
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.16, October 2012

11

A Block Cipher Involving a Key Bunch Matrix and

Including another Key Matrix Supported With Modular

Arithmetic Addition

ABSTRACT

In this paper, we have developed a block cipher, by using a

key bunch matrix and an additional key matrix. In order to

carry out the decryption process, the decryption key bunch

matrix is obtained, basing upon the encryption key bunch

matrix, on using the concept of multiplicative inverse. In the

cryptanalysis, we have found that, this cipher is a very strong

one as it includes the additional key matrix and supported

with modular arithmetic addition. From the viewpoint of

efficiency and strength, this cipher is quite comparable with

any other cipher available in the literature of cryptography.

Keywords

encryption key bunch matrix, decryption key bunch matrix,

additional key matrix, cryptanalysis, avalanche effect.

1. INTRODUCTION
Transmission of information through internet has been a

fascinating area of research, as every secret information is to

be maintained in a secured manner. In a recent development

[1-2], we have developed a novel block cipher by including a

key bunch matrix for encryption, and extended the analysis by

introducing another key matrix supplemented with xor

operation. In this analysis the decryption matrix is obtained

from the given encryption matrix by using the concept of

multiplicative inverse.

In the present paper, our objective is to develop a block cipher

by using a key bunch matrix and introducing another key

matrix by associating it with modular arithmetic addition.

This cipher is expected to be very strong as we have a pair of

keys in this analysis and the operations are supported by

modular arithmetic addition.

The basic equation governing the encryption of a cipher is

given by

C=([eij × pij] mod 256 + F) mod 256, i=1 to n, j = 1 to n. (1.1)

The corresponding equation describing the decryption process

is given by

P = [dij × (C - F) ij] mod 256, i=1 to n, j = 1 to n. (1.2)

Here, P = [pij] is the plaintext, C = [cij], the ciphertext, F=[fij]

is an additional key matrix, whose elements are in [0-255].

The [eij] are the elements of the encryption key bunch matrix

E, and [dij] are the elements of the decryption key bunch

matrix D. It is to be noted here that the [eij] and the [dij] are

odd integers lying in the interval [1,255] and they are

governed by the relation

(eij × dij) mod 256 = 1. (1.3)

For every given eij we have a unique dij. Here our interest is to

see, how the additional key F and modular arithmetic addition

will add to the strength of the cipher.

In what follows, we present the plan of the paper. In section 2,

we introduce the development of the cipher, and draw

flowcharts and design algorithms for this cipher. We illustrate

the cipher with a suitable example in section 3, and then

analyze the avalanche effect. We examine the cryptanalysis in

section 4. Finally in section 5, we discuss the computations

carried out in this investigation and draw conclusions.

2. DEVELOPMENT OF THE CIPHER
We consider a plaintext P. On using the EBCDIC code,

this can be written in the form

P = [pij], i=1 to n, j = 1 to n. (2.1)

The encryption key bunch matrix E is given by

 E = [eij], i=1 to n, j = 1 to n. (2.2)

Let us have the additional key matrix F in the form

 F = [fij], i=1 to n, j = 1 to n. (2.3)

We take the ciphertext C in the form

C = [cij], i=1 to n, j = 1 to n. (2.4)

Let us take the decryption matrix D in the form

 D = [dij], i=1 to n, j = 1 to n. (2.5)

The flowcharts for the encryption and decryption can be

drawn in the form shown in figure 1 and figure 2,

respectively.

The corresponding algorithms for the encryption and the

decryption are given below.

Algorithm for Encryption

1. Read P,E,F,n,r

2. for k = 1 to r do

{

3. For i=1 to n do

{

4. For j=1 to n do

{

V.U.K. Sastry, PhD.
Professor of CSE, Director (SCSI),

Dean (Admin), Dean (R&D),
SreeNidhi Institute of Science & Technology,

Hyderabad, India,

K. Shirisha
Associate Professor,

Dept. of Computer Science & Engineering,
SreeNidhi Institute of Science & Technology,

Hyderabad, India,

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.16, October 2012

12

5. pij = ([eij × pij] mod 256 + fij) mod 256

}

}

6. P=[pij]

7. P=Mix (P)

}

8. C = P

9. Write(C)

Algorithm for Decryption

1. Read C,E,F,n,r

2. D =Mult(E)

3. for k = 1 to r do

{

4. C= Imix (C)

5. For i=1 to n do

{

6. For j=1 to n do

{

7. cij =[dij × (cij - fij)] mod 256

}

}

8. C=[cij]

}

9. P=C

10. Write(P)

The number of rounds in the iteration process of this analysis

are taken as r = 16.

In the procedure for encryption, we have made use of the

function Mix(). The basic ideas underlying in this function

can be outlined as follows.

Let P = [pij], i=1 to n, j = 1 to n, be the plaintext in any round

of the iteration process. Let us assume that n = 2m. Then this

matrix can be viewed as two sub-matrices, of equal size,

wherein the first one is containing n rows and m columns, and

the second one is also containing n rows and m columns (from

(m+1)th column to nth column). Now, we represent all the

elements in both the matrices in their binary form. Thus each

element is written in terms of eight binary bits. Now, taking

the first eight bits in the first column, we write them in the

form of a decimal number. We carry out the same process

with the subsequent elements of the same column (if n > 8).

Then we perform the same operations with the binary bits of

the first column of the second sub-matrix. Similarly, the

process is repeated with the binary bits of the first and second

sub-matrices till we exhaust all the columns. In other words,

summarizing all this process, we can say that we are

concatenating the binary bits of the first sub-matrix with the

binary bits of the first column of the second sub-matrix and

then the binary bits of the second column of the first sub-

matrix with the second column of the second sub-matrix, and

obtaining a string of binary bits. Then taking eight binary bits

at each instance from the beginning, we write them in terms of

decimal numbers, and arrange them in a square matrix of size

n in a row-wise manner. This function Mix() is utilized to

create confusion and diffusion. The function Imix(), used in

the decryption process, contains all the reverse operations of

Mix().

The function Mult(), used in the decryption process, is

intended to obtain the decryption key bunch matrix D for a

given encryption key bunch matrix E.

3. ILLUSTRATION OF THE CIPHER

AND THE AVALANCHE EFFECT
Consider the plaintext given below.

Dear Brother! At the time of partition our grandfather felt

that our family migrating to Karachi is the best one as we

are expected to be very happy among our own community.

Your father felt that he must continue his stay in

Hyderabad as our ancestors earned a lot of property

there. I know, to-day the size of your family is very large

consisting of fifty or sixty members, you cannot come to

us. We have to bear this life. Be informing about your

welfare as frequently as possible.

We focus out attention on the first 16 characters of the above

plaintext. Thus we have

Dear Brother! At

On using EBCDIC code, we get





















1631936479

153133136163

15015319464

 153129133196

P
 (3.1)

Let us take the encryption key bunch matrix E in the form





















20319359 1

24769 119233

13781 35 87

17720529 39

E
 (3.2)

We have the additional key matrix F in the form given in
(3.3).

Figure 2. Flowchart for Decryption

Read C,E,F,n,r

D=Mult(E)

For k=1 to r

For j=1 to n

C=[cij]

Write(P)

P=C

C=Imix(C)

For i=1 to n

cij =[dij × (C-F) ij] mod 256

pij=([eij × pij] mod

256 +F) mod 256

Read P,E,F,n,r

For k=1 to r

For i=1 to n

For j=1 to n

P=[pij]

P=Mix (P)

C=P

Write(C)

Figure 1. Flowchart for Encryption

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.16, October 2012

13





















78345522

33985623

99264566

805623111

F
 (3.3)

Let us obtain the decryption key bunch matrix D by using the

relation (1.3). Thus we have





















227652431

19914124789

185177139103

81553151

D
 (3.4)

On using P, E and F, given by (3.1) to (3.3), and the

encryption algorithm given in section 2, we get





















14769 19895

38 25082 122

153248164246

14827 95 77

C

 (3.5)

On using the above C, given by (3.5), the decryption key

bunch matrix D, given by (3.4), and the decryption algorithm

given in section 2, we get back the original plaintext P, given

by (3.1).

Now let us examine the avalanche effect. On changing 2nd

row 3rd column element of the plaintext P, given by (3.1),

from 153 to 152, we get a one bit binary change in the

plaintext. On using, the modified plaintext, the key matrices,

given by (3.2) and (3.3), and the encryption algorithm, given

in section 2, we get the ciphertext C in the form





















27 127178229

21617 207132

99 7 238210

16517 114178

C

 (3.6)

On comparing (3.5) and (3.6), after representing them in their

binary form, we notice that these two ciphertexts differ by 76

bits out of 128 bits.

Now, let us have a one bit change in the encryption key bunch

matrix E. To this end, we change the 1st row 3rd column

element of (3.2), from 205 to 201. On using this modified E,

the plaintext P, given by (3.1), the additional key matrix F,

given by (3.3), and using the encryption algorithm, we get the

ciphertext C in the form





















18718394 3

20220 8 16

16168 45 72

12 4 23226

C

 (3.7)

On comparing, (3.7) and (3.5), in their binary form, we find

that they differ by 69 bits out of 128 bits.

From the above analysis, we conclude that the avalanche

effect is conspicuous.

4. CRYPTANALYSIS
In the development of every cipher, cryptanalysis play a

fundamental role as it decides whether a cipher is having

strength or not. The different types of attacks that are carried

out in cryptanalysis are

1. Ciphertext only attack (Brute force attack),

2. Known plaintext attack,

3. Chosen plaintext attack, and

4. Chosen ciphertext attack.

Generally every cipher is designed [3] so that it sustains the

first two attacks.

Let us firstly analyze the ciphertext only attack. In this

analysis, the key bunch matrix E is containing only odd

integers lying in [1-255], and the additional key matrix F is

containing integers lying in [0-255]. In the light of this fact,

the size of the key space is

.10)10()2(2
2222 5.45.135.11015 nnnn 

If we assume that the time required for the computation of this

cipher with one E and one F in the key space is 10-7 seconds,

then the time required for the execution of the cipher with all

the keys in the key space is approximately equal to

 .1012.3
606024365

1010 155.4
75.4

2

2

yearsn
n









In this analysis, as we have taken n=4, the time required can

be written in the form 3.12x1057 years.

As this time is very large, it is not at all possible to break this

cipher by the ciphertext only attack.

Let us now examine the known plaintext attack. In order to

carry out this attack, the attacker knows as many plaintexts as

he wants, and the corresponding ciphertexts. Having this

entire bunch, his job is to break this cipher if possible.

If we restrict our attention to the first round of iteration

process, (that is r = 1) the equations governing the encryption

process (see the algorithm in section 2) are given by

 P=([eij × pij] mod 256 + F) mod 256, i =1 to n, j=1 to n, (4.1)

 P=Mix(P), (4.2)

 and

 C = P (4.3)

In this system of equations, the pij occurring in (4.1), and the

ciphertext in (4.3) are known to us. As C is known, the P

occurring left hand side of (4.2) is available. On using Imix()

operation, the P occurring on the right hand side of (4.2) and

hence the P occurring on the left hand side of (4.1) can be

determined. As the equation (4.1) contains the additional key

matrix F, the eij cannot be determined by any means. Hence

this cipher cannot be broken by this attack. This is the

situation when r=1. Here in this analysis, as we have taken

r=16, we can say very firmly that this cipher cannot be broken

by the known plaintext attack.

Intuitively, we notice that, we cannot choose either a plaintext

or a ciphertext in a convenient manner to attack this cipher.

5. COMPUTATIONS AND

CONCLUSIONS
In this analysis, we have developed a block cipher by using

two key matrices. The first matrix, E, contains a bunch of

keys, where in each key is an odd integer which lies in [1-

255], while the second one, F, includes integers which lie in

[0-255]. The cryptanalysis carried out in this investigation has

clearly indicated that this cipher is a strong one and it cannot

be broken by any cryptanalytic attack.

The programs for encryption and decryption are written in

Java.

The plaintext given in (3.1) is divided into 31 blocks, where in

each block is having 16 characters. The last block which

contains three characters is made a complete block by

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.16, October 2012

14

appending thirteen 0s as characters. On using, E and F, and

the encryption algorithm, given in section 2, we have obtained

the ciphertext for all blocks. Here, we have presented the

ciphertext corresponding to all these blocks (excluding the

ciphertext of the first block) in (5.1).

The strength of the cipher has increased significantly on

account of the introduction of additional key matrix, F, and

the modular arithmetic addition operation. This cipher which

we have developed in this analysis is quite comparable with

any other cipher available in the literature of cryptography.

6. REFERENCES
[1] V.U.K. Sastry, K. Shirisha, “A Novel Block Cipher

Involving a Key Bunch Matrix” sent for publication.

[2] V.U.K. Sastry, K. Shirisha, “A Block Cipher Involving a

Key Bunch Matrix and Including another Key Matrix

Supplemented with Xor Operation” sent for publication.

[3] William Stallings, “Cryptography and Network Security:

Principle and Practices”, Third Edition 2003, Chapter 2, pp.

29.

7. AUTHORS PROFILE

Dr. V. U. K. Sastry is presently working as Professor in the

Dept. of Computer Science and Engineering (CSE), Director

(SCSI), Dean (R & D), SreeNidhi Institute of Science and

Technology (SNIST), Hyderabad, India. He was Formerly

Professor in IIT, Kharagpur, India and worked in IIT,

Kharagpur during 1963 – 1998. He guided 14 PhDs, and

published more than 86 research papers in various

international journals. He received the best Engineering

College Faculty Award in Computer Science and Engineering

for the year 2008 from the Indian Society for Technical

Education (AP Chapter), Best Teacher Award by Lions Clubs

International, Hyderabad Elite, in 2012, and Cognizant-

Sreenidhi Best faculty award for the year 2012. His research

interests are Network Security & Cryptography, Image

Processing, Data Mining and Genetic Algorithms.

K. Shirisha is currently working as Associate Professor in

the Department of Computer Science and Engineering (CSE),

SreeNidhi Institute of Science & Technology (SNIST),

Hyderabad, India, since February 2007. She is pursuing her

Ph.D. Her research interests are Data Mining and Information

Security.

72 24714219616218515512722924319617010 8 5 169

98 13223 21687 59 94 98 23 21423 23523949 18 30

94 55 24421711986 17824051 42 2 59 108129174223

17989 67 10 13610917777 13123315815 35 255172104

58 10313610416811289 8 12820122254 24220118978

24019624722736 12 9 94 11567 17122250 67 130155

71 42 18115949 15011816327 21 109213100197168249

13286 1071911436 2 62 77 25313795 22819815460

12318723824 71 12625222 15721110356 58 33 122181

22418970 14961 1331911202220 81 14362 126121104

23517038 20415224325124478 12914323612514412980

19527 20960 30 0 19813623287 17671 16522319399

86 39 37 24623914 19678 14821416282 48 254102231

(5.1) 25522610 16731 12629 18914917618717523622 16656

19523515618012322320940 90 16960 19368 130121156

12722411712284 83 91 85 21625422653 99 18421650

21677 23520611980 35 178226226181139150106177253

11118 15450 23611926 10425012021641 56 119198162

37 99 76 75 43 12316 20211020612489 10220512 25

1951474 1025 17577 19975 17125 16012 86 36 91

24224417 22519 5 17639 19 1008 23548 21823631

68 18768 21567 25 11812622416352 90 54 169152182

2521180 55 95 48 45 18712321118812125221220839

11129 18119321013135 21712215419613721318711926

49 17898 24914510612711263 94 49 24892 114204169

65 58 20323617772 24211713698 20452 11919632 119

47 79 71 82 19741 21841 92 14 21875 24053 22963

11722814652 12113451 63 9 49 23226 12 71 17 10

16271 13369 77 20213014913124262 25522823832 254

20120523818423810413321466 83 19 10 8 15013280

