
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

24

Enhancing Computational Thinking with Spreadsheet
and Fractal Geometry: Part 4

Plant Growth modeling and Space Filling Curves

K.P Soman, Manu Unni V.G, Praveen Krishnan, V. Sowmya
Centre for excellence in Computational Engineering and Networking (CEN),

 Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India

ABSTRACT
String rewriting systems are another iterative process for creating

fractals. The additional grammar formalism in L-systems allows

us to build a richer variety of shapes. L-Systems are an efficient

way to encode complicated images. With L-Systems different

replacements can be made in different parts of the picture. L-

Systems can be extended to three dimensions, and have been used

to make realistic forgeries of plants. They provide a good

laboratory for learning about recursive processes, and pattern

recognition. In this last article in the series, we explain L-System

formalism initially developed for modeling plant growth. The

concept can be also used for creating Space filling curves. The

drawing of these plots in spreadsheet is explained. It is the first

attempt in drawing all fractals in spreadsheet.

Keywords— Computational thinking, L-Systems, Space

filling curves

1. INTRODUCTION

The beauty of plants has attracted the attention of mathematicians

for centuries. The Bilateral symmetry of leaves, the rotational

symmetry of flowers, and the helical arrangements of scales in

pine cones have been studied most extensively. The first is the

elegance and relative simplicity of developmental algorithms,

that is, the rules which describe plant development in time. The

developmental processes are captured using the formalism of L-

systems [8]. They were introduced in 1968 by Lindenmayer as a

theoretical framework for studying the development of simple

multi-cellular organisms, and subsequently applied to investigate

higher plants and plant organs. After the incorporation of

geometric features, plant models expressed using L-systems

became detailed enough to allow the use of computer graphics for

realistic visualization of plant structures and developmental

processes. The central concept of L-systems is that of rewriting.

In general, rewriting is a technique for defining complex objects

by successively replacing parts of a simple initial object using a

set of rewriting rules or productions. The classic example of a

graphical object defined in terms of rewriting rules is the

snowflake curve (Figure 1.), proposed in 1905 by Koch von

Koch . This construction is described in next section:

2. KOCH CURVES

One begins with two shapes, an initiator and a generator. The

generator is an oriented broken line made up of N equal sides of

length r. Thus each stage of the construction begins with a broken

line and consists in replacing each straight interval with a copy of

the generator, reduced and displaced so as to have the same end

points as those of the interval being replaced. Fig. 1(a-f) shows

this process.

Fig. 1 Generation of Koch curve by repeated segment

replacement: (a) Initiator, (b) generator, (c) After 1 iteration,

i.e.; n=1, (d) n=2, (e) n=3, (f) n=4

While the Koch construction recursively replaces open polygons,

rewriting systems that operate on other objects have also been

investigated. The most extensively studied and the best

understood rewriting systems operate on character strings. To

give an example, the single rule: a → b a b transforms the string:

a b a c into b a b b b a b c

Prusinkiewicz in 1970s gave geometrical interpretation to the

generated letters based on a LOGO-style turtle (A computer

based graph drawing system in which the cursor is called a turtle

and instruction to move the turtle in different direction is given

by a set of different keys on keyboard) and presented several

examples of fractals and plant-like structures using L-systems.

The basic idea of turtle interpretation is given below. A state of

the turtle is defined as a triplet (x, y, α), where the Cartesian

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

25

coordinates (x, y) represent the turtle’s position, and the angle α,

called the heading, is interpreted as the direction in which the

turtle is facing. Given the step size d and the angle increment δ,

the turtle can respond to commands represented by the following

symbols

F : Move forward a step of length d. The state of the turtle

changes to (x’, y’,α), where x’ = x + d cos α and y’ = y + d

sin α. A line segment between points (x, y) and (x’, y’) is

drawn.

f : Move forward a step of length d without drawing a line.

+ :Turn left by angle δ. The next state of the turtle is (x, y,

α+δ). The positive orientation of angles is counterclockwise.

−: Turn right by angle δ. The next state of the turtle is

(x, y, α − δ).

Given a string ν = FFF-FF-F-F+F+FF-F-FFF, the initial state of

the turtle (x0, y0, α0=90) and fixed Interpretation parameters d

(=1 unit) and δ(=90degree), the turtle interpretation of ν is

shown in Fig. 2 (set of lines), drawn by the turtle in response to

the string ν .

Fig. 2 Drawing a figure by string interpretation

Specifically, this method can be applied to interpret strings which

are generated by L-systems. For example, Fig. 3(a-d) presents

four approximations of the quadratic Koch island.

Fig. 3 is obtained by interpreting strings generated by the

following L-system:

Initiator ω : F − F − F − F

Generator p : F → F − F + F + FF − F − F + F

The images correspond to the strings obtained in derivations of

length 0 to 3. The angle increment δ is equal to 900. The step

length d is decreased four times between subsequent images,

making the distance between the endpoints of the successor

polygon equal to the length of the predecessor segment.

This step length reduction is usually given as a parameter.

2.1 Implementation in excel

Now we see how we implement string interpretation based

drawing in Spreadsheet.

Fig. 3 Quadratic Koch Island by L-System: (a) n=0, (b) n=1,

(c) n=2, (d) n=3

Example 1: Let us draw the figure corresponding to the string

FFF-FF-F-F+F+FF-F-FFF
Where starting angle of the turtle position is assumed to be 90, +

is 90 degree Anti-clockwise rotation and ‘–‘ for 90 degree

clockwise rotation. The figure must look as shown in Fig. 4.

Fig. 4 Plot for “FFF-FF-F-F+F+FF-F-FFF”

To implement this we use two important functions (formula)

available in Excel. First one is the MID Function. This is used to

parse the whole string into a column of letters such that a cell

contains only one letter. Once parsed, corresponding coordinates

based on previous coordinates and the value of angle can be

obtained. We use one separate column for tracking the angle

corresponding to each alphabet.

The syntax for the MID function is:= MID (Text , Start_num ,

Num_chars)

Text - the piece of string we want to parse.

Start_num - specifies the starting character from the left of the

data to be kept.

Num_chars - specifies the number of characters to the right of

the Start_num to be retained.

The output should look like column B as shown in Fig. 5 starting

from B3. By writing a formula in B3 and by copying down we

should be able to get parsed characters. This is achieved using the

formula

=MID(B2,ROW(A1),1)

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

26

Fig. 5 Snapshot of Excel sheet that generates coordinates of

the vertices generated by LOGO-interpretation of “FFF-FF-

F-F+F+FF-F-FFF”

It uses a function Row(). It returns row number of the argument

cell. Here the argument of the function is A1. It is known that

row of A1 is 1. When it is pull down (copy down) the formula

one cell down, automatically the argument changes to A2 and

hence it returns 2. Thus it is indeed a powerful function.

Following are the further steps required:-

 In cell C2 we write 90 as starting angle value

 In Cell D2 and E2 write 0 as starting coordinates

respectively of x and y

 Angle update - In cell E3 we update angle value. The angle

is updated if and only if a + or – is encountered in the parsed

string. If a + is encountered add 90 and if a – is encountered

add -90 otherwise previous angle is retained. While updating

angle may exceed 360 degree. The Mod function is used to

bring it down between 0 and 360.

The following formula achieves this.

=IF(B3="+",MOD(C2+90,360),IF(B3="-",MOD(C2-

90,360),C2))

 Coordinate update - In cell D3 the updating formula for x-

coordinate is updated as follows

=IF(B3="F", D2+COS(RADIANS(C3)),D2)

In cell E3 the updating formula for y-coordinate is updated

as follows

=IF(B3="F", E2+SIN(RADIANS(C3)),E2)

Now by copying the formula down from B3:E3 to

21(number of characters in the string) cells, and plotting an

x-y scatter chart for the data in columns D and E the

required Figure is obtained.

Next lets see how to use string rewriting to generate complicated

figures. Let the generator and initiator string be as follows.

Generator: FF-F-F-F-FF. We enter this in cell K1

Initiator: F-F-F-F. We enter this in cell K2

Fig. 6 Snapshot of Excel sheet that generates strings by

repeated substitution

We expand this to three levels as shown in Fig. 6. Only part of

the string is shown in Figure. Then write a formula in K4 and pull

(copy) down to K6. The formula in K4 is

=SUBSTITUTE(K3,"F",K2) . This substitutes each letter F in

K3 by the string in K2 which produces a long string in K4. The

final string is in K6. We sparse this column wise as done earlier.

This we do in Columns B to E.

Fig. 7 Snapshot of Excel sheet that generates coordinates of

the vertices generated by LOGO-interpretation of Level-3

string in Fig. 6

The formula in B3 is =MID(K6,ROW(A1),1) . This formula is

pull down to parse the string. The output figure after formatting is

as shown in Fig. 8.

3. SPACE FILLING HILBERT CURVE

Around 1890, an Italian mathematician Giuseppe Peano (1858 -

1932) surprised the mathematical world by discovering what was

called "space-filling curve". His curve was constructed in such a

way that there was no point on the plane that its twisted curve

would not include. It means that a line, which is considered as

one dimensional object, has one to one mapping to all the points
on the plane, which are two dimensional (See Fig. 9).

Fig. 8 Line plot of the Generator: FF-F-F-F-FF with

initiator F-F-F-F for the string at level-3 in spreadsheet.

Fig. 9 (a) Giuseppe Peano, (b) Three iterations of Peano

Space filling curves

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

27

It was followed by another by D Hilbert (See Fig. 10).

3.1 Implementation in Excel

The Spread sheet implementation of Hilbert curve using two

generators (See Fig. 11) is discussed in this section. Note that

only the implementation is discussed and not how the generators

are obtained. The two generators are denoted as L and R

generators. The corresponding strings are given in cell H2 and H3.

The initiator string is given in H4. One has to perform 5 levels of

rewriting. Note that letter F has no rewrite string. However

whenever an F is encountered the turtle has to move forward by

one unit. Another important point to be noted is that in level

(stage) of substitution, one has to perform two substitutions to a

given string. This causes a problem. Suppose string abc is to be

replaced with the rules a -> bc and b> ca. The required out is

bccac which is obtained by parallel substitution. But the output

will be different for sequential substitution. To overcome this

problem, we introduce a dummy variable before substitution. So

in H5 we write the formula as

=SUBSTITUTE(SUBSTITUTE(SUBSTITUTE(H4,"L","C"),"R"

,H3),"C",H2)

Here before the two required substitution, a new substitution (the

innermost) is introduced where L is replaced by C, Then R is

replaced by its substitution string, followed by a substitution of

letter C by the substitution-string corresponding to letter L. The

remaining part of the steps is same as the one done for other

experiments. The output is as shown in Fig. 12.

Fig. 10 (a) D Hilbert, (b) Four iterations of Hilbert Space

filling curves

 Fig. 11 Snapshot of Excel sheet that do 5 levels of expansion

for drawing Hilbert curve

4. BRANCHING STRUCTURES AND

BRACKETED L-SYSTEMS

Plant kingdom is dominated by branching structures. For this, an

extension of turtle interpretation to strings with brackets was

introduced. They are interpreted by the turtle as follows:

Fig. 12 Hilbert Curve in spreadsheet

[: Push the current state of the turtle onto a pushdown stack.

The information saved on the stack contains the turtle’s

position and orientation, and possibly other attributes such as

the color and width of lines being drawn.] : Pop a state from

the stack and make it the current state of the turtle. No line is

drawn, although in general the position of the turtle changes.

Example 1. Design an L-system, which will generate a simple

branched structure: Following are the Axiom (initiator) and

Rules (also known as productions rules) for rewriting

Fig. 13 Rule interpretation of Bracketed L-System

With a use of the rule we obtain an order of strings:

0. step: F

1. step: F[+F][-F]

2. step: F[+F][-F][+F[+F][-F]][-F[+F][-F]]

Etc.

The L-system after 6 steps looks like bush shown in Fig. 14.

Note that step length is constant for every iteration.

Example 2.During the growth of the tree certain part of the tree

should remain in same length and other part to grow. This can be

modeled by two rules as given below.

Axiom: X

p1: X → F-[+X]+F[-X]+X

p2: F → FF

If we assume step length d is replaced by d/2 after each iteration,

then the rule F → FF ensures that the F part of the tree in any

iteration remain there in the subsequent stages without any

further growth. Representation of a plant after 5 steps of

derivation is shown in Fig. 15. A model of plant is more realistic

than on the figure. The turning angle is 22.5°. This kind of

branching is characteristic for apple tree.

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

28

Fig. 14 A tree whose trunk length remain same

Fig. 15 An L-system tree drawn using programming

Fig. 16 L-system trees with different generators

Fig. 17 L-System Tree

 EXAMPLE 3.

Axiom X

P1 : X → F[+X][-X]FX

P2 : F → FF

divisor = 2.0

angle = 27.9

After 9 iterations the figure is as shown in Figure 16.

Figure 17(a-e) are the some of the trees and their respective

axiom and rules.

L-system concept can be easily extended to 3D (See Fig. 18).

Readers may refer references [1-9] for more details.

Fig. 18 A 3D L-system tree

Note that all the tree plots are drawn using programming. Of

course it can be implemented in spreadsheet without

programming. However it requires a method to implement stack

operation. It is left an exercise to the reader.

5. SUMMARY

An L-system is a substitution system in which rules are used to

operate on a string consisting of letters of a certain alphabet.

String rewriting systems are also variously known as rewriting

systems, reduction systems, or term rewriting systems. String

rewriting is a particularly useful technique for generating

successive iterations of certain types of fractals, such as the tress

and space filling curves. Spreadsheet can be used to generate

such fractals without programming and hence can be introduced

at high school for experimentation.

6. REFERENCES

[1] Barnsley,M., F., “Fractals Everywher”e, 1993

[2] Peters, E., E., “Chaos and Order in the Capital Markets: A

New View of Cycles, Prices, and Market Volatility”, Wiley,

2nd Edition, 1996

[3] Devaney, R., Keen, L., eds., “Chaos and Fractals: The

Mathematics behind the Computer Graphics”, American

Mathematical Society, Providence, RI, 1989

[4] Falconer, K., “Fractal Geometry: Mathematical

Foundations and Applications”, Wiley, (2003)

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

29

[5] Peitgen, H., Juergens, H., Saupe, D., “Fractals for the

Classroom. Springer”, (1991)

[6] Mandelbrot, B., “The Fractal Geometry of Nature”,

published by W. H. Freeman, 1983

[7] Mumford, D., Caroline Series, Wright, D., “Indra's Pearls:

The Vision of Felix Klein”, Cambridge University Press,

2002

[8] Przemyslaw.P, Lindenmayer,A., “Algorithmic beauty of

Plants”, Springer Verelag, 1990

[9] Flake, G.W, “Computational Beauty of Nature”, MIT press,

1998

