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ABSTRACT 

In this paper we assess the efficiency of units using data 

envelopment analysis (DEA). In first stage, a functional data 

is converted to a fuzzy bell shape number and then a 

benchmark point would be chosen for each input or output 

and using the preference ratio method, the equivalence 

multiplier of each data would be calculated. In order to 

simplification of functional data, functional data will be 

replaced bythe equivalence multiplier. 
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1. INTRODUCTION 
One of the ranking methods of fuzzy numbers is the 

preference ratio methodthat is presented by Modarres and 

Sadi-Nezhad(2001) [1]. Suppose A and B as two fuzzy 

numbers.S(A) and S(B) are defined as the support of A and 

B,separately and the supremum and infimum of S(A) and S(b) 

are shown as LA, UA, LB, UB, respectively. The Ω is defined 

below: 

      (     )      (     )  

And     , the preference function is defined as follows: 
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In other words,  belongs to a fuzzy number whichits area 

ratio under itsmembership functionand after the point  , to the 

total area under the membership function curve is more. 

According the previous comments, the preference ration of A 

and B are defined as follows: 
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Which the symbol  | | shows the interval lengths. 

In other words, the fuzzy number with maximum distance 

from Ω will gain the upper rank.In order to rank the fuzzy 

numbers with the count more than two,Modarresand Sadi-

Nezhad (2005) [2] developed an approachwherein all fuzzy 

numbers compared with abenchmark is investigated. They 

defined a benchmark for a set of triangular fuzzy numbers and 

compared each preference ratio of the numbers with them.In 

order to this comparison, they defined the equivalence and 

equivalence multiplieras follows: 

In preference method, two fuzzy number A and B are 

equivalent ifR(A)=R(B)=0.5 and in this case, A=B. the 

equivalence multiplier is also defined as follows: 

K is called the equivalence multiplier of A toward B, 

whenever KA=B. 

Nowadays, DEA is also one of applicable ways to calculate 

the relation efficiency of units. 

Charnes et al (1978) [3] presented the CCR model for first 

time. Theconstant return to scale is considered in this model. 

In other words, increasing the inputs caused increasing the 

outputs with the same ratio. Banker et al (1984)[4] presented 

the BCC method wherein the variable return to scale was 

considered.This means that, any changes in inputs don’t cause 

the changes in outputs with the same ratio.Since that time 

until now, data envelopment analysis is used and developed in 

many centers and organizations like banks, schools, 

universities, hospitals, insurance agencies, andfactories [5-

14].Ranking the unitswas anotherdevelopmentof DEA that 

many papers have written about it. Andersen and Petersen 

(1993) [15]presented a procedure for ranking efficient units. 

They recalculated the efficiency of efficient units but this time 

in order to calculate the efficiency of a particular unit, that 

unit has been eliminated from production possibility set 

(PPS). 

Another advance in DEA is bringing some changes about in 

type of inputs and outputs. Cook et al (1996) [16-17] 

presented DEA with ordering data and then in 1997 they 

considered some inputs sequentially. Cooper et al (1999) [18-

19] investigated the interval data in DEA and presented a 

comprehensive form using the confidence interval concept 

and converted it to an equivalent linear programming through 

a set of scale conversions and change of variables and the 

efficiency value of each decision maker unit obtained from 

this model was deterministic, less or equal to 1. 

Kim and park (1999)[20] evaluated the DEA with non-

deterministic data. Their model was includedsomesequential 

data. Lee et al (2002) [21]improved the DEA with non-

deterministic data into additive model of DEA.Despotis and 

Smirlis (2002) [22]studied interval DEA with imprecise 

Data.Entani et al (2002) [23]developed the DEA model 
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helped to calculate the interval efficiency for each DMU in 

pessimistic and optimistic viewpoint. Their model was 

applicablefor deterministic data at the beginning but they 

developed their model to be included of interval and fuzzy 

data. The deficiency of their model was considering just one 

input and output and their model was using different efficient 

boundaries to measure efficiency intervals of different DMUs. 

Guo and Tanaka (2001)[24], Kahraman and Tolga (1998)[25], 

Kao and Liu (2000)[26] introduced DEA with fuzzy data. In 

most important solution, they converted the fuzzy data into 

interval data per different      . 

2. MODEL DESCRIPTION 
Assume n units aseach unit has m inputs and n outputs, are 

being probing and calculating their efficiency. Each unit of 

input of output has some functional data as each data give 

different values of dependent variable or response variable for 

different values of dependent variable. So practically, the data 

are presented as a set of order pair. Here we present two 

assumptions. First, the values of independent variableare 

equal in homological input or outputdata. The second, the 

weight and importance of these values are equal. For example, 

suppose that the data is evaluated in different periods with 

symmetric importance.Applying mentioned assumptions, we 

can just consider the response variables, so the data practically 

will be a set of single component numbersobtained in 

different periods.Now the purpose is calculating ofsuch 

units.Hereinafter, these data will be called, period data or 

period input and output. 

3. CONVERTING A PERIOD DATA TO 

A FUZZY DATA 
In this section, we want to convert a period data to a bell 

shape fuzzy data. Thetypes of data are numbers obtained from 

different periods whilethe results originated from 

distinctperiods may bedifferent and in this situation, it sounds 

that the data may be irrational numbers so functional data 

could be converted to a fuzzy number by defining a value 

function.It's clear that each data is a quantitative value of a 

quality in different periods. It’s clear that, in a period data, 

each number which demonstrates a quality with more 

realitywill have more valueso the average of a period data 

must have the maximum value and whateverit'smovedaway 

from the mean the value assigned to the number willbe less 

value. Here the bell shape fuzzy number could be used for 

each period data that is very similar to a normal distribution 

with a difference that the area under the distribution curve is 

equal to √    . Assume m as the mean and   as the standard 

deviation of a period data, the bell shape function will be 

defined as  ( )      (
 (   ) 

   ), but the problem is that the 

numbers located out of the data area will also have a value 

even if this value may belittle.So this function will change as 

follows: 
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Here, a and b are the minimum and maximum value of each 

period data respectively.Hereinafter, the mentioned function is 

called, restricted bell shape (RBS) function and It will be 

shown with (a,m,b, ). 

 
Fig 1: Restricted bell shape function 

4. EQUIVALENCE MULTIPLIER 

CALCULATION 
If we want to compare some fuzzy numbers, it may sound that 

a pairwise comparison can be useful but it’s not practical 

because being greater in preference method, doesn’t have 

transitive property and this means if we want to compare three 

fuzzy numbers, A, B and C, if A is greater than B and B is 

greater than C, A may be less than C.to be obvious, there is a 

counterexample. Assume that A, B and C are three RBS fuzzy 

numbers: 
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As it can be seen, A is greater than B and B greater than C but 

A is not greater than C so the transitive property can’t be 

confirmed. To solve this problem, we compare all fuzzy 

numbers with a benchmark number and the equivalence 

multiplier of the benchmark will be calculated with respect to 

all numbers. 

Now two algorithms are being presented. First algorithm, 

calculates the preference ratio of two RBS number and the 

second algorithm calculates the equivalence multiplier in 

respect of one RBS number. 

Notice that, in first algorithm,  ( )shows the cumulative 

normal distributionthat help us to calculate the integral of 

RBS membership function because it’s obvious that if (L, M, 

U, σ) is a RBS number we have: 
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Algorithm 1: 

Assume two fuzzy numbers A and B. 

A= (  ,   ,   ,   )      and     B= (  ,   ,   ,   ) 

Step 1: 

b 
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Put   L=min (  ,   )  , U=max (  ,   ) ,  
   

     
 , i=L, 

G(A)=0 , G(B)=0. 

Step 2: 

If     go to step 6 else go to next step 

Step 3: 

If      then put A= 1 

If      then put A= 0 

If        put  
  ((     ))   )  ((    )   )) 

  ((     ))   )  ((    )   )) 
 

Step 4: 

If      then put B= 1 

If      then put B= 0 

If           put    
  ((     ))   )  ((    )   )) 

  ((     ))   )  ((    )   )) 
 

Step5: 

If      then put  ( )   ( )    

If      then put  ( )   ( )  
 

 
 ,  ( )   ( )  

 

 
 

Add e units to I  and go to step 6. 

Step 6: 

 ( )     (
 ( )

   
  )   ( )      (
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If (x, y, z,  ) is a RBS number, we define : 

 (       )  (           ), it’s true, because when all of 

data are multiplied by k, the standard deviation will also be 

multiplied by K when K is a positive number. Assume that A 

and B are two RBS numbers and it's wanted to calculate A as 

KA=B. the prerequisite for equality of A and B is their 

overlaps. 

If you attend the fig 2, you will consider that two numbers 

have overlaps and may be they’re equal. 

Assume  ( )   ( )             , so if        then 

according to fig 2 there will be        and       
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Upper and lower limits are also as follows: 
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Fig 2: Overlaps of two RBS numbers 

Algorithm 2 is used to calculate K for the RBS number A with 

respect to B. 

 

Algorithm 2: finding the equivalence multiplier of A with 

respect to B. 

Step 1: 

Put switch=0 ,apply algorithm 1 for A and B. 

If   , put    and algorithm 2 is finished. 

If   , swap A and B and put switch=1. 

 

Step 2: 

Put       (
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Step 3: 

Apply algorithm 1 for A and B and  . 

Step 4: 

If the difference between R(  ) and 0.5 is less than e then go 

to step 8 else, go to next step. 

Step 5: 

If   R(  )        then put      

If   R(  )        then put      

Step 6: 

Put   
     

 
 

Step 7: 

Apply algorithm 1 for A and B and   and return to step 3. 

 

Step 8: 

If switch=0 then put     else  
 

 
. 

In data envelopment analysis, we consider a benchmark point 

for each input and output which they are the period data. 

Suppose RBS numbers,(                   )and 

(                   ) are the ithinput related to jthoutput 

respectively as the first component to fourth, are the minimum 

value, mean, maximum value and standard deviation, 

separately. 

Also assume (               ) and (               ) as a 

benchmark for ithinput and jth output. 

It's obvious that (       )  (           ) because when 

all data are multiplied by K, the standard deviation is also be 

multiplied by K. 

To calculate the preference ratio algorithm 1 can be used used 

and to gain the equivalence multiplier algorithm 2 can be 

used.  

Now the preference method is applied for all of inputs and 

outputs and we find the equivalence multiplier of benchmarks 

with respect to related data. Model P1 is a CCR model with 

RBS data. 
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Model P2 can be obtained using two assumptions: 

    
is the equivalence multiplier of 

benchmark(               )with respect 

to(                   ). 

    
is the equivalence multiplier of 

benchmark(               )with respect 

to(                   ). 
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It’s obvious that by changing the benchmark, many models 

can be derived. With simplification of model, P2 is changed to 

model P3 that is a simple CCR model. 
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Now the main question is what the best benchmark is. 

Suppose           are some fuzzy numbers that the 

benchmark A is chosen for them randomly. Following 

attributes areindefeasible: 

1- In the equation       , if ( )>  (  )  then    
 else       

2- If   ( )             (  ) then all of equivalence 

multipliers are greater than 1 and if 
( )              (  ), the equivalence multipliers are 

less than 1. 

if           (  )   ( )             (  )then 

some of equivalence multipliers are less and some are 

more than 1. 

3- If                  (   )   (   ). 

4- Whatever k is closer to 1, it demonstrates the proximity 

of fuzzy number and the benchmark. 

According to previous notes, each benchmark could be chosen 

but to have a better analysis, it seems that, it’s better to select 

the best benchmark; in this case, all numbers will be greater 

than1 or they are less than 1 and the advantage is closeness to 

1. 

In DEA, between inputs, it seems that the best benchmarkis 

the minimum benchmark and between outputs the best is the 

maximum so the benchmark selection procedure is as follows: 

For each ithinput like(                   ), the benchmark 

will be(               ) in which we will have: 

                         ,                      

                       ,       
       

 
 

 

The reason of thisselectionfor standard deviation is that in 

normal distribution and some distributions like normal, 99.73 

percent of data are in an interval with 6 standard deviation 

length. 

For each output, the benchmark is(               ) that we 

will have: 

                         ,                      

                       ,       
       

 
 

Of course, it’s obvious that, otherbenchmarks can be existed. 

 

5. NUMERICAL EXAMPLE 
Table 1 shows the data for 5 units as RBS numbers.

Table 1. The data for an example 

 Unit1 Unit2 Unit3 Unit4 Unit5 

Input1 (3.5,4.0,4.5,0.16) (2.9,3.0,3.1,0.03) (4.4,4.9,5.4,0.16) (3.4,4.1,4.8,0.23) (5.9,6.5,7.1,0.2) 

Input2 (1.9,2.1,2.3,0.06) (1.4,1.5,1.6,0.03) (2.2,2.6,3.0,0.13) (2.1,2.3,2.5,0.06) (3.6,4.1,4.6,0.16) 

Output1 (2.4,2.6,2.8,.06) (2.2,2.4,2.7,0.08) (2.7,3.2,3.7,0.16) (2.5,2.9,3.3,0.13) (4.4,5.1,5.8,0.23) 

Output2  (3.8,4.1,4.4,0.1) (3.3,3.5,3.7,0.06) (4.3,5.1,5.9,0.27) (5.5,5.7,5.9,0.06)  (6.5,7.4,8.3,0.3) 

 

In table 2, some benchmarks have chosen for inputs and 

outputs. The first benchmark has selected the minimum 

between inputs and maximum between outputs. The second 

benchmark isalways the maximum value of inputs and 

outputs. The third benchmark considered the minimum value 

of inputs or outputs and the fourth, has used the random 

numbers as a benchmark. 

 

 

Table 2.The Benchmarks  

Min-max Max Min Random 

(2.9,3.0,3.1,0.03) (5.9,6.5,7.1,0.2) (2.9,3.0,3.1,0.03) (3.6675,4.3561,5.8010,0.3667) 

(1.4,1.5,1.6,0.03) (3.6,4.1,4.6,0.16) (1.4,1.5,1.6,0.03) (1.9810,3.1924,3.8551,0.3033) 

(4.4,5.1,5.8,0.23) (4.4,5.1,5.8,0.23) (2.2,2.4,2.7,0.08) (3.0024, 4.1074,4.2094,0.2022) 

(6.5,7.4,8.3,0.3) (6.5,7.4,8.3,0.3) (3.3,3.5,3.7,0.06) (4.1912,5.6328,8.1045,0.6517) 

 

In tables 3, 4, 5 and 6 the equivalence multipliersofthe 

numbers availablein table 1 have been calculated. 
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Table 3. Min-Max benchmark 

 Unit1 Unit2 Unit3 Unit4 Unit5 

Input1 1.3334 1.0000 1.6334 1.3667 2.1667 

Input2 1.4001 1.0000 1.7334 1.5333 2.7335 

Output1 0.5099 0.4757 0.6275 0.5686 1.0000 

Output2 0.5540 0.4730 0.6892 0.7703 1.0000 

CCR-input 

oriented 
0.8334 1.0000 0.8410 1.0000 0.9724 

BCC-input 

oriented 
0.8345 1.0000 0.9071 1.0000 1.0000 

CCR-output 

oriented 
0.8334 1.0000 0.8410 1.0000 0.9724 

BCC-output 

oriented 
0.8804 1.0000 0,9300 1.0000 1.0000 

 

Table 4. Max benchmark 

 Unit1 Unit2 Unit3 Unit4 Unit5 

Input1 0.6154 0.4616 0.7538 0.6309 1.0000 

Input2 0.5122 0.3658 0.6341 0.5610 1.0000 

Output1 0.5099 0.4757 0.6275 0.5686 1.0000 

Output2 0.5540 0.4730 0.6892 0.7703 1.0000 

CCR-input 

oriented 

0.8335 1.0000 0.8412 1.0000 0.9726 

BCC-input 

oriented 

0.8346 1.0000 0.9072 1.0000 1.0000 

CCR-output 

oriented 

0.8335 1.0000 0.8412 1.0000 1.0000 

BCC-output 

oriented 

0.8804 1.0000 0.9301 1.0000 1.0000 

 

Table 5.Min benchmark 

 Unit1 Unit2 Unit3 Unit4 Unit5 

Input1 1.3334 1.0000 1.6334 1.3667 2.1667 

Input2 1.4001 1.0000 1.7334 1.5333 2.7335 

Output1 1.0683 1.0000 1.3189 1.1953 2.1020 

Output2 1.1714 1.0000 1.4573 1.6285 2.1145 

CCR-input 

oriented 

0.8318 1.0000 0.8410 1.0000 0.9724 

BCC-input 

oriented 

0.8327 1.0000 0.9071 1.0000 1.0000 

CCR-output 

oriented 

0.8318 1.0000 0.8410 1.0000 0.9724 

BCC-output 

oriented 

0.8785 1.0000 0.93 1.0000 1.0000 

 

Table 6.Random benchmark 

 Unit1 Unit2 Unit3 Unit4 Unit5 

Input1 0.8598 0.6368 1.0498 0.8868 1.3908 

Input2 0.7113 0.5099 0.8742 0.7799 1.3847 

Output1 0.7064 0.6560 0.8594 0.7786 1.3691 

Output2 0.6722 0.5730 0.8441 0.9310 1.2202 

CCR-input 

oriented 

0.8310 1.0000 0.8411 1.0000 0.9647 

BCC-input 

oriented 

0.8402 1.0000 0.9167 1.0000 1.0000 

CCR-output 

oriented 

0.8310 1.0000 0.8411 1.0000 0.9647 

BCC-output 

oriented 

08858 1.0000 0.9371 1.0000 1.0000 

The efficiency of units has also been computed considering 

Min-Max, Min, Max and Random benchmarking. 

As it can be seen, in benchmark Min-Max, the equivalence 

multipliers of inputs are greater or equal to 1 and for outputs 

they are less or equal to 1. The unit 1 between inputs and unit 

5 between outputs are the best. In Max benchmark, all data 

are less or equal to 1 and in Min benchmark, all data are 

greater or equal to 1. In random benchmark, the equivalence 

multipliers are greater or less than 1. 

Ranking in all outputs and inputs for all of benchmarks are the 

same. Unit efficiencies are also unique for all of different 

benchmarks. 

6. CONCLUSIONS 
In this paper we tried to achieve two main goals. First, we 

converted and developed the Period Data Envelopment 

Analysis to a fuzzy modelas we made the RBS numbers 

consideringthe mean, standard deviation, maximum and 

minimum of data.Then we converted the fuzzy model to a 

simple model using the preference method. The importance 

and advantage of this method is in this point that as we know, 

most of fuzzy solutions are based ondifferent     s and 

making the results with different  , brings some difficulties in 

final results and efficiency calculations, but using our method, 

applying just one simple model in that we use equivalence 

multiplier instead of main data, we can attain the relation 

efficiencies which is the final conclusion in easiest manner. 
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