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ABSTRACT 

We have developed a highly flexible module to evaluate and 

access the reusability of software components. The purpose of 

this model is to do pattern recognition by discovering 

supervised features which can help us to measure the 

intangible aspects of software components in terms of 

reusability. There were several function based applications 

which were given due diligence for identifying their various 

degrees of reusability of their components. Once these 

projects were analyzed their software components were 

measured in terms of software metrics including (Volume, 

Coupling, Complexity, Reuse frequency, Regularity and 

Reusability). These measured metrics were carefully allocated 

a particular set of label which was based on the principals of 

software engineering and objectives to be achieved for doing 

the due research. Therefore, in this research work we are 

studying the degree of reusability by using six classes Naïve 

Bayes Classification method which was able to give high 

precision value as compare to previous methods. 

1. INTRODUCTION 
1.1 Software Reusability 

Software reusability more specifically refers to design 

features of a software element (or collection of software 

elements) that enhance its suitability for reuse. In software 

engineering, reusability is the likelihood a segment of source 

code that can be used again to add new functionalities with 

slight or no modification. Reusable modules and classes 

reduce implementation time, increase the likelihood that prior 

testing and use has eliminated bugs and localizes code 

modifications when a change in implementation is required. 

Reusability is often a required characteristic 

of platform software. Reusability brings several aspects 

to software development that does not need to be considered 

when reusability is not required. 

For a software component to become reusable, it has to be 

generalized from the situation at hand, thoroughly 

documented and tested, incorporated in a library and 

classification scheme, and maintained as a separate entity.  

The software industry is moving toward large-scale reuse, 

resulting in savings of time and money. To develop a new 

system from scratch is very costly. This has made custom 

software development very expensive. It is generally assumed 

that the reuse of existing software will enhance the reliability 

of a new software application. This concept is almost 

universally accepted because of the obvious fact that a 

product will work properly if it has already worked before. 

A component can be considered an independent replaceable 

part of the application that provides a clear distinct function. 

A component can be a coherent package of software that can 

be independently developed and delivered as a unit, and that 

offers interfaces by which it can be connected unchanged with 

other components to compose a larger system. 

1.2 Methodology 
Reusability evaluation System for function/procedure Based 

Software Components can be framed using following 

steps: 

 
 

Figure 4.1 Methodology of Function Based Software 

Components. 

Naïve Bayes Classifier 
It is a simple probabilistic classifier based on applying Bayes' 

theorem with strong (naive) independence assumptions. A 

more descriptive term for the underlying probability model 

would be "independent feature model". 

In simple terms, a Naive Bayes classifier assumes that the 

presence (or absence) of a particular feature of a class is 

unrelated to the presence (or absence) of any other feature, 

given the class variable. 

The Naïve Bayes Probabilistic Model: 

Abstractly, the probability model for a classifier is a 

conditional model 

 

over a dependent class variable  with a small number of 

outcomes or classes, conditional on several feature 

variables  through . The problem is that if the 

number of features  is large or when a feature can take on a 

large number of values, then basing such a model on 

probability tables is infeasible. We therefore reformulate the 

model to make it more tractable. 

Using Bayes' theorem, we write 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 55– No.15, October 2012 

13 

The proposed five metrics for function Oriented Paradigm is 

as follows: 

The proposed metrics for Function Oriented Paradigm are as 

follows: 

According to Mc Cabe, the value of Cyclometric 

Complexity (CC) can be obtained using the following 

equation: 

 
2. Cyclometric Complexity Using Mc 

Cabe’s Measure 

1 nodespredicateofNumberCC  

(1) 

2. Software Science Indicator  
According to this metric volume of the source code of the 

software component is expressed in the following equation: 

)21(2log21   NNVolume  (2) 

3. Regularity Metric  
The notion behind Regularity is to predict length based on 

some regularity assumptions. As actual length (N) is sum of 

N1 and N2. The estimated length is shown in the following 

equation: 

`
 

(3) 

The closeness of the estimate is a measure of the Regularity of 

Component coding is calculated as: 

NNNNNgularity /]/){(1Re   (4) 

4. Reuse-Frequency Metric  
Reuse frequency is calculated by comparing number of static 

calls addressed to a component with number of calls 

addressed to the component whose reusability is to be 

measured. Let N user defined components be X1, X2 … XN in 

the system, where S1, S2 … SM are the standard environment 

components e.g. printf in C language, then Reuse-Frequency 

is calculated as: 
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5. Coupling Metric 
Functions/methods that are loosely bound tend to be easier to 

remove and use in other contexts than those that depend 

heavily on other functions or non-local data. Different types 

of coupling effects reusability to different extent. 

 
Table 4.1: Confusion Matrix of Prediction Outcomes. 

                 Real Data Value of Reusability 

Predicted Value of 

Reusability 
1 0 

1 TP FP 

0 FN TN 

 

With help of the confusion matrix values the precision and 

recall values are calculated described below: 

 Precision 

The Precision is the proportion of the examples which truly 

have class x among all those which were classified as class x. 

The technique having maximum value of probability of 

detection and lower value of probability of false alarms is 

chosen as the best fault prediction technique. 

Precision = TP / (TP + FP) (1) 

 Recall  

Recall in this context is defined as the number of true 

positives divided by the total number of elements that actually 

belong to the positive class (i.e. the sum of true positives and 

false negatives, which are items which were not labeled as 

belonging to the positive class but should have been) [8]. The 

recall can be calculated as follows: 

Recall=TP (TP+FN) 

 Accuracy  

The percentage of the predicted values that match with the 

expected values of the reusability for the given data. 

The best system is that having the high Accuracy, High 

Precision and High Recall value. 

4.2 Results and Discussion 
The proposed Naïve Bayes based methodology is 

implemented in WEKA. WEKA environment is one such 

facility which lends a high performance language for technical 

computing. 

The function oriented dataset considered have the output 

attribute as Reusability value. The graphical representation of 

the count of the number of examples of certain reusability 

label is shown below in the Figure 4.2 

 

 
 

Figure 4.2: Screen shot at coupling, volume, complexity, 

regularity, reuse frequency and reusability 

 

The given data with six input attributes i.e. Coupling, 

Volume, Complexity, Regularity, Reuse Frequency, 

Reusability and Output attributes is loaded in Weka 

environment. First, the Naïve Bayesian Classification ignores 

Reusability output attribute. 

 

 
 

Figure 4.3: Snap shot of Net Beans to read the file using 

Naïve Bayes Classifier 
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In the Figure 4.3 using Naive Bayes we read the data from the 

source file. Here, data reads the source file from reusability 

.arff in drive E as illustrated in the above screen shot. This is 

actual screenshot of the code which declare the file associated 

resource for the various output like Precision, Recall, True 

Positive Rate, F- measure, False Positive Rate etc. . 

 

 
 

Figure 4.4: Snapshot of WEKA libraries implemented 

through Net Beans 

 

The above Figure 4.4 explains the library and and its 

associated class for installation of Weka through Net Beans. 

The above figure contains the description of all implemented 

libraries and associated class used for the Naïve Bayes 

algorithm 

Net Beans IDE is an open-source integrated development 

environment. Net Beans IDE supports development of all Java 

application types (Java SE (including JavaFX), Java ME, 

 web, EJB  and mobile applications) out of the box. When we 

compile and run the program using Naïve Bayes classifier in 

Net Beans we find the various outputs like True Positive Rate, 

F- measure, True Negative, Recall, Precision etc. as follows: 

 

 
          

Figure 4.5:   True Negatives 

 
The figure 4.5 mainly explains the effects of true negatives at 

certain instance of true positive rate.  

 

 
Fig 4.6: False Positive Rate 

 
Fig 4.7: True Positive Rate 

 
The values of true positive rate is quiet  favorable  of the 

environment of the relevant data and desired algorithm  which 

we can see from the figure 4.7 through smooth straight line. 

The value is quiet relevant for the whole environment and can 

be considered as an optimist one.  

 

 
Figure 4.8: F-Measure 

 
The above figure 4.11 clears the effect of F- measure with 

respect to true positive rate.  

The output of the Naïve Bayes is as follows: 

=== Run information === 

Scheme:       weka.classifiers.bayes.NaiveBayes  

Relation:     Reusability_Cdata 

Instances:    104 

Attributes:   6: Coupling,  Volume, Complexity,               

Regularity, Reuse_Frequency, Reusability 

Test mode:    10-fold cross-validation 

 

 
Figure 4.9: Screen Shot Of Results Using Naïve Bayes 

Algorithm in Weka 

=== Classifier model (full training set) === 

 

 

 

 

 

http://en.wikipedia.org/wiki/JavaFX
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Naive Bayes Classifier 

Coupling: 
Table 4.2   Coupling 

1 2.0 4.0 3.0 2.0 15.0 18.0 

2 2.0 1.0 15.0 28.0 4.0 2.0 

3 4.0 7.0 11.0 2.0 1.0 1.0 

Total 8.0 12.0 29.0 32.0 20.0 21.0 

Volume: 
Table 4.3 Volume 

1 3.0 4.0 9.0 2.0 1.0 1.0 

2 1.0 1.0 15.0 27.0 18.0 19.0 

3 4.0 7.0 5.0 3.0 1.0 1.0 

Total 8.0 12.0 29.0 32.0 20.0 21.0 

 

Complexity: 
Table 4.4: Complexity 

1 2.0 7.0 8.0 7.0 1.0 1.0 

2 1.0 2.0 19.0 24.0 18.0 19.0 

3 5.0 3.0 2.0 1.0 1.0 1.0 

Total 8.0 12.0 29.0 32.0 20.0 21.0 

Regularity: 
Table 4.5: Regularity 

1 4.0 4.0 3.0 3.0 1.0 1.0 

2 2.0 5.0 24.0 28.0 13.0 1.0 

3 2.0 3.0 2.0 1.0 6.0 19.0 

Total 8.0 12.0 29.0 32.0 20.0 21.0 

Reuse Frequency: 
Table 4.6: Reuse Frequency 

1 6.0 7.0 17.0 17.0 12.0 1.0 

2 1.0 4.0 2.0 3.0 1.0 2.0 

3 1.0 1.0 10.0 12.0 7.0 8.0 

Total 8.0 12.0 29.0 32.0 20.0 21.0 

 

Time taken to build model: 0 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances       74                71.1538 % 

Incorrectly Classified Instances     30               28.8462 % 

Kappa statistic                                0.6344 

Mean absolute error                       0.1446 

Root mean squared error                0.2731 

Relative absolute error                   54.4404 % 

Root relative squared error            75.0099 % 

Total Number of Instances            104      

 

Table 4.7 Detailed Information of various parameters and 

their accuracy by class 

TP 

Ra 

Te 

FP 

Ra 

Te 

Prec 

ision 

Re 

call 

FMea 

sure 

ROC 

Area 

Cla 

ss 

0.2 0.01 0.5 0.2 0.286 0.961 1 

0.778 0.063 0.538 0.77 0.636 0.958 2 

0.462 0.064 0.706 0.46 0.558 0.78 3 

0.862 0.187 0.641 0.86 0.735 0.831 4 

0.647 0.011 0.917 0.64 0.759 0.806 5 

1.0 0.035 0.857 1.0 0.923 0.969 6 

 

        === Confusion Matrix === 

 
Table 4.8  Confusion Matrix 

A B C D E F ClassifiedAs 

1 3 1 0 0 0 A=1 

1 7 1 0 0 0 B=2 

0 3 12 11 0 0 C=3 

0 0 3 25 1 0 D=4 

0 0 0 3 11 3 E=5 

0 0 0 0 0 18 F=6 

   

 

Comparative Study : 

 

 
 

Figure 4.10: Comparative study Of Reusability of class 1 

 

It is apparent from the graph that the value of precision due to 

EM algorithm is quiet low as compare to the value of 

precision due to NB algorithm . 
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Figure 4.11: Comparative study Of Reusability of class 2 

 

Higher will be the value of class higher will be the precision 

value . This actually means with increase in the value in the 

class there will be the increase in the value of precision for 

both schemes. 

 

 
 

Figure 4.12: Comparative study Of Reusability of class 3 

 
It is apparent from the graph that the value of precision for 

EM algorithm is 0.5 which is far less as compare to NB 

algorithm which is 0.706. 

 

 
 

Figure 4.13: Comparative study Of Reusability of class 4 

 
In the above figure the value of precision of old scheme which 

is EM cluster is shown through pink bar and the value of 

precision of proposed scheme which is based on NB 

classification is shown by green bar . 

 
 

Figure 4.14: Comparative study Of Reusability of class 5 

 
It is apparent from the above figure 4.21 the Precision value 

of EM is lowest which is 0 in the class 5 of reusability and the 

Precision value of NB is highest which is 0.917. 

 

 
 

Figure 4.15: Comparative study Of Reusability of class 6 

 
It is clear that in the last class of reusability the value of 

Precision due to EM algorithm is low which is 0.78 as 

compare to Precision due to Naïve Bayes Classification which 

is 0.857. 

 

5.1 Conclusion 
In this study Naïve Bayes based classification approach is 

evaluated for Reusability Prediction of Function based 

Software systems.  Here, the metric based approach is used 

for prediction. Reusability value is expressed in the six 

linguistic values. Six input metrics are used as Input and 

classifiers are formed using Naïve Bayes algorithm, thereafter 

10 fold cross validation performance of the system is 

recorded. As deduced from the results it is clear that Precision 

and Recall values of reusability class in the level, it means the 

system is able to detect the “Excellent” components precisely. 

Similarly, through Precision and Recall values of the 

reusability class for the second best, this is able to detect the 

“Non-Reusable” components with good precision. 

The proposed technique is showing Accuracy value 

approximately equal to 71%, so it is satisfactory enough to 

use the Naïve Bayes based classification technique for the 

prediction of the function based reusable modules from the 

existing reservoir of software components.  

 

5.2 Future scope 
The proposed approach is applied on the C based software 

modules/components and it can further be extended to the 

Artificial Intelligence (AI) based software components e.g. 

Prolog Language based software components. So assessment 
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of component at fine grain level (functions) can be achieved 

in future as   further implementation of assessment model 

 Intelligent Component Mining or Extraction 

algorithms can be developed 

 Early prediction of the quality of component based 

system 

 Characterization of Software Components for easy 

retrieval 
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