
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.15, October 2012

12

Modeling of Reusability of Procedure based Software
Components using Naive Bayes Classifier Approach

Priyanka Kakkar

Mtech(CSE)*
SSCET, Pathankot

Meenakshi Sharma

HOD(CSE)
SSCET, Pathankot

Parvinder Sandhu, PhD.
Rayat-Bahra, Mohali

ABSTRACT

We have developed a highly flexible module to evaluate and

access the reusability of software components. The purpose of

this model is to do pattern recognition by discovering

supervised features which can help us to measure the

intangible aspects of software components in terms of

reusability. There were several function based applications

which were given due diligence for identifying their various

degrees of reusability of their components. Once these

projects were analyzed their software components were

measured in terms of software metrics including (Volume,

Coupling, Complexity, Reuse frequency, Regularity and

Reusability). These measured metrics were carefully allocated

a particular set of label which was based on the principals of

software engineering and objectives to be achieved for doing

the due research. Therefore, in this research work we are

studying the degree of reusability by using six classes Naïve

Bayes Classification method which was able to give high

precision value as compare to previous methods.

1. INTRODUCTION
1.1 Software Reusability

Software reusability more specifically refers to design

features of a software element (or collection of software

elements) that enhance its suitability for reuse. In software

engineering, reusability is the likelihood a segment of source

code that can be used again to add new functionalities with

slight or no modification. Reusable modules and classes

reduce implementation time, increase the likelihood that prior

testing and use has eliminated bugs and localizes code

modifications when a change in implementation is required.

Reusability is often a required characteristic

of platform software. Reusability brings several aspects

to software development that does not need to be considered

when reusability is not required.

For a software component to become reusable, it has to be

generalized from the situation at hand, thoroughly

documented and tested, incorporated in a library and

classification scheme, and maintained as a separate entity.

The software industry is moving toward large-scale reuse,

resulting in savings of time and money. To develop a new

system from scratch is very costly. This has made custom

software development very expensive. It is generally assumed

that the reuse of existing software will enhance the reliability

of a new software application. This concept is almost

universally accepted because of the obvious fact that a

product will work properly if it has already worked before.

A component can be considered an independent replaceable

part of the application that provides a clear distinct function.

A component can be a coherent package of software that can

be independently developed and delivered as a unit, and that

offers interfaces by which it can be connected unchanged with

other components to compose a larger system.

1.2 Methodology
Reusability evaluation System for function/procedure Based

Software Components can be framed using following

steps:

Figure 4.1 Methodology of Function Based Software

Components.

Naïve Bayes Classifier
It is a simple probabilistic classifier based on applying Bayes'

theorem with strong (naive) independence assumptions. A

more descriptive term for the underlying probability model

would be "independent feature model".

In simple terms, a Naive Bayes classifier assumes that the

presence (or absence) of a particular feature of a class is

unrelated to the presence (or absence) of any other feature,

given the class variable.

The Naïve Bayes Probabilistic Model:

Abstractly, the probability model for a classifier is a

conditional model

over a dependent class variable with a small number of

outcomes or classes, conditional on several feature

variables through . The problem is that if the

number of features is large or when a feature can take on a

large number of values, then basing such a model on

probability tables is infeasible. We therefore reformulate the

model to make it more tractable.

Using Bayes' theorem, we write

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.15, October 2012

13

The proposed five metrics for function Oriented Paradigm is

as follows:

The proposed metrics for Function Oriented Paradigm are as

follows:

According to Mc Cabe, the value of Cyclometric

Complexity (CC) can be obtained using the following

equation:

2. Cyclometric Complexity Using Mc

Cabe’s Measure

1 nodespredicateofNumberCC

(1)

2. Software Science Indicator
According to this metric volume of the source code of the

software component is expressed in the following equation:

)21(2log21 NNVolume (2)

3. Regularity Metric
The notion behind Regularity is to predict length based on

some regularity assumptions. As actual length (N) is sum of

N1 and N2. The estimated length is shown in the following

equation:

`

(3)

The closeness of the estimate is a measure of the Regularity of

Component coding is calculated as:

NNNNNgularity /]/){(1Re (4)

4. Reuse-Frequency Metric
Reuse frequency is calculated by comparing number of static

calls addressed to a component with number of calls

addressed to the component whose reusability is to be

measured. Let N user defined components be X1, X2 … XN in

the system, where S1, S2 … SM are the standard environment

components e.g. printf in C language, then Reuse-Frequency

is calculated as:

M

i
iS

M

C
FrequencyReuse

0

)(
1

)(

(5)

5. Coupling Metric
Functions/methods that are loosely bound tend to be easier to

remove and use in other contexts than those that depend

heavily on other functions or non-local data. Different types

of coupling effects reusability to different extent.

Table 4.1: Confusion Matrix of Prediction Outcomes.

 Real Data Value of Reusability

Predicted Value of

Reusability
1 0

1 TP FP

0 FN TN

With help of the confusion matrix values the precision and

recall values are calculated described below:

 Precision

The Precision is the proportion of the examples which truly

have class x among all those which were classified as class x.

The technique having maximum value of probability of

detection and lower value of probability of false alarms is

chosen as the best fault prediction technique.

Precision = TP / (TP + FP) (1)

 Recall

Recall in this context is defined as the number of true

positives divided by the total number of elements that actually

belong to the positive class (i.e. the sum of true positives and

false negatives, which are items which were not labeled as

belonging to the positive class but should have been) [8]. The

recall can be calculated as follows:

Recall=TP (TP+FN)

 Accuracy

The percentage of the predicted values that match with the

expected values of the reusability for the given data.

The best system is that having the high Accuracy, High

Precision and High Recall value.

4.2 Results and Discussion
The proposed Naïve Bayes based methodology is

implemented in WEKA. WEKA environment is one such

facility which lends a high performance language for technical

computing.

The function oriented dataset considered have the output

attribute as Reusability value. The graphical representation of

the count of the number of examples of certain reusability

label is shown below in the Figure 4.2

Figure 4.2: Screen shot at coupling, volume, complexity,

regularity, reuse frequency and reusability

The given data with six input attributes i.e. Coupling,

Volume, Complexity, Regularity, Reuse Frequency,

Reusability and Output attributes is loaded in Weka

environment. First, the Naïve Bayesian Classification ignores

Reusability output attribute.

Figure 4.3: Snap shot of Net Beans to read the file using

Naïve Bayes Classifier

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.15, October 2012

14

In the Figure 4.3 using Naive Bayes we read the data from the

source file. Here, data reads the source file from reusability

.arff in drive E as illustrated in the above screen shot. This is

actual screenshot of the code which declare the file associated

resource for the various output like Precision, Recall, True

Positive Rate, F- measure, False Positive Rate etc. .

Figure 4.4: Snapshot of WEKA libraries implemented

through Net Beans

The above Figure 4.4 explains the library and and its

associated class for installation of Weka through Net Beans.

The above figure contains the description of all implemented

libraries and associated class used for the Naïve Bayes

algorithm

Net Beans IDE is an open-source integrated development

environment. Net Beans IDE supports development of all Java

application types (Java SE (including JavaFX), Java ME,

 web, EJB and mobile applications) out of the box. When we

compile and run the program using Naïve Bayes classifier in

Net Beans we find the various outputs like True Positive Rate,

F- measure, True Negative, Recall, Precision etc. as follows:

Figure 4.5: True Negatives

The figure 4.5 mainly explains the effects of true negatives at

certain instance of true positive rate.

Fig 4.6: False Positive Rate

Fig 4.7: True Positive Rate

The values of true positive rate is quiet favorable of the

environment of the relevant data and desired algorithm which

we can see from the figure 4.7 through smooth straight line.

The value is quiet relevant for the whole environment and can

be considered as an optimist one.

Figure 4.8: F-Measure

The above figure 4.11 clears the effect of F- measure with

respect to true positive rate.

The output of the Naïve Bayes is as follows:

=== Run information ===

Scheme: weka.classifiers.bayes.NaiveBayes

Relation: Reusability_Cdata

Instances: 104

Attributes: 6: Coupling, Volume, Complexity,

Regularity, Reuse_Frequency, Reusability

Test mode: 10-fold cross-validation

Figure 4.9: Screen Shot Of Results Using Naïve Bayes

Algorithm in Weka

=== Classifier model (full training set) ===

http://en.wikipedia.org/wiki/JavaFX

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.15, October 2012

15

Naive Bayes Classifier

Coupling:
Table 4.2 Coupling

1 2.0 4.0 3.0 2.0 15.0 18.0

2 2.0 1.0 15.0 28.0 4.0 2.0

3 4.0 7.0 11.0 2.0 1.0 1.0

Total 8.0 12.0 29.0 32.0 20.0 21.0

Volume:
Table 4.3 Volume

1 3.0 4.0 9.0 2.0 1.0 1.0

2 1.0 1.0 15.0 27.0 18.0 19.0

3 4.0 7.0 5.0 3.0 1.0 1.0

Total 8.0 12.0 29.0 32.0 20.0 21.0

Complexity:
Table 4.4: Complexity

1 2.0 7.0 8.0 7.0 1.0 1.0

2 1.0 2.0 19.0 24.0 18.0 19.0

3 5.0 3.0 2.0 1.0 1.0 1.0

Total 8.0 12.0 29.0 32.0 20.0 21.0

Regularity:
Table 4.5: Regularity

1 4.0 4.0 3.0 3.0 1.0 1.0

2 2.0 5.0 24.0 28.0 13.0 1.0

3 2.0 3.0 2.0 1.0 6.0 19.0

Total 8.0 12.0 29.0 32.0 20.0 21.0

Reuse Frequency:
Table 4.6: Reuse Frequency

1 6.0 7.0 17.0 17.0 12.0 1.0

2 1.0 4.0 2.0 3.0 1.0 2.0

3 1.0 1.0 10.0 12.0 7.0 8.0

Total 8.0 12.0 29.0 32.0 20.0 21.0

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 74 71.1538 %

Incorrectly Classified Instances 30 28.8462 %

Kappa statistic 0.6344

Mean absolute error 0.1446

Root mean squared error 0.2731

Relative absolute error 54.4404 %

Root relative squared error 75.0099 %

Total Number of Instances 104

Table 4.7 Detailed Information of various parameters and

their accuracy by class

TP

Ra

Te

FP

Ra

Te

Prec

ision

Re

call

FMea

sure

ROC

Area

Cla

ss

0.2 0.01 0.5 0.2 0.286 0.961 1

0.778 0.063 0.538 0.77 0.636 0.958 2

0.462 0.064 0.706 0.46 0.558 0.78 3

0.862 0.187 0.641 0.86 0.735 0.831 4

0.647 0.011 0.917 0.64 0.759 0.806 5

1.0 0.035 0.857 1.0 0.923 0.969 6

 === Confusion Matrix ===

Table 4.8 Confusion Matrix

A B C D E F ClassifiedAs

1 3 1 0 0 0 A=1

1 7 1 0 0 0 B=2

0 3 12 11 0 0 C=3

0 0 3 25 1 0 D=4

0 0 0 3 11 3 E=5

0 0 0 0 0 18 F=6

Comparative Study :

Figure 4.10: Comparative study Of Reusability of class 1

It is apparent from the graph that the value of precision due to

EM algorithm is quiet low as compare to the value of

precision due to NB algorithm .

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.15, October 2012

16

Figure 4.11: Comparative study Of Reusability of class 2

Higher will be the value of class higher will be the precision

value . This actually means with increase in the value in the

class there will be the increase in the value of precision for

both schemes.

Figure 4.12: Comparative study Of Reusability of class 3

It is apparent from the graph that the value of precision for

EM algorithm is 0.5 which is far less as compare to NB

algorithm which is 0.706.

Figure 4.13: Comparative study Of Reusability of class 4

In the above figure the value of precision of old scheme which

is EM cluster is shown through pink bar and the value of

precision of proposed scheme which is based on NB

classification is shown by green bar .

Figure 4.14: Comparative study Of Reusability of class 5

It is apparent from the above figure 4.21 the Precision value

of EM is lowest which is 0 in the class 5 of reusability and the

Precision value of NB is highest which is 0.917.

Figure 4.15: Comparative study Of Reusability of class 6

It is clear that in the last class of reusability the value of

Precision due to EM algorithm is low which is 0.78 as

compare to Precision due to Naïve Bayes Classification which

is 0.857.

5.1 Conclusion
In this study Naïve Bayes based classification approach is

evaluated for Reusability Prediction of Function based

Software systems. Here, the metric based approach is used

for prediction. Reusability value is expressed in the six

linguistic values. Six input metrics are used as Input and

classifiers are formed using Naïve Bayes algorithm, thereafter

10 fold cross validation performance of the system is

recorded. As deduced from the results it is clear that Precision

and Recall values of reusability class in the level, it means the

system is able to detect the “Excellent” components precisely.

Similarly, through Precision and Recall values of the

reusability class for the second best, this is able to detect the

“Non-Reusable” components with good precision.

The proposed technique is showing Accuracy value

approximately equal to 71%, so it is satisfactory enough to

use the Naïve Bayes based classification technique for the

prediction of the function based reusable modules from the

existing reservoir of software components.

5.2 Future scope
The proposed approach is applied on the C based software

modules/components and it can further be extended to the

Artificial Intelligence (AI) based software components e.g.

Prolog Language based software components. So assessment

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.15, October 2012

17

of component at fine grain level (functions) can be achieved

in future as further implementation of assessment model

 Intelligent Component Mining or Extraction

algorithms can be developed

 Early prediction of the quality of component based

system

 Characterization of Software Components for easy

retrieval

 REFERENCES
[1] Basili, V. R. and Rombach, H. D. (1988) “The TAME

Project: Towards Improvement Oriented Software

Environments”, IEEE Trans. Software Eng., vol. 14, no.

6, June 1988, pp. 758-771.

[2] Selby, R. W. (1988) “Empirically Analyzing Software

Reuse in a Production Environment”, Software Reuse:

Emerging Technology, W. Tracz, ed, IEEE Computer

Society Press, 1988.

[3] Basili, V.R. (1989) “Software Development: A Paradigm

for the Future”, Proceedings COMPAC’89, Los

Alamitos, California, IEEE CS Press, 1989, pp. 471-485.

[4] Arnold, R.S. (1990) “Salvaging Reusable Parts From

Ada Code: A Progress Report”, SPC Technical Report,

SALVAGE_ADA_PARTS_PR-90048-N, September

1990.

[5] Arnold, R.S. (1990) “ Heuristics for Salvaging Reusable

Parts From Adav Code”, SPC Technical Report,

ADA_REUSE_HEURISTICS-90011-N, March 1990.

[6] Esteva, J. C. and Reynolds, R. G. (1991)

“Identifying Reusable Components using Induction”,

International Journal of Software Engineering and

Knowledge Engineering, Vol. 1, No. 3 , 1991, pp. 271-

292

[7] Mayobre, G. (1991) “Using Code Reusability Analysis

to Identify Reusable Components from Software

Related to an Application Domain,” Proceeding of the

Fourth Workshop on Software Reuse, Reston. VA,

November, 1991, pp. 87-96.

[8] Stender (1994) “Introduction to genetic algorithms”,

IEEE Colloquium on Genetic Algorithms, Volume 2,

March 15, 1994 pp. 1-4.

[9] Jang, J-S. R. a n d Sun, C.T. (1995) “Neuro-fuzzy

Modeling and Control”, Proceeding of IEEE, March

1995, pp. 123-135.

[10] Klir, G. J. and Yuan, B. (1995) “Fuzzy Sets and Fuzzy

Logic” Prentice-Hall, New Jersey.

[11] Kartalopoulos, S. V. (1996) “Understanding Neural

Networks and Fuzzy Logic-Basic Concepts and

Applications”, IEEE Press, 1996, pp. 153-160.

[12] Jerome Feldman (1996) “Neural Networks - A

Systematic Introduction” Berlin, New-York, 1996.

[13] Succi, G., Benedicenti, L., and Vernazza, T., “Analysis

of the Effects of Software Reuse on Customer

Satisfaction in an RPG Environment”, IEEE Trans.

Software Eng., vol. 27, no. 5, May 2001, pp. 473-479.

[14] Anderson, J.A (2003) “An Introduction To Neural

Networks”, Prentice Hall of India.

[15] Frakes, W.B. and Kyo Kang (2005) “Software Reuse

Research: Status and Future”, IEEE Trans. Software

Engineering, vol. 31, issue 7, July 2005, pp. 529 - 536.

[16] Parvinder Singh and Hardeep Singh (2005)

“Critical Suggestive Evaluation of CK METRIC”,

Proc. of 9th Pacific Asia Conference on Information

Technology (PACIS-2005), Bangkok, Thailand, July 7 –

10, 2005, pp 234-241.

