regression failure as it have

lower degree of imprecision as compared to other spectra

whereas it has lower degree of unsafety as compared to other

spectra except BCS, PCS, and CPS. We will select path hit

spectra (PHS) rather than path count spectra (PCS) and

complete path spectra (CPS) because it has quite lower degree

of imprecision among them and in terms of degrees of

imprecision and unsafety the CPS and PCS display nearly

identical behavior. Other reasons are: it is cost consuming to

collect all path spectra and it is also difficult to map path

spectra into fault locations in practical situation. Therefore,

PHS is considered rather than PCS and CPS.

4) Execution-trace Spectrum (ETS): It is selected

because of its relationship with regression testing discussed in

controlled regression testing [analyzing regression test],

assuming the tests that produce different execution-trace

spectra constitute a safe approximation. Among all spectra,

ETS is safe because for all test inputs that reveal faults also

reveal ETS differences. Every failed test case in ETS having a

different spectra on program P and modified version of

program P'. The degree of imprecision of ETS is higher as

compared to other spectra except DVS because ETS subsumes

all the spectra.

Output spectra (OPS) are not selected because we cannot

identify the behavior of the two versions of program as it only

provides the differences in outputs. Data value spectra (DVS)

are not considered as it has the highest degree of imprecision

and the lowest degree of unsafety because of its highest

degree of imprecision and it is also expensive and difficult to

capture the values of variables. Data-dependence hit (DHS)

and data-dependence count (DCS) spectra are not considered

due to their higher degree of imprecision and unsafety.

3.2 Program Spectra Comparisons
Consider an example:

Let P be the existing version of sample program and P' be the

modified version of sample program written in ‘C++, shown in

figure 1.

These sample programs simply swap and increment the values

of variables by using conditional statements and loop.

Program P contains 11 statement blocks and 27 lines of code.

Program P' is the modified version of P, contains 13 statement

blocks and 35 lines of code. The control flow of the programs

is discussed by if-else statements. While() loop may be used

as multiple loop executions in a path.

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.18, October 2012

38

The programs are given as:

Figure 1 Program P and modified program P'

Now, the control flow graphs (CFG) are constructed for

existing sample program P and P'. Constructed CFG’s are

shown in figure 2:

Program spectra for existing sample program P and modified

version of program P' on ‘I’ are recorded and represented in

the given Table 3 and Table 4, respectively:

The comparison of spectra between old and new version of

program is depend on the following assumption:

Branch hit spectra (BHS), branch count spectra (BCS), path

hit spectra (PHS), and execution-trace spectrum of both

existing and modified version of program is compared on the

basis, whether they are lexicographically equivalent or not?

Two text strings are lexicographically equivalent if their text

(ignoring extra white space characters when not contained in

character constants) is identical ([19]). Assume that the

branch hit spectra (BHS) of existing program P is BHS(P) and

for modified version of the program P' is BHS(P'). BHS(P') is

lexicographically equivalent to BHS(P) if and only if the

sequence of conditional branches exercised as program

executes are identical. If BHS(P') and BHS(P)are not

lexicographically equivalent, it indicates the behavioral

difference between existing and modified version of program.

The comparison of spectra between old and new version of

program is depend on the following assumption:

Branch hit spectra (BHS), branch count spectra (BCS), path

hit spectra (PHS), and execution-trace spectrum of both

existing and modified version of program is compared on the

basis, whether they are lexicographically equivalent or not?

Figure 2 CFG for P and P'

Two text strings are lexicographically equivalent if their text

(ignoring extra white space characters when not contained in

character constants) is identical ([19]). Assume that the

branch hit spectra (BHS) of existing program P is BHS(P) and

for modified version of the program P' is BHS(P'). BHS(P') is

lexicographically equivalent to BHS(P) if and only if the

sequence of conditional branches exercised as program

executes are identical. If BHS(P') and BHS(P)are not

lexicographically equivalent, it indicates the behavioral

difference between existing and modified version of program.

3.3 Spectrum-based Fault Localization

(SBFL) Information
For these given program P and P', the behavioral differences

between them are arranged as following information that is

required for spectrum based fault localization (SBFL).

For the existing program P and modified program P', four

spectra are computed i.e. Branch hit spectra (BHS), branch

count spectra (BCS), path hit spectra (PHS), and execution-

trace spectra (ETS).

For program P:

P(I)Spectra
 = {BHSP(I), BCSP(I), PHSP(I), ETSP(I)}

For program P':

P'(I)Spectra = {BHSP'(I), BCSP'(I), PHSP'(I), ETSP'(I)}

Where ‘I’ is the input test set available for the existing

program P. ‘I’ contains both successful and failed test cases

represented as ‘IS' and ‘IF’, respectively.

A vector ‘Tcase’ and a matrix ‘Smat’ is created to track the

compared result for each spectrum. Here, spectra recorded for

modified program i.e. P'(I)Spectra is compared with the

recorded spectra for existing program i.e. P(I)Spectra and

behavioral differences are identified. If spectra is

lexicographically equivalent to the corresponding spectra for

existing program P for a given test case then it indicates 1

otherwise 0. For simplicity, 1 represents no behavioral

difference and 0 shows that behavioral difference is recorded

#include<iostream.h>

void main()

int a,b,c,n;

cin>>a>>b;

if (a<b)

{

c = a;

else

{

c = b;

}

n = c;

while (n<8)

{

If (b>c)

{

c = 2;

}

else

{

n = n+c+7;

}

n = n+1;

}

cout<<a<<b<<n;

}

#include<iostream.h>

void main()

int a,b,c,n;

cin>>a>>b;

if (a<b)

{

c = a;

else

{

c = b;

}

n = c;

while (n< =8)

{

If (b>c)

{

c = 2;

}

else

n = n+c+7;

if (n%7==0)

{

c = c+2;

}

else

{

c = c-1;

}

}

n= n+1;

}

cout<<a<<b<<n;

}

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.18, October 2012

39

in the given test case. Here, if ETS reflects the behavioral

differences but no other spectra reflect the same, it means that

there must be behavior differences in other spectra that are

excluded in our study. For all test cases that reveal behavioral

differences, it must be reflected in ETS.

Figure 4 shows the information required by proposed

spectrum-based fault localization approach. This information

in the form of vector and matrix identifies the test cases that

capture the behavioral differences.

Figure 3 SBFL information

Now, another vector BDASpectum is created that analyze the

behavioral differences obtained by the program spectra by test

execution on modified program P'. This vector uses AND (˄)

operation to analyze the obtained program spectra and the

value obtained by AND operation on BHS, BCS, PHS, and

ETS on corresponding test case reflects the behavioral

differences in modified program P' as compared to its existing

version of program P. If the value obtained by BDASpectum

after AND operation on execution of any test case is 1, it

means that there is no behavioral difference recorded by that

test case, otherwise, in case of 0, behavioral differences are

recorded.

 The behavioral differences analyzer BDASpectum is shown in

figure 4. Behavioral differences analyzer BDASpectum reflect

the values corresponding to each test case. For example, here

the value corresponding to T1 is 1, reflects that there is no

behavioral difference is recorded in any type of spectra or in

other words, no changes or regression faults are found in that

part of modified version of code executed by T1. In case of T2,

and T3, the value is 0 reflects that there must be some changes

or regression faults are present in that part of modified version

of code executed by T2, and T3.

Now, the code with analysis is given to the developer to check

whether the changes in behavior of modified version of

program is due to regression faults or due to changes made in

the code? If regression fault is present then these faults are

removed without execution of test cases and there is no need

to write or check oracles or specifications for them. If

behavior of the program is changed due to changes made in

the modified version of code then new test cases are need to

be generated.

Now, the code with analysis is given to the developer to check

whether the changes in behavior of modified version of

program is due to regression faults or due to changes made in

the code? If regression fault is present then these faults are

removed without execution of test cases and there is no need

to write or check oracles or specifications for them. If

behavior of the program is changed due to changes made in

the modified version of code then new test cases are need to

be generated.

Figure 4 Behavioral differences analyzer (BDASpectum)

 Now, the code with analysis is given to the developer to

check whether the changes in behavior of modified version of

program is due to regression faults or due to changes made in

the code? If regression fault is present then these faults are

removed without execution of test cases and there is no need

to write or check oracles or specifications for them. If

behavior of the program is changed due to changes made in

the modified version of code then new test cases are need to

be generated.

The most significant contribution of the proposed approach is

that it easily identifies those test cases from the pre-existing

test suite available for the initial program, which executes the

changed behavior of the modified version of program. These

test cases are considered as modification-traversing test cases.

A test case ti that belongs to input test suite ‘I’ is

modification-traversing for modified version of program P' if

and only if the value of behavioral differences analyzer

BDASpectum is 0.

For the purpose of regression test selection, we want to

identify all tests T that reveal faults in P' — the fault-revealing

tests. An approach that selects every fault-revealing test in T

is safe. There is no effective procedure that identifies the

fault-revealing tests in T [3]. However, under controlled

regression testing, the modification-traversing tests are a

superset of the fault-revealing tests [3]. Thus, for controlled

regression testing, a regression test selection approach that

selects all modification-traversing tests is safe. It means that a

test case is safe and fault-revealing if it is modification-

traversing [19]. Therefore, the proposed approach is also a

safe regression test identification approach that identifies the

modification-traversing as well as fault revealing test cases.

4. EXPERIMENTAL RESULTS
We developed a program in C that compare the two strings

collected as the program spectra on existing program P and

modified program P' by test execution. These string

comparisons for each program spectrum to the corresponding

test cases are stored in the form of values 1 or 0 in a matrix

i.e. SMAT. gcov tool [gcov] is used to compute the selected

program spectra differences on two versions of program.

Now, a vector BDASpectum is created that stores the value in

the form of 1 or 0 after performing the AND (˄) operation on

the values stored in matrix SMAT. The value of BDASpectum

reflects that for each test case, whether or not, the behavioral

differences are recorded on the modified version of program

P'.

We used six C programs as subjects in the experiment. First

program is simple program to identify the type of the triangle

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.18, October 2012

40

and other five programs with faulty versions and a set of test

cases are taken from Software-artifact Infrastructure

Repository (SIR) [SIR]. The faulty version of a program can

be created by manually seeding the faults in the existing

version of program to make it differs from the existing

program by one to seven lines of code.

Table 5 shows the subject program name, description, lines of

code, number of faulty version created, number of test cases

in input test suite ‘I’ that is available for existing program P,

and number of test cases in input test suite ‘I’ that reflects the

spectra differences on modified version of program P'. The

creation of faulty version of program simulates the scenario of

introducing regression faults into the subject programs during

modifications.

Table 5 Experimental results

Progra

m
LOC

Faulty

Version
Tests

Number of

Tests reflects

spectra

differences

triangle 26 1 28 7

printtok2 483 10 4115 532

replace 516 12 5542 2110

schedule 299 9 2650 1214

tcas 138 9 1608 465

totinfo 346 6 1052 243

From results, we observed that those test cases are identified

that reflect the behavioral differences between two version of

program by means of comparing selected program spectra,

statically. These test cases are modification-traversing test

cases and have better fault detection capability over the rest of

the test cases present in the existing test suite as they

exercised the changed behavior of the modified version of the

program.

5. CONCLUSION
In this paper, we investigate the process of spectrum-based

fault localization approaches and proposed an approach for

regression testing to identify four issues: selection of suitable

program spectra for fault localization in regression testing, a

process to identify the behavioral differences on two versions

of program by test execution, identification of type of fault

and pinpointing of faults, identification of modification-

traversing and fault revealing test cases.

We compare ten program spectra given in literature in terms

of degree of imprecision and degree of unsafety to find out the

best suitable program spectra for the proposed approach.

From experimental results, four program spectra are selected:

branch hit spectra (BHS), branch count spectra (BCS), path

hit spectra (PHS), and execution-trace spectra (ETS). These

program spectra have been utilized in the proposed fault

localization approach for regression testing.

Branch hit spectra (BHS), branch count spectra (BCS), path

hit spectra (PHS), and execution-trace spectra (ETS) are used

to find out the behavioral differences on two versions of

programs. The proposed approach effectively identifies that

part of the code which consists of changes or regression

faults. If regression fault is present then these faults are

removed without execution of test cases and there is no need

to write or check oracles or specifications for them. If

behavior of the program is changed due to changes made in

the modified version of code then new test cases are need to

be generated. The proposed approach can effectively localize

the faults in terms of branch, path, and execution spectra

deviations.

This paper provides an understanding for the process program

spectrum-based of fault localization in regression testing by

identifying those test cases from the pre-existing test suite

available for the existing program that exercised the changed

behavior of the modified program.

Table 3 Evaluated spectra for existing program P on ‘I’

Input BHS BCS PHS ETS

{-1, 3}

{2, 3}, {6, 7},

{7, 8}, {6, 11}

{2, 3}, {6, 7}10,

{7, 8}9, {6, 11}

{1, 2, 3, 5, 6,

7, 8, 10, 6,

11}

[(int a, b, c, n;), (cin >> a >> b;), (if (a < b)), (c = a;),

(n = c;), {(while (n < 8)) 10, {(if (b > c), (c = 2;), (n =

n + 1;)}9, (cout << a << b << n;) }]

{2, 10}
{(2, 3), (6, 7), (7, 8),

(6, 11)}

{(2, 3), (6, 7)7, (7, 8)6,

(6, 11)}

{1, 2, 3, 5, 6,

7, 8, 10, 6,

11}

[(int a, b, c, n;), (cin >> a >> b;), (if (a < b)), (c = a;),

(n = c;), {(while (n < 8)) 7, {(if (b > c), (c = 2;), (n = n

+ 1;)}6, (cout << a << b << n;) }]

{6, 2}
{2, 4}, {6, 7}, {7,

9}, {6, 11}

{2, 4}, {6, 7}, {7, 9},

{6, 11}

{1, 2, 4, 5, 6,

7, 9, 10, 6,

11}

[(int a, b, c, n;), (cin >> a >> b;), (if (a < b)), else

{(c=b;), (n = c;), {(while (n < 8), {(if (b > c), else {

(n=n+c+7;), (n = n + 1;)}6, (cout << a << b << n;) }]

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.18, October 2012

41

{2, 13}
{(2, 3), (6, 7), (7, 8),

(6, 11)}

{(2, 3), (6, 7)7, (7, 8)6,

(6, 11)}

{1, 2, 3, 5, 6,

7, 8, 10, 6,

11}

[(int a, b, c, n;), (cin >> a >> b;), (if (a < b)), (c = a;),

(n = c;), {(while (n < 8)) 7, {(if (b > c), (c = 2;), (n = n

+ 1;)}6, (cout << a << b << n;) }]

{10, 14} {2, 3}, {6, 11} {2, 3}, {6, 11}

{1, 2, 3, 5, 6,

11}

[(int a, b, c, n;), (cin >> a >> b;), (if (a < b)), else

{(c=b;), (n = c;), {(while (n < 8), (cout << a << b <<

n;)]

{7, -2}
{2,4}, {6,7}, {7,9},

{6,11}

{2,4}, {6,7}3, {7,9}2,

{6,11}

{1, 2, 3, 5, 6,

7, 9, 10, 6,

11}

[(int a, b, c, n;), (cin >> a >> b;), (if (a < b)), else

{(c=b;), (n = c;), {(while (n < 8)3, {(if (b > c), else {

(n=n+c+7;), (n = n + 1;)}2, (cout << a << b << n;) }]

Table 4 Evaluated spectra for modified program P' on ‘I’

Input BHS BCS PHS ETS

{-1, 3}

{2,3}, {6,7}, {7,8} ,

{6,13}

{2,3}, {6,7}11, {7,8}10,

{6,13}

{1,2,3,5,6,7,8,12,6,13}

[(int a, b, c, n;), (cin >> a >> b;), (if (a <

b)), (c = a;), (n = c;), {(while (n < =8))11,

{if (b > c){(c = 2);}, (n = n + 1);}10, cout

<< a << b << n;}]

{2,10}

{2,3}, {6,7}, {7,8},

{6,13}

{2,3}, {6,7}8, {7,8}7,

{6,13}

{1,2,3,5,6,7,8,12,6,13}

[(int a, b, c, n;), (cin >> a >> b;), (if (a <

b)), (c = a;), (n = c;), {(while (n < =8))8,

{if (b > c){(c = 2);}, (n = n + 1);}7, cout

<< a << b << n;}]

{6,2}

{2,4}, {6,7}, {7,9},

{9,11}, {6,13}

{2,4}, {6,7}2, {7,9},

{9,11}, {6,13}

{1,2,4,5,6,7,9,11,12,6,13

}

[(int a, b, c, n;), (cin >> a >> b;), (if (a <

b)), else {(c=b;), (n = c;), {(while (n <

=8)2, {(if (b > c), else {(n = n + c +7;), if (

n % 7 == 0), else{(c = c – 1;)}}, (n = n +

1;)} cout << a << b << n;}]

{2,13}

{2,3}, {6,7}, {7,8},

{6,13}

{2,3}, {6,7}8, {7,8}7,

{6,13}

{1,2,3,5,6,7,8,12,6,13}

[(int a, b, c, n;), (cin >> a >> b;), (if (a <

b)), (c = a;), (n = c;), {(while (n < =8))8,

{if (b > c){(c = 2);}, (n = n + 1);}7, cout

<< a << b << n;}]

{10,14}

{2,3}, {6,13}

{2,3}, {6,13}

{1,2,3,5,6,13}

[(int a, b, c, n;), (cin >> a >> b;), (if (a <

b)), (c = a;), (n = c;), {(while (n < =8)),

cout << a << b << n;}]

{7,-2}

{2,4}, {6,7}, {7,9},

{9,11}, {6,13}

{2,4}, {6,7}3 , {7,9}2,

{9,11}, {6,13}

{1,2,4,5,6,7,9,

11,12,6,13}

[(int a, b, c, n;), (cin >> a >> b;), (if (a <

b)), else {(c=b;), (n = c;), {(while (n <

=8)3, {(if (b > c), else {(n = n + c +7;), if (

n % 7 == 0), else{(c = c – 1;)}}, (n = n +

1;)}2 cout << a << b << n;}]

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.18, October 2012

42

6. REFERENCES
[1] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim,

Adam Porter, and Gregg Rothermel. 2001. “An empirical

study of regression test selection techniques”, ACM

Trans. Softw. Eng. Methodology. 10, 2 (April 2001).

[2] J.C. Munson and T.M. Khoshgoftaar, “The detection of

Fault Prone Programs”, IEEE Trans. Software Eng. Vol.

18, No. 5, pp 423-433, May 1992..

[3] Gregg G. Rothermel and M.J. Harrold, “Analyzing

Regression Test Selection Techniques”, IEEE Trans.

Software Eng., vol. 22, no. 8, pp. 29-551, Aug. 1996.

[4] K.F. Fischer, F. Raji, and A. Ch ruscicki, “A

Methodology for Retesting Modified Software”, Proc.

National Telecomm. Conf. B-6-3, pp. 1-6, Nov. 1981.

[5] S. Bates and S. Horwitz, “Incremental Program Testing

Using Program Dependence Graphs”, Proc. 20th ACM

Symp. Principles of Programming Languages, Jan. 1993.

[6] M. Hutchins, H. Foster, T. Goradi a, and T. Ostrand,

“Experiments on the Effectiveness of Dataflow- and

Control flow-Based Test Adequacy Criteria”, Proc. 16th

Int'l Conf. Software Eng., pp. 191- 2000, May 1994

[7] T.J. Ostrand and M.J. Balcer, “The Category-Pa rtition

Method for Specifying and Generating Functional

Tests”, Comm. ACM, vol. 31, no. 6, June 1988.

[8] T.J. Ostrand and E.J. Weyuke r, “Using Dataflow

Analysis for Regression Testing”, Proc. Sixth Ann.

Pacific Northwest Software Quality Conf., pp. 233-247,

Sept. 1988.

[9] D. Rosenblum and G. Rothermel, “An Empirical

Comparison of Regression Test Selection Techniques”,

Proc. Int'l Workshop Empirical Studies of Software

Maintenance, pp. 89-94, Oct. 1997. Spector, A. Z. 1989.

[10] S.S. Yau and Z. Kishimoto, “A Method for Revalidating

Modified Programs in the Maintenance Phase”, Proc.

11th Ann. Int'l Computer Software and Applications

Conf. (COMPSAC '87), pp. 272-277.

[11] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu

Yi. 1998. An empirical investigation of program spectra.

SIGPLAN Notes 33, 7 (July 1998), 83-90.

[12] G. Ammons. Ball and .J. R. Laru s. Exploiting hardware

performance counters with flow and context sensitive

profiling. ACM Sigplan Notes, 32(5):85-~96, June 1997.

[13] T. Reps, T. Ball, M. Das, and .J. Larus. The use of

program profiling for software maintenance with

applications to the year 2000 problem. ACM Software

Engineering Notes, 22(6):432-439, Nov. 1997.

[14] W. E. Wong and V. Debroy, "A survey on software fault

localization," Technical Report UTDCS-45-09,

Department of Computer Science, University of Texas at

Dallas, November 2009.

[15] Tiwari, S.; Mishra, K.K.; Kumar, A.; Misra, A.K.; ,

"Spectrum-Based Fault Localization in Regression

Testing," Information Technology: New Generations

(ITNG), 2011 Eighth International Conference on , vol.,

no., pp.191-195, 11-13 April 2011

doi: 10.1109/ITNG.2011.40.

[16] M.-C. Gaudel, Testing can be fo rmal, too, Proceedings

of the Sixth International Joint CAAP/FASE Conf erence

on Theory and Practice of Software Development

(TAPSOFT’95), Lecture Notes in Computer Science,

vol. 915, Springer, Berlin, 1995, pp. 82–96.

[17] W.E. Howden, Reliability of the path analysis testing

strategy, IEEE Transactions on Software Engineering

SE-2 (3) (1976) 208–215.

[18] E.J. Weyuker, On testing non-testable programs, The

Computer Journal 25 (4) (1982) 465–470.

[19] Gregg Rothermel, Mary Jean Harrold, “A safe, efficient

regression test selection technique”, ACM Transactions

on Software Engineering and Methodology (TOSEM),

Volume 6 Issue 2, April „1997, Pages 173 – 210.

[20] Wong, J. R. Horgon, A. P. Mathur, and Pasquini,

Test set size minimization and fault detection

effectiveness: a case study in a space application”, in

proceedings of the IEEE Computer Society‟s

International Computer Software and Applications

Conference (COMPSAC‟97), pp. 522-528, Washington,

DC, USA, August 1997.

[21] Anjaneyulu Pasala and et al.,” Selection of Regression

Test Suite to Validate Software Applications upon

Deployment of Upgrades”, IEEE 19th Australian

Conference on Software Engineering, November, 2008.

[22] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi,

“An Empirical Investigation of the Relationship between

Spectra Differences and Regression Faults,” Journal of

Software Testing, Verification and Reliability,

10(3):171-194, September 2000.

[23] Yoo, S., & Harman, M. (2010). Regression testing

minimization, selection and prioritization: A survey.

Software Testing, Verification and Reliability.

doi:10.1002/stvr.430.

[24] T. Ball and J.R. Larus. Efficient Path Profiling in Proc.

Of Micro 96, Pages 46-57, Dec 1996.

[25] Xie, T., Notkin, D.: Checking inside the black box:

Regression testing by comparing value spectra. IEEE

Transactions on Software Engineering 31(10), 869–883

(2005)

[26] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active

learning for automatic classification of software

behavior. InProceedings of the 2004 ACM SIGSOFT

International Symposium on Software Testing and

Analysis, pages 195–205, New York, 2004. ACM Press.

[27] Zhenyu Zhang, W.K. Chan, T.H. Tse, Y.T. Yu, Peifeng

Hu, Non-parametric statistical fault localization, Journal

of Systems and Software, Volume 84, Issue 6, June

2011, Pages 885-905, ISSN 0164-1212,

10.1016/j.jss.2010.12.048.

[28] Sample programs are taken for experiments from

Software Infrastructures Repository (SIR)

http://sir.unl.edu/content/sir.php.

[29] A. Orso and T. Xie. BERT: BEhavioral Regression

Testing. In Proc. WODA, pages 36–42, 2008.

