
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.16, October 2012

1

A Novel Block Cipher Involving a Key Bunch Matrix

ABSTRACT

In this paper, we have developed a novel block cipher, which

involves a key bunch matrix in the process of encryption. In

order to carry out the decryption process, we have obtained

the multiplicative inverse of each key in the encryption key

bunch matrix by using the concept of multiplicative inverse,

and constructed the decryption matrix. In this analysis, the

cryptanalysis clearly shows that the strength of the cipher is

remarkable, and this cipher can be used for the transmission

of information, like any other well-known cipher, through

internet.

Keywords

Key bunch matrix, encryption, decryption, avalanche effect,

cryptanalysis.

1. INTRODUCTION
Cryptography is a well-known branch of Computer Science.

Transmission of information concerned to an organization or a

person, in a secured manner, can be achieved in a successful

way, by designing a cipher. There are several classical

ciphers, such as Hill Cipher [1], PlayFair Cipher [2], Feistel

Cipher [3], DES [4], AES [5], which are well established in

the area of cryptography. The Hill Cipher depends upon the

modular arithmetic inverse of a key matrix. The PlayFair

Cipher is based upon the key and the arrangement of the

characters occurring in the alphabet (excluding the characters

that are in the key), and a typical set of rules applied for

writing the ciphertext corresponding to each pair of

characters. The Feistel Cipher forms a strong foundation for

the development of a number of block ciphers. In this, the

plaintext string is divided into two halves. In each round of

the iteration process, the right half, operated by the key, is

xored with the left half. Then the left and right halves are

interchanged for achieving confusion in a thorough manner.

DES and AES are the subsequent developments, came into

existence in the literature, basing upon Feistel Cipher. In the

last one decade, several modifications/ extensions [6-20] of

the afore mentioned ciphers have appeared in the literature.

In the present investigation, our objective is to develop a

block cipher, which involves several keys that can be

represented for convenience in the form of a matrix, called a

key bunch matrix. In this analysis each plaintext character is

multiplied by a key. In order to carry out the decryption

process, the multiplicative inverse of each key is separately

obtained. In the development of this cipher, we have adopted

an iterative procedure, and the multiplication of the plaintext

components and the keys is carried out in each round of the

iteration process. Here our interest is to see, how the bunch of

keys would influence the cipher and strengthen the cipher.

In what follows, we present the plan of the paper. In section

2, we deal with the development of the cipher. Here we

present flowcharts and algorithms required in the analysis.

Section 3 contains an illustration of the cipher. In this, we

discuss the avalanche effect, which gives an idea of the

strength of the cipher. In section 4, we examine the

cryptanalysis. Finally in section 5, we put forth the

computations carried out in this analysis, and draw

conclusions.

2. DEVELOPMENT OF THE CIPHER
Consider a plaintext P. On using EBCDIC code, this can be

written in the form of a square matrix, given by

P = [pij], i=1 to n, j=1 to n, (2.1)

where each pij lies in [0, 255].

Let E be the key bunch matrix for encryption. Let us suppose

that, this can be written in the form

 E = [eij], i=1 to n, j=1 to n. (2.2)

Let D be the decryption matrix that can be written in the form

 D = [dij], i=1 to n, j=1 to n. (2.3)

Here, for every given eij , we can obtain the corresponding dij

by using the relation

 (eij x dij) mod 256 = 1. (2.4)

In view of the relation (2.4), it is to be noted that each eij is to

be selected as an odd number, which lies in the interval [1,

255]. Correspondingly, we get each dij as an odd number lying

in the interval [1, 255].

When E = [16(i-1) +2j-1], i=1 to 16 and j= 1 to 8, (2.5)

we can readily find the decryption matrix D in the form

)6.2(

255 85 51 73 199 93 59 17

15 229 195 89 215 237 203 33

31 117 83 105 231 125 91 49

47 5 227 121 247 13 235 65

63 149 115 137 7 157 123 81

79 37 3 153 23 45 11 97

95 181 147 169 39 189 155 113

111 69 35 185 55 77 43 129

127 213 179 201 71 221 187 145

143 101 67 217 87 109 75 161

159 245 211 233 103 253 219 177

175 133 99 249 119 141 107 193

191 21 243 9 135 29 251 209

207 165 131 25 151 173 139 225

223 53 19 41 167 61 27 241

239 197 163 57 183 205 171 1

D

On carrying out the encryption, we get the cipher text C in the

form,

C =[cij]=[eij × pij] mod 256, (2.7)

where i = 1 to n, j = 1 to n.

V.U.K. Sastry, PhD.

Professor of CSE, Director (SCSI),
Dean (Admin), Dean (R&D),

SreeNidhi Institute of Science & Technology,
Hyderabad, India,

K. Shirisha
Associate Professor,

Dept. of Computer Science & Engineering,
SreeNidhi Institute of Science & Technology,

Hyderabad, India,

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.16, October 2012

2

Now applying the decryption process, we get

P = [pij] = [dij × cij] mod 256. (2.8)

The flowcharts for the encryption process and the decryption

process can be drawn in the form given below

Here r denotes the number of rounds in the iteration process.

Mult() is a function to obtain the decryption key bunch matrix

D for the given E.

The algorithms corresponding to the above flowcharts can be

written as follows.

Algorithm for Encryption

1. Read P,E,n,r

2. for k = 1 to r do

{

3. For i=1 to n do

{

4. For j=1 to n do

{

5. pij =(eij × pij) mod 256

}

}

6. P=[pij]

7. P= Mix (P)

}

8. C = P

9. Write(C)

Algorithm for Decryption

1. Read C,E,n,r

2. D=Mult(E)

3. for k = 1 to r do

{

4. C= Imix (C)

5. For i=1 to n do

{

6. For j=1 to n do

{

7. cij = (dij × cij) mod 256

}

}

8. C=[cij]

}

9. P=C

10. Write (P)

In the afore mentioned flowcharts and algorithms, we have

used the function Mix() for mixing the binary bits of the

plaintext, in each round of the iteration process, so that

thorough confusion and diffusion are created for

strengthening the cipher. The process involved in the Mix()

can be summarized as follows. Let

P= [pij], i= 1 to n, j=1 to n

be the plaintext in a round of the iteration process. Let us

suppose that n = 2m. Then the matrix P can be written in the

form.

nnnnmnnmnn

nnmm

nnmm

pppppp

pppppp

pppppp

P

)1()1(21

2)1(2)1(222221

1)1(1)1(111211

....

........

........

........

....

....

Let us write each element of this matrix P in its binary form.

Thus we have a matrix consisting of n rows and 8n columns.

This is given by (2.7).

Now focusing our attention on the first column, we consider

the first eight bits of this column and write it in the form of a

decimal number. Then we write the next eight bits of the same

column (if n > 8) as the second decimal number. We follow

this procedure and write the subsequent elements of this

column under consideration in terms of decimal numbers.

After this, we consider the (m+1)th column of the above

matrix and write the decimal numbers as we have done earlier

in the case of the first column. Then we proceed to the second

column of this matrix and do in the same manner. After this

we take up the next column in the second half (i.e., (m+2)th

column) of the matrix. We arrange all these numbers one after

another in a row-wise manner in a matrix. However, if the

plaintext is containing less than eight rows, we consider the

elements in the first column of the first half of the matrix and

the elements of the first column in the second half of the

matrix and form a decimal number. Then we write these

decimal numbers in a row-wise manner one after the other and

obtain a matrix of size n x n. In this way, we have mixed the

elements of the plaintext in a thorough manner. The function

Imix(), used in the decryption process, denotes the reverse

process of Mix().

Figure 1. Flowchart for Encryption

Read P,E,n,r

For k=1 to r

For i=1 to n

For j=1 to n

pij = (eij × pij) mod 256

P=[pij]

P =Mix(P)

C=P

Write (C)

Figure 2. Flowchart for Decryption

Read C,E,n,r

D=Mult(E)

For k=1 to r

For j=1 to n

C =[cij]

Write (P)

P =C

C=Imix(C)

For i=1 to n

cij = (dij × cij) mod 256

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.16, October 2012

3

8218)1(2)1(1)1(821181211

8222128)1(22)1(21)1(2822212218212211

8121118)1(12)1(11)1(1812111118112111

..............

..........

..........

..............

..............

nnnnnnmnmnmnnmnmnmnnn

nnnmmmmmm

nnnmmmmmm

pppppppppppp

pppppppppppp

pppppppppppp

 (2.7)

3. ILLUSTRATION OF THE CIPHER

AND THE AVALANCHE EFFECT
Consider the plaintext P given below.

Dear Husband! I thought that I would have an excellent

life by doing IAS. I did! As you are an IPS officer you are

getting transferred from one place to another, very

frequently, and I was also having the same situation

earlier. Now after becoming a secretary in the state, I do

not know how I am to act. The bossism of this minister or

that minister is causing my life a hell. Be writing letters as

frequently as possible so that I feel the thrill of your letter.

Yours. (3.1)

Now let us focus our attention on the first 16 characters. This

is given by

Dear Husband! I (3.2)

On using the EBCDIC code, we get

64 20164 79

132149129130

16216420064

153129133196

P

 (3.3)

Let us take the encryption key bunch matrix E in the form

253225241237

13173 119107

39 41 13589

12510115713

E
 (3.4)

On using the basic concept of multiplicative inverse, given by

(2.4), we get the corresponding decryption key bunch matrix,

D in the form

853317229

432497167

1512555233

213109181197

D

 (3.5)

On using (3.3) and (3.4), and applying the process of

encryption, given in section 2, we get the cipher text C in the

form

8 1 66 14

74 5 5 158

17 41 40 191

2372225 152

C

 (3.6)

On using (3.6) and (3.5), and applying the process of

decryption, given in section 2, we get back the original

plaintext P, given by (3.3).

Now, let us examine the avalanche effect. We change the 4th

row, 3rd column element of (3.3) from 201 to 193, Thus, we

have one binary bit change in the plaintext P. On using the

modified plaintext and the encryption key bunch E, given by

(3.4), and applying the encryption algorithm, we get the

cipher text C in the form

170235150180

82 223111100

13515982 36

23 45 20 66

C

 (3.7)

On comparing (3.6) and (3.7), in their binary form, we find

that these two ciphertexts differ by 72 bits (out of 128). This

shows that the cipher is expected to be very good.

Now, on changing 4th row, 2nd column element of the key

bunch E given by (3.4) from 241 to 240, we have one binary

bit change. On using the modified encryption key bunch, the

plaintext P, given by (3.3), and using the encryption

algorithm, we get the ciphertext C in the form

1008 47 64

23524259 37

134245101213

1201343 67

C

 (3.8)

On comparing (3.6) and (3.8), after converting them in to their

binary form, we find that the two ciphertexts under

consideration differ by 69 bits out of 128 bits. This also shows

that the cipher is a strong one.

4. CRYPTANALYSIS
In the development of every block cipher, cryptanalysis plays

a vital role, as this decides the strength of the cipher and

utility of the cipher. The different types of attacks that are

available in the literature of cryptography are

1. Ciphertext only attack (Brute force attack)

2. Known plaintext attack

3. Chosen plaintext attack

4. Chosen ciphertext attack.

Generally every cipher is designed so that it sustains the first

two attacks. Theoretical proofs are offered regarding these

two attacks [21]. However intuitive indications are given and

decisions are taken in the case of the last two attacks.

Let us now consider the ciphertext only attack. In this, the

ciphertext and the algorithm are known to us. In this analysis

the size of the key bunch matrix, E is n x n. As each element

of E is an odd number lying in [1, 255], it can be selected in
128 ways. Thus the size of the key space is

 2
2

22 1.27.0107 1022128 nnnn

If we assume that, the time required for the execution of this

cipher with one value of the key is 10-7 seconds, then the time

required for the computation with all the keys in the key space

is approximately equal to

 .1012.3
606024365

1010 151.2
71.2

2

2

yearsn
n

However, in the present analysis, we have taken n = 4. Thus

the time required

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.16, October 2012

4

.1012.3 6.18 years

As this time is formidably large, it is impossible to break this

cipher by the brute force attack.

Let us now examine the known plaintext attack. In order to

carry out this attack, we know as many pairs of plaintexts and

ciphertexts that we require for this purpose. If we confine our

attention to only one round of the iteration process, that is if r

= 1, then the equations that we obtain from the encryption

algorithm presented in section 2, are

P = [eij x pij] mod 256, i = 1 to n, j=1 to n, (4.1)

P = Mix(P), (4.2)

and

C = P (4.3)

In the known plaintext attack, we know [pij], i= 1to n, j=1 to

n, occurring in the right hand-side of (4.1), and we also know

all the components of the ciphertext C, occurring in the

equation (4.3). As C is known to us, we know P which is

occurring on the left hand side of (4.2). On operating with

function Imix on both the sides of (4.2) we can determine P

on the left hand side of (4.1). As P and pij occurring in (4.1)

are known to us, we can determine all eij by using

multiplicative inverse, of course, by taking pij in appropriate

manner. Thus the cipher can be broken when r=1.

Let us know focus our attention on the second round of the

iteration process. When r = 2, the equations governing the

encryption process are given by

P = [eij x pij] mod 256, i = 1 to n, j=1 to n, (4.4)

P = Mix(P), (4.5)

P = [eij x pij] mod 256, i = 1 to n, j=1 to n, (4.6)

P = Mix(P), (4.7)

C = P (4.8)

Here, as C is known to us, we can determine P occurring on

the right hand side of (4.8). On using this P, we can find out

the P occurring on the right hand side of (4.7) by using Imix()

on both the sides. Thus, the P on the left hand side of (4.6) is

known to us. We also know the pij occurring on the right hand

side of (4.4) as the plaintext is known. Though this is known

to us, we cannot determine P, occurring on the left hand side

of (4.4). Hence we cannot proceed further to find the eij (the

elements of the key bunch matrix E). Thus, we cannot break

this cipher in the case of the known plaintext attack, when r =

2. Here, in our analysis as we have taken r = 16, it is simply

impossible to break the cipher by the known plaintext attack.

Even on using fully our intuition and making a thorough

effort, we do not find any scope to choose a plaintext /

ciphertext which will enable us to break the cipher.

In the light of the above discussion, we conclude that this

cipher cannot be broken by any attack.

5. COMPUTATIONS AND

CONCLUSIONS
In this investigation, we have developed a block cipher by

using a bunch of keys and their multiplicative inverses. From

the cryptanalysis, we have found that the cipher is a strong

one, as the keys are affecting the plaintext in each round of

the iteration process.

The programs for encryption and decryption are written in

Java.

The plaintext given by (3.1) is divided into thirty blocks. As

the last block is containing 7 characters, we have appended 9

0s as additional characters to make it a complete block. On

using the key bunch E, given by (3.4), and the encryption

algorithm given in section 2, we have obtained the ciphertext

corresponding to each one of the blocks. Thus we have the

ciphertext for the entire plaintext (excluding the first block for

which the ciphertext is already given in (3.7)) in the form

shown in (5.1).

In this analysis, as each character is multiplied by a key in

each round of the iteration process, the plaintext has

undergone several transformations, and has resulted in a

ciphertext that cannot be deciphered in any way. This is a

simple interesting cipher that has some analogy with the

classical Hill Cipher [1]. And this cipher cannot be broken by

any cryptanalytic attack.

6. REFERENCES
 [1] Lester Hill, (1929), “Cryptography in an algebraic

alphabet”, (V.36 (6), pp. 306-312.), American

Mathematical Monthly.

[2] Arthur C. Clarke’s Venus Prime, volume 2: Maelstrom.

New York. Avon Books, 1988.

[3] Fiestal H., Cryptography and Computer Privacy,

Scientific American, May 1973.

[4] National Bureau of Standards NBS FIPS PUB 46 “Data

Encryption Standard (DES)”, US Department of

Commerce, January 1977.

[5] Daemen J., Rijman V., “Rijndael, The Advanced

Encryption Standard (AES)”, Dr. Dobb’s Journal, vol.

26, No. 3, March 2001, pp. 137-139.

[6] V. U. K. Sastry, S. Udaya Kumar, and A. Vinay Babu,

“A large Block Cipher using Modular Arithmetic Inverse

of a Key Matrix and mixing of the Key Matrix and the

Plaintext”, Journal of Computer Science, 2(9), 2006,

New York, pp. 690-697.

[7] S. Udaya Kumar, V. U. K. Sastry and A. Vinay Babu,

“An iterative Process Involving Interlacing and

Decomposition in the Development of a block Cipher”,

International journal of Computer Science and Network

Security, vol. 6, No. 10, October 2006, Seoul, South

Korea, pp. 236-245.

[8] V. U. K. Sastry, V. Janaki, “On the modular arithmetic

Inverse in the cryptology of Hill Cipher”, Proceedings of

North American Technology and Business Conference,

September 2005, Canada.

[9] V. U. K. Sastry, V. Janaki, “A block Cipher using linear

Congruences”, accepted for publication in Journal of

Computer Science, Science publications, Newcity, New

York.

[10] V. U. K. Sastry, N. Ravi Shankar, “Modified Hill Cipher

with Interlacing and Iteration “, Journal of Computer

Science, Science Publications, 3(11):854-859, 2007.

[11] V. U. K. Sastry, N. Ravi Shankar, “Modified Hill Cipher

for a large block of plaintext with Interlacing and

Iteration”, Journal of Computer Science, Science

Publications, 4(1):15-20, 2008.

[12] V. U. K. Sastry, Prof. D.S.R. Murthy, Dr. S. Durga

Bhavani, “A Block Cipher Invloving a Key Applied on

both sides of the plaintext”, International Journal of

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.16, October 2012

5

Computer and Network Security (IJCNS), Vol. 1, No.1,

pp. 27-30, Oct 2009.

[13] V. U. K. Sastry, Prof. D.S.R. Murthy, Dr. S. Durga

Bhavani, “A modified Fiestal Cipher involving Modular

Arithmetic and a Key on both sides of the Plaintext

Matrix”, International Journal of Computational

Intelligence and Information Security (IJCIIS), Special

Issue, Vol. 1, No. 4, pp. 10-16, Jun 2010.

[14] V.U.K.Sastry, Aruna Varanasi, “ A Modified Hill Cipher

Involving Permutation, Iteration and the Key in a

Specified Position”(IJCNS) International Journal of

Computer and Network Security, Vol. 2, No. 10, pp. 157-

162, October 2010.

[15] V.U.K.Sastry, Aruna Varanasi, S.Udaya Kumar, “A

Modern Hill Cipher Involving a Permuted Key and

Modular Arithmetic Addition Operation”, International

Journal of Advanced Research in Computer Science

Vol.2 No.1,pp.162-165, Jan-Feb 2011.

[16] V.U.K Sastry and K. Anup Kumar, “ A Modified Feistel

Cipher involving a key as a multiplicant on both the

sides of the Plaintext matrix and supplemented with

Mixing Permutation and XOR Operation”, International

Journal of Computer Technology and Applications ISSN:

2229-6093. Vol. 3, No.1, pp. 23-31, 2012.

[17] V.U.K Sastry and K. Anup Kumar, “A Modified Feistel

Cipher Involving a Key as a Multiplicant on Both the

Sides of the Plaintext Matrix and Supplemented with

Mixing, Permutation, and Modular Arithmetic Addition”,

International Journal of Computer Technology and

Applications ISSN: 2229-6093. Vol. 3, No.1, pp. 32-39,

2012.

[18] VUK Sastry, Ch. Samson, A Generalized Hill Cipher

Involving Different Powers of a Key, Mixing and

Substitution, International Journal of Advanced Research

in Computer Science, July 2012.

[19] VUK Sastry, Ch. Samson, Generalized Hill Cipher

Involving Multiple Keys, Mixing and Key Dependent

Substitution, International Journal of Computational

Intelligence and Information Security, July 2012.

[20] V.U.K Sastry and K. Anup Kumar, “A Modified Feistel

Cipher Involving a Pair of Key Matrices, Supplemented

with XOR Operation, and Blending of the Plaintext in

each Round of the Iteration Process”, International

Journal of Computer Science and Information

Technologies ISSN: 0975-9646. Vol. 3, No.1, pp.

31333141, 2012.

[21] William Stallings: Cryptography and Network Security:

Principle and Practices”, Third Edition 2003, Chapter 2,

pp.29.

96 1620 21776 12997 45 10887 19120224 11430 195

18718223129 78 25 80 19257 16093 6 82 2086 223

21 23524024915422332 20419718414824561 65 34 116

89 15221318711823013190 10 76 20116693 16077 250

24234 64 2381531856 11812370 19510524223222543

42 87 69 2 18219619720949 18017395 68 22382 251

18919513995 8 24384 68 13786 16789 25 168157115

4 93 97 42 11117217814819 13012211679 20212661

24518212322718612191 14919823759 58 72 21421949

41 61 24694 24817712496 76 16413319769 3 204132

19216446 22774 19817020014697 11477 151217128242

19714217823411 1659 43 21344 29 17619211948 49

23849 12612210268 13024 25 18719017019417556 102

(5.1) 1551 17011676 72 66 24923823187 24424423 17220

19317917350 40 19010910657 11422723 19 24586 207

15825023321772 70 21611213065 24640 14532 53 106

21786 15012 25219578 1779 1 77 2521248 71 16

10618485 14 21920715618495 38 2371831985 245221

1607 66 64 20 1882021171842091775 87 170207191

33 18010922325 19020710782 88 22515427 16283 208

71 15417120814314676 14015214810724623364 65 88

14898 30 11224031 16626 14 19725 19214115524 191

14020 14014210877 28 33 11018922925519713 5 224

16112019899 10913025015312813210 18416135 11718

33 17611013023864 4 89 19490 70 1248 16739 207

10782 18610425599 11620413413655 28 21 18 241143

14054 18124814120312916093 10521 36 0 186214198

7 13257 10113246 18315 10326 13124894 67 88 149

1101 20727 18027 54 15213062 60 12394 121140220

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.16, October 2012

6

7. AUTHORS PROFILE

Dr. V. U. K. Sastry is presently working as Professor in the

Dept. of Computer Science and Engineering (CSE), Director

(SCSI), Dean (R & D), SreeNidhi Institute of Science and

Technology (SNIST), Hyderabad, India. He was Formerly

Professor in IIT, Kharagpur, India and worked in IIT,

Kharagpur during 1963 – 1998. He guided 14 PhDs, and

published more than 86 research papers in various

international journals. He received the best Engineering

College Faculty Award in Computer Science and Engineering

for the year 2008 from the Indian Society for Technical

Education (AP Chapter), Best Teacher Award by Lions Clubs

International, Hyderabad Elite, in 2012, and Cognizant-

Sreenidhi Best faculty award for the year 2012. His research

interests are Network Security & Cryptography, Image

Processing, Data Mining and Genetic Algorithms.

K. Shirisha is currently working as Associate Professor in

the Department of Computer Science and Engineering (CSE),

SreeNidhi Institute of Science & Technology (SNIST),

Hyderabad, India, since February 2007. She is pursuing her

Ph.D. Her research interests are Data Mining and Information

Security

.

