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ABSTRACT 
String rewriting systems are another iterative process for creating 

fractals. The additional grammar formalism in L-systems allows 

us to build a richer variety of shapes. L-Systems are an efficient 

way to encode complicated images. With L-Systems different 

replacements can be made in different parts of the picture. L-

Systems can be extended to three dimensions, and have been used 

to make realistic forgeries of plants. They provide a good 

laboratory for learning about recursive processes, and pattern 

recognition. In this last article in the series, we explain L-System 

formalism initially developed for modeling plant growth. The 

concept can be also used for creating Space filling curves. The 

drawing of these plots in spreadsheet is explained. It is the first 

attempt in drawing all fractals in spreadsheet. 

 

Keywords— Computational thinking, L-Systems, Space 
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1. INTRODUCTION 

 
The beauty of plants has attracted the attention of mathematicians 

for centuries. The Bilateral symmetry of leaves, the rotational 

symmetry of flowers, and the helical arrangements of scales in 

pine cones have been studied most extensively. The first is the 

elegance and relative simplicity of developmental algorithms, 

that is, the rules which describe plant development in time. The 

developmental processes are captured using the formalism of L-

systems [8]. They were introduced in 1968 by Lindenmayer as a 

theoretical framework for studying the development of simple 

multi-cellular organisms, and subsequently applied to investigate 

higher plants and plant organs. After the incorporation of 

geometric features, plant models expressed using L-systems 

became detailed enough to allow the use of computer graphics for 

realistic visualization of plant structures and developmental 

processes. The central concept of L-systems is that of rewriting. 

In general, rewriting is a technique for defining complex objects 

by successively replacing parts of a simple initial object using a 

set of rewriting rules or productions. The classic example of a 

graphical object defined in terms of rewriting rules is the 

snowflake curve (Figure 1.), proposed in 1905 by Koch von 

Koch . This construction is described in next section: 

 

2. KOCH CURVES 

 
One begins with two shapes, an initiator and a generator. The 

generator is an oriented broken line made up of N equal sides of 

length r. Thus each stage of the construction begins with a broken 

line and consists in replacing each straight interval with a copy of 

the generator, reduced and displaced so as to have the same end 

points as those of the interval being replaced. Fig. 1(a-f) shows 

this process. 

 
Fig. 1 Generation of Koch curve by repeated segment 

replacement: (a) Initiator, (b) generator, (c) After 1 iteration, 

i.e.; n=1, (d) n=2, (e) n=3, (f) n=4 

 

While the Koch construction recursively replaces open polygons, 

rewriting systems that operate on other objects have also been 

investigated. The most extensively studied and the best 

understood rewriting systems operate on character strings. To 

give an example, the single rule: a → b a b transforms the string:  

a b a c into  b a b b b a b c  

 

Prusinkiewicz in 1970s   gave   geometrical interpretation to the 

generated letters based on a LOGO-style turtle (A computer 

based graph drawing system in which the cursor is called a turtle 

and instruction to move the turtle in different direction is given 

by a set of different keys on keyboard) and presented several 

examples of fractals and plant-like structures using L-systems. 

The basic idea of turtle interpretation is given below. A state of 

the turtle is defined as a triplet (x, y, α), where the Cartesian 
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coordinates (x, y) represent the turtle’s position, and the angle α, 

called the heading, is interpreted as the direction in which the 

turtle is facing. Given the step size d and the angle increment δ, 

the turtle can respond to commands represented by the following 

symbols 

 

F : Move forward a step of length d. The state of the turtle  

changes to (x’, y’,α), where x’ = x + d cos α and y’ = y + d   

sin α. A line segment between points (x, y) and (x’, y’) is 

drawn. 

f  : Move forward a step of length d without drawing a line. 

+ :Turn left by angle δ. The next state of the turtle is (x, y,  

α+δ). The positive orientation of angles is counterclockwise. 

−: Turn right by angle δ. The next state of the turtle is  

(x, y, α − δ). 

 

Given a string ν = FFF-FF-F-F+F+FF-F-FFF, the initial state of 

the turtle (x0, y0, α0=90) and fixed Interpretation parameters d 

(=1 unit) and δ(=90degree), the turtle interpretation of ν is 

shown in Fig. 2 (set of lines), drawn by the turtle in response to 

the string ν . 

 

 
Fig. 2 Drawing a figure by string interpretation 

  

Specifically, this method can be applied to interpret strings which 

are generated by L-systems. For example, Fig. 3(a-d) presents 

four approximations of the quadratic Koch island. 

Fig. 3 is obtained by interpreting strings generated by the 

following L-system: 

 

Initiator    ω : F − F − F − F 

Generator p : F → F − F + F + FF − F − F + F 

 

The images correspond to the strings obtained in derivations of 

length 0 to 3. The angle increment δ is equal to 900. The step 

length d is decreased four times between subsequent images, 

making the distance between the endpoints of the successor 

polygon equal to the length of the predecessor segment. 

This step length reduction is usually given as a parameter. 

2.1 Implementation in excel 

Now we see how we implement string interpretation based 

drawing in Spreadsheet. 

 

                                                          

 
 

Fig. 3 Quadratic Koch Island by L-System: (a) n=0, (b) n=1, 

(c) n=2, (d) n=3 

 

Example 1:  Let us draw the figure corresponding to the string  

FFF-FF-F-F+F+FF-F-FFF 
Where starting angle of the turtle position is assumed to be 90, + 

is 90 degree Anti-clockwise rotation and ‘–‘ for 90 degree 

clockwise rotation. The figure must look as shown in Fig. 4. 

 
Fig. 4 Plot for “FFF-FF-F-F+F+FF-F-FFF” 

 

To implement this we use two important functions (formula) 

available in Excel. First one is the MID Function. This is used to 

parse the whole string into a column of letters such that a cell 

contains only one letter. Once parsed, corresponding coordinates 

based on previous coordinates and the value of angle can be 

obtained. We use one separate column for tracking the angle 

corresponding to each alphabet.  

 

The syntax for the MID function is:= MID ( Text , Start_num , 

Num_chars ) 

 

Text - the piece of string we want to parse. 

Start_num - specifies the starting character from the left of the 

data to be kept.  

Num_chars - specifies the number of characters to the right of 

the Start_num to be retained.  

 

The output should look like column B as shown in Fig. 5 starting 

from B3. By writing a formula in B3 and by copying down we 

should be able to get parsed characters. This is achieved using the 

formula  

=MID($B$2,ROW(A1),1) 
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Fig. 5 Snapshot of Excel sheet that generates coordinates of 

the vertices generated by LOGO-interpretation of “FFF-FF-

F-F+F+FF-F-FFF” 

 

It uses a function Row( ). It returns row number of the argument 

cell. Here the argument of the function is A1. It is known that 

row of A1 is 1. When it is pull down (copy down) the formula 

one cell down, automatically the argument changes to A2 and 

hence it returns 2. Thus it is indeed a powerful function.  

 

Following are the further steps required:- 

 

 In cell C2 we write 90 as starting angle value  

 In Cell D2 and E2 write 0 as starting coordinates 

respectively of x and y 

 Angle update - In cell E3 we update angle value. The angle 

is updated if and only if a + or – is encountered in the parsed 

string. If a + is encountered add 90 and if a – is encountered 

add -90 otherwise previous angle is retained. While updating 

angle may exceed 360 degree. The Mod function is used to 

bring it down between 0 and 360.  

The following formula achieves this.  

=IF(B3="+",MOD(C2+90,360),IF(B3="-",MOD(C2-

90,360),C2)) 

 

 Coordinate update - In cell D3 the updating formula for x-

coordinate is updated as follows 

=IF(B3="F", D2+COS(RADIANS(C3)),D2) 

In cell E3 the updating formula for y-coordinate is updated 

as follows 

=IF(B3="F", E2+SIN(RADIANS(C3)),E2) 

Now by copying the formula down from B3:E3 to 

21(number of characters in the string) cells, and plotting an 

x-y scatter chart for the data in columns D and E the 

required Figure is obtained. 

 

Next lets see how to use string rewriting to generate complicated 

figures. Let the generator and initiator string be as follows.  

 

Generator: FF-F-F-F-FF. We enter this in cell K1  

Initiator: F-F-F-F. We enter this in cell K2 

 

 
 

Fig. 6 Snapshot of Excel sheet that generates strings by 

repeated substitution 

We expand this to three levels as shown in Fig. 6.  Only part of 

the string is shown in Figure. Then write a formula in K4 and pull 

(copy) down to K6. The formula in K4 is 

=SUBSTITUTE(K3,"F",$K$2) . This substitutes each letter F in 

K3 by the string in K2 which produces a long string in K4. The 

final string is in K6. We sparse this column wise as done earlier. 

This we do in Columns B to E. 

 

 
 

Fig. 7 Snapshot of Excel sheet that generates coordinates of 

the vertices generated by LOGO-interpretation of Level-3 

string in Fig. 6 

 

The formula in B3 is =MID($K$6,ROW(A1),1) .  This formula is 

pull down to parse the string. The output figure after formatting is 

as shown in Fig. 8. 

3. SPACE FILLING HILBERT CURVE 

Around 1890, an Italian mathematician Giuseppe Peano (1858 - 

1932) surprised the mathematical world by discovering what was 

called "space-filling curve". His curve was constructed in such a 

way that there was no point on the plane that its twisted curve 

would not include. It means that a line, which is considered as 

one dimensional object, has one to one mapping to all the points 
on the plane, which are two dimensional (See Fig. 9).  

 

Fig. 8 Line plot of the Generator: FF-F-F-F-FF with 

initiator F-F-F-F for the string at level-3 in spreadsheet.  

 
Fig. 9 (a) Giuseppe Peano, (b) Three iterations of Peano 

Space filling curves 
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It was followed by another by D Hilbert (See Fig. 10). 

3.1 Implementation in Excel 

The Spread sheet implementation of Hilbert curve using two 

generators (See Fig. 11) is discussed in this section. Note that 

only the implementation is discussed and not how the generators 

are obtained. The two generators are denoted as L and R 

generators. The corresponding strings are given in cell H2 and H3. 

The initiator string is given in H4. One has to perform 5 levels of 

rewriting. Note that letter F has no rewrite string. However 

whenever an F is encountered the turtle has to move forward by 

one unit. Another important point to be noted is that in level 

(stage) of substitution, one has to perform two substitutions to a 

given string.  This causes a problem. Suppose string abc is to be 

replaced with the rules a -> bc and b> ca. The required out is 

bccac which is obtained by parallel substitution. But the output 

will be different for sequential substitution. To overcome this 

problem, we introduce a dummy variable before substitution.  So 

in H5 we write the formula as  

=SUBSTITUTE(SUBSTITUTE(SUBSTITUTE(H4,"L","C"),"R"

,$H$3),"C",$H$2) 

Here before the two required substitution, a new substitution (the 

innermost) is introduced where L is replaced by C, Then R is 

replaced by its substitution string, followed by a substitution of 

letter C by the substitution-string corresponding to letter L. The 

remaining part of the steps is same as the one done for other 

experiments. The output is as shown in Fig. 12. 

 

 

Fig. 10 (a) D Hilbert, (b) Four iterations of Hilbert Space 

filling curves 

 

 Fig. 11 Snapshot of Excel sheet that do 5 levels of expansion 

for drawing Hilbert curve 

4. BRANCHING STRUCTURES AND 

BRACKETED L-SYSTEMS 

Plant kingdom is dominated by branching structures. For this, an 

extension of turtle interpretation to strings with brackets was 

introduced. They are interpreted by the turtle as follows: 

 

Fig. 12 Hilbert Curve in spreadsheet 

[ : Push the current state of the turtle onto a pushdown stack.  

The information saved on the stack contains the turtle’s 

position and orientation, and possibly other attributes such as 

the color and width of lines being drawn.] : Pop a state from 

the stack and make it the current state of the turtle. No line is 

drawn, although in general the position of the turtle changes. 

 

Example 1. Design an L-system, which will generate a simple 

branched structure:  Following are the Axiom (initiator) and 

Rules (also known as productions rules) for rewriting 

 
Fig. 13 Rule interpretation of Bracketed L-System 

 

With a use of the rule we obtain an order of strings: 

0. step: F 

1. step: F[+F][-F] 

2. step: F[+F][-F][+F[+F][-F]][-F[+F][-F]] 

Etc. 

The L-system after 6 steps looks like bush shown in Fig. 14.  

Note that step length is constant for every iteration. 

 

Example 2.During the growth of the tree certain part of the tree 

should remain in same length and other part to grow. This can be 

modeled by two rules as given below. 

Axiom:  X 

p1:        X → F-[+X]+F[-X]+X 

p2:        F → FF 

 

If we assume step length d is replaced by d/2 after each iteration, 

then the rule F → FF ensures that the F part of the tree in any 

iteration remain there in the subsequent stages without any 

further growth. Representation of a plant after 5 steps of 

derivation is shown in Fig. 15. A model of plant is more realistic 

than on the figure. The turning angle is 22.5°. This kind of 

branching is characteristic for apple tree. 
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Fig. 14 A tree whose trunk length remain same 

 

 

 

 
 

Fig. 15 An L-system tree drawn using programming

 
 

Fig. 16 L-system trees with different generators 

 

 
Fig. 17 L-System Tree 

 

      EXAMPLE 3.  

Axiom   X          

P1  :       X →   F[+X][-X]FX  

P2  :       F  → FF 

divisor = 2.0 

angle   = 27.9 

 

After 9 iterations the figure is as shown in Figure 16. 

Figure 17(a-e) are the some of the trees and their respective 

axiom and rules. 

L-system concept can be easily extended to 3D (See Fig. 18). 

Readers may refer references [1-9] for more details. 

 

 

 
Fig. 18 A 3D L-system tree 

 

Note that all the tree plots are drawn using programming. Of 

course it can be implemented in spreadsheet without 

programming. However it requires a method to implement stack 

operation. It is left an exercise to the reader. 

 

5. SUMMARY 

 
An L-system is a substitution system in which rules are used to 

operate on a string consisting of letters of a certain alphabet. 

String rewriting systems are also variously known as rewriting 

systems, reduction systems, or term rewriting systems. String 

rewriting is a particularly useful technique for generating 

successive iterations of certain types of fractals, such as the tress 

and space filling curves. Spreadsheet can be used to generate 

such fractals without programming and hence can be introduced 

at high school for experimentation. 
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