
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

9

Enhancing Computational Thinking with Spreadsheet
and Fractal Geometry: Part 2 Root-finding using Newton

Method and Creation of Newton Fractals

K.P Soman, Manu Unni V.G, Praveen Krishnan, V. Sowmya
Centre for excellence in Computational Engineering and Networking (CEN),

 Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India

ABSTRACT

This article shows how Newton’s iterative methods for finding

root of a polynomial equation can be used to create fractals in

spreadsheets. Newton's method has served as one of the most

fruitful paradigms in the development of complex iteration

theory. The process of iteration is impossible to carry out by hand

but extremely easy to carry out with a computer. By doing such

experiments students get a feeling that they have the power to

explore the uncharted wilderness of the dynamics of Newton’s

method. It gives mathematics an experimental component. It also

illustrates a symbiotic relationship between technology and

mathematics [1]. Technology can be used to develop our

intuition, and mathematics is used to prove that our intuition is

correct. The article explores Innovative use of Microsoft Excel’s

What-if Analysis tool to do automation of repeated computation.

The method employed can also be used for Neural Network

training and data clustering [9] in Excel. A wide variety of

fractals can be created by using different polynomial equations

[2-7].

Keywords— Fractal, Newton method, Spreadsheet, Fractal

geometry.

1. INTRODUCTION

In mathematics one come across systems of equations quite

frequently. Unfortunately, many of them cannot be solved by

algebraic manipulation. one therefore need to find a way to solve

the equations numerically, in the hope of gaining as much

accuracy as possible. There is a simple technique in elementary

calculus known as Newton’s method. Newton’s method is a

method for iteratively approximating the root of an equation

() 0f x using first derivative alone. In other words, we want

to find a value
*x such that

*() 0f x . One may proceed by

giving an “educated” guess and then refining the guess over and

over again. If the function is quite simple, one may be able to do

some algebra to find a root x exactly. For instance, if ()f x is a

quadratic polynomial, he or she can use the quadratic formula. If

()f x is a polynomial of degree 3 or 4, there are messier

formulas which work as well. But if ()f x is a higher degree

polynomial or an even more complicated function, there is no

analog to the quadratic formula, i.e. there is no systematic

process to algebraically determine the roots exactly. One has to

approximate, and Newton's method is just one way of doing this.

Consider the graph showing x versus ()f x . We need to find x

for which () 0f x . Or in other words, one need to find value

of x at which the curve crosses x-axis. Let that value of x be
*x .

Newton algorithm proceeds as follows. One can make a guess

about
*x . Let the guessed value be

0x . Since ()f x is given,

one can immediately find
0()f x and derivative of x at

0x

i.e.,
'

0()f x). We know,
'

0()f x is the slope of the tangent at

the point 0 0, ()x f x . Let this tangent meet the x-axis at

1x x . The coordinates of the meeting point is thus 1,0x .

Notice that, the slope of the line joining the points 0 0, ()x f x

and 1,0x is
'

0()f x . That is

' 0
0

1 0

0 ()
()

f x
f x

x x

0
1 0 '

0

()

()

f x
x x

f x

 or

0
1 0 '

0

()

()

f x
x x

f x

Fig 1: Newton Method of finding roots- A graphical view

Take 1x as the next approximate solution. Next find 2x using

the formula

1
2 1 '

1

()

()

f x
x x

f x

One can repeat this process till it converges to
*x with desired

precision

The iterative formula is thus

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

10

1 '

()

()

k
k k

k

f x
x x

f x
 (1)

If f(x) crosses x-axis several times, depending on the initial guess

about the root, the algorithm converges on one of the roots (the

point where curve crosses x-axis).

2. COMPLEX ROOTS OF A POLYNOMIAL

EQUATION

The question arises as what is going to happen if one now allow

x (and f(x)) to be complex numbers rather than just real numbers.

So the domain of function is a complex plane. Can one get

complex roots?. This question makes perfect sense since a

polynomial of degree n has n roots, which is a “Fundamental

Theorem of Algebra”. It is also possible to define the derivative

over complex numbers just as for real numbers, so formula (1)

makes sense. It turns out that polynomials are all complex-

differentiable, and the complex-derivative is (surprise!) the same

as the real-derivative. So formula (1) still holds, even though the

geometry is much more complicated. (In part since x is now in

some sense 2-dimensional and likewise f(x), so one need to think

in 4 dimensions!)

A. Newton Fractal

Newton fractal is obtained by applying Newton’s iterative

method for finding roots to a fixed complex polynomial ()f z

where z x iy

Newton’s iterative method for a polynomial equation

() 0f z is given by

1

()

'()

n
n n

n

f z
z z

f z

Each point in the complex plane will be associated with a root

of the polynomial because based on starting point, algorithm

converge on one of the roots. For example,
3() 1 0f z z have three roots in the complex plane as

shown in figure 2. The set of all starting points 0z in the complex

plane which are getting converged to a particular root form a

region with complexpattern. A starting point 0z in the complex

plane when selected and applied as a starting point in Newton’s

iteration, yields a sequence of points 1 2,.....,z z which finally

converge on one of the roots. It is usually difficult to tell to which

root the algorithm will converge, given a starting point. We use a

color to distinguish the set of all starting points which on iteration

converge on a particular root. Number of sets in the plane is

equal to the number of roots the polynomial has. It is found that

the color-tagged-points are fractal in nature. Here we demonstrate

an example of drawing Newton fractal for a polynomial of order

three in excel. For the polynomial as
3() 1f z z , the figure

looks like the Fig.3 given below. Wide variety of coloring-

scheme is possible.

Fig:2 Three roots of
3() 1 0f z z

Fig: 3 Newton Fractal for
3 1z = 0

One can ‘grade’ the color according to number of iteration

taken to converge. So a dark red point indicates fast convergence

to root corresponding to Red and light red indicate large number

of iteration to converge. This reveals full dynamics of Newton

method of iteration to a student. From figure 3 it can be easily

inferred that there are certain regions in the complex domain

where a slight change in the starting will lead to a different

solution (a different root). The pattern is very intricate. Therefore

this picture serves as a glimpse of behavior of complex

dynamical systems whose evolution is described by iterative

equations like Newton’s iterative step.

3. IMPLEMENTATION STRATEGY IN

EXCEL WITH THE USE OF WHAT-IF-

ANALYSIS

One of the skills that a student must learn is innovative use of

tools or concepts in problem solving. The methodology used in

this article is one such innovation. There are three kinds of what-

if analysis tools that comes with Microsoft Excel: scenarios, data

tables, and Goal Seek. Scenarios and data tables take sets of input

values and determine possible results. A data table works only

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

11

with one or two variables, but it can accept many different values

for those variables. A scenario can have multiple variables, but it

can accommodate only up to 32 values. Goal Seek works

differently from scenarios and data tables in that it takes a result

and determines possible input values that produce that result. In

this application, we used only ‘data table’ option of the what if

analysis.

Essentially it works as follows. For one value of x and y

representing the complex number z0 = x+iy, one show how

computation is to be done and decide on which root the

computation converges on. Based on this example, what-if

analysis do the computation and decision for other combinations

of x and y or in other words other values of z0 – the starting point

of iteration. Considering the position of roots of
3() 1f z z , take a domain with x and y-axis ranging from

-2 to +2 . Note that y-axis is imaginary axis. So the top- left and

bottom-right corners are thus -2+2i and 2-2i respectively.

Coordinate-wise those points are (-2,2) and (2,-2) There are

infinite number of points in our domain. To draw the fractal

quickly, one can take a moderate sized rectangular grid in the

domain say 64 by 64 and compute the value of color for each grid

point (which act as 0z) that give a coarse resolution picture of

the fractal. The implementation strategy uses following facilities

in Excel.

1) A rectangular array of excel cells themselves can act as

our points in the domain. That’s is a 64 by 64 block of

cells act as our grid points

2) The size of the excel cells can be reduced to extremely

small size so that it can act as a pixel or a point. Note

that excel allows coloring of the cells. This can be

easily done using conditional formatting.

3) What-If analysis facility will take care of repetitive

nature of computation. We need to show only how one

iteration works.

Now look at the nature of computation involved in drawing

Newton fractal.

Computation involved

1

()

'()

n
n n

n

f z
z z

f z

Where
3() (1);n nf z z 2 '() 3n nf z z

Putting n n nz x iy , and on simplification

2 2

1 2
2 2 2 2

2 1

3 3 4

n n

n n

n n n n

x y
x x

x y x y

 ;

1 2

2 2 2 2

2 2

3 3 4

n n
n n

n n n n

x y
y y

x y x y

Taking 2
2 2 2 23* 4n n n nd x y x y , the expressions

reduces to

2 2

1

2

3

n n
n n

x y
x x

d

(2)

1

2
2

3

n n
n n

x y
y y

d

(3)

Iterate this 20 times assuming in 20 steps, iterated value

reaches near one of the roots. The next step is to find out to

which root the current iterated value is nearby. This is

accomplished as follows. Let 20 20,x y be real and imaginary

part of the iterated value after 20 iterations.

 Let root No 1 be (1, 0) . Then square of distance to this root

from 20 20,x y is
2 2

20 20(1)x y

Let root No 2 be
1 3

,
2 2

. Then square of distance to this

root from 20 20,x y is

22

20 20

1 3

2 2
x y

Let root No 3 be
1 3

,
2 2

. Then square of distance to

this root from 20 20,x y is

22

20 20

1 3

2 2
x y

Once we obtain the square of distances, the index of the

minimum value will point to which root, 20 20,x y is close by.

If it is closest to root No 1, we tag the starting point of the

iteration as 1 etc.

Repeat this procedure with coordinates of each point in the

grid as starting values of iteration. Thus each grid point will be

assigned an integer number from the set {1, 2, 3}.

Experiment No: 1: Draw Newton fractal for
3 1z

Step 1: In cells A1 to A4 enter the strings “Iteration No”,

“Denominator”, “x-coordinate”, “y-coordinate”.

Step 2: In B3 and B4 enter 1. This represent our starting x and y

coordinate (or as a complex number z0 = 0z x iy =1+1i.

Step 3: In C1 enter 1 and in D1 enter 2. Select and drag till V1.

This series of numbers represent iteration index.

Step 4 :In C2 enter the formula for denominator ‘d’ based on the

x and y values in B3 and B4 . The formula is

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

12

Fig:4 Snapshot of excel sheet for Experiment

=3*((B3^2-B4^2)^2+4*(B3^2)*(B4^2)). This corresponds to

 2
2 2 2 23* 4n n n nd x y x y

.

Step:5 In C3 enter the formula for update of the x value of new

iteration .The formula is =(2/3)*B3+(B3^2-B4^2)/C2. This

corresponds to
 2 2

1

2

3

n n

n n

x y
x x

d

Step:6 In C4 enter the formula for update of the y value of new

iteration .The formula is =(2/3)*B4 - 2*B3*B4)/C2. This

corresponds to
1

22

3

n n
n n

x y
y y

d

Step:7. Select cells C2:C4 and drag fill handle till V4. The

resulting values in these cells represent denominator, x and y

values for 20 iterations. Our interest is only in the x and y values

at end of 20th iteration. The excel sheet with some formatting

look as shown in Fig.4

Thus initial point (1,1) used in newton iteration converged on

(1,0) after 20 iteration. It converged on a root . Next we have to

certain to which root (i.e., index of the root) it is converged or

nearby.

Step 8:Precompute the value of 3 / 2 in cell Z2 for further use.

Enter the string ‘root of 3 by 2’ in cell Z1 and =sqrt(3)/2 in cell

Z2.

Step 9: Enter the three root co-ordinates in cells AB2 to AB6

(See the figure below)

 In cell AB1 enter string “x-roots” and in AC1 enter “y-

roots”

 In cell AB2 type 1 andinAC2type 0. These values represent

x-y coordinate of first root

In cell AB3 type-0.5 and in AC3 type =Z2. These values

represent x-y coordinate of second root

In cell AB4 type -0.5 and in AC4 type = -Z2. These values

represent x-y coordinate of third root

Step 10: Computation of distance of the final iterated x-y value

(point) obtained in cells V3 and V4 from the three roots

 In cell X3 enter string “dist-root1” and drag to X5

In cell Y3enter = (V3-AB2)^2+(V4-AC2)^2 and drag till Y5

Step 11: Computing minimum of distances to the three roots

 Enter =min (Y3:Y5) in Y6

Step 12: Computing index of the root to which iterated value is

near by

Enter =if(Y6=Y3, 1 , if (Y6=Y4, 2,3)) in Y7

This completes one iteration of newton method for one starting

point. Y7 contains the index of the root to which finally iteration

converged starting from a given point given in cells B3 and B4.

Fig: 5 Another Snapshot of excel sheet for Experimentation

Step13: Prepare Table for What-if Analysis

In Cell B8 and C8 enter -2 and -1.9 respectively. Select these two

cells and drag the formula till BN8

In Cell A9 and A10 enter -2 and -1.9 respectively. Select these

two cell and drag till A73

 In Cell A8 (the corner cell of the table) enter =Y7 (this

corresponds to index of the converged root in the example

iteration we have shown See step 12.)

Step 14: Use of What if Analysis for computing index of the

roots to which algorithm converges for different combination of

x-y coordinates given by the Data-Table.

Select Cells A8:BN73 and go for what-If Analysis. Choose Row-

input cell as B3 and Column-input cell as B4. The output looks

as shown in Fig.6.

Step 15: Select the cells in tables starting from B9 and ending in

BN73 and go for conditional formatting (available at the ‘home’

Tab in Excel-2010) and choose any one of the three color palette.

A part of the excel sheet look like as shown in the Fig.7

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

13

Fig:6 Snapshot of excel sheet illustrating What-if Table

Fig:7 Snapshot of excel sheet illustrating conditional

formatting

Step:16 Reduce the cell Size

Select columns A to BN, right click the mouse and choose Colum

width. Give column width as 0.1.

Select Rows 1 to 73, right click the mouse and choose Row

height. Give Row-height as 1. The output looks like as shown in

Fig.8.

Step: 17.Select Cells A8:BN73 and go for surface plot. From the

plot remove unwanted objects like axis, grids and labels. Select

the plot area, Right click the mouse and go for 3D rotation. For

rotation about x axis as 15 degree, rotation about y-axis as 90

degree and perspective as 15 degree, the plot look as in Fig.9

Step: 18 Enjoy the picture for a while and go for making a fractal

of size 1024 by 1024.

Fig.8 Output of Experiment with size-reduced cells

Fig: 9 Surface plots of the data

A. Drawing Newton Fractal with VBA

Subroutine Macro1 () is the VBA code required for plotting

Newton fractal for Z3-1=0.

In the macro, the following code shrinks the cell size to that of

pixel

Cells.Select

Selection.ColumnWidth = 0.1

Selection.RowHeight = 1

The remaining part of the code is eslf explanatory.

Sub Macro1()

deltax = 4 / 300

deltay = 4 / 300

startx = -2

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

14

starty = 2

Cells.Select

Selection.ColumnWidth = 0.1

Selection.RowHeight = 1

 Range("A1").Select

For i = 0 To 300

For j = 0 To 300

x = startx + i * deltax

y = starty - j * deltay

 For k = 0 To 128

xn = x

qy = (x ^ 2 - y ^ 2) ^ 2 + 4 * x ^ 2 * y ^ 2 + 0.0000001

 x = (0.666667) * x + 0.333 * (x ^ 2 - y ^ 2) / qy

 y = 0.666667 * y - 0.6666667 * xn * y / qy

 If ((x + 0.5) ^ 2 + (y + 0.866025) ^ 2 <= 0.0001) Then

Selection.Cells.Offset(i, j).Interior.Color = RGB(255, Int(50 *

Rnd()), Int(50 * Rnd()))

 Exit For

 End If

 If ((x - 1) ^ 2 + y * y <= 0.0001) Then

Selection.Cells.Offset(i, j).Interior.Color = RGB(Int(50 * Rnd()),

255, Int(50 * Rnd()))

 Exit For

 End If

 If ((x + 0.5) ^ 2 + (y - 0.866025) ^ 2 <= 0.0001) Then

Selection.Cells.Offset(i,j).Interior.Color= RGB(Int(50 * Rnd()),

Int(50 * Rnd()), 255)

 Exit For

 End If

 Next k

 Next j

Next i

End Sub

Fig:11 for n=3 is drawn with VBA, Others are drawn without

VBA programming.

 (a)

 (b)

 (c)

 (d)

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.14, October 2012

15

(e)

Fig:11. Newton Fractal for n=3,4,5,6,7

The excel sheets and snapshots are available at cen.amritafoss.org

With Programming, one will be able to draw complex

Newton fractals like the ones shown in Figure 12 by taking

different polynomials and color schemes.

As pointed out in [1], the investigations of fractal and chaos is

a marvelous topic for secondary school and for the university.

When asked our post graduate students in Engineering to

implement all kinds of fractals first in spreadsheet and then in

Matlab and it is found that many students went on exploring

different kinds of fractal without any further input. Some students

even went on to read the book - Indra's Pearls: The Vision of

Felix Klein [8] which explore the beautiful connection between

group theory and geometry.

The output of fractal implementation shows the need for

discovery approach to learning and the incorporation of

technology to learn certain types mathematics which otherwise is

impossible. One such area is discrete dynamical systems with

applications to modeling the weather, the central nervous

systems, and the stock market.

One of the aims in teaching mathematics should indeed be to

“give the young a feeling for the beauty and eloquence of

mathematics and its profound relationship with the real world”,

and it is difficult to see how the mathematics teacher can ignore

an aspect of mathematics that is accessible with quite elementary

mathematical ideas: fractal and chaos.

(a)

 (b)

Fig:12 Complex Newton Fractals

4. SUMMARY
In this paper it is shown how Newton fractal can be drawn in

Excel. What-If analysis tool provided in spreadsheet package is a

powerful tool that can be used for variety of applications.

Repetitive computation involving two variables can be easily

done using What-If analysis tool. The approach is intuitive: show

one example of computation, the rest of the computation is done

by the What-If analysis tool. A variety of Newton Fractal can be

produced in spreadsheet without programming. With

programming one get more control over choice of color palette

and also computation become extremely faster.

Fractals open the door to experimental mathematics- a new

mathematics in which one need computer to explore the

innumerable possibilities and it strengthen our intuition to create

new mathematics.

5. REFERENCES

[1] Freitas, J.O.,Ramos, S., “Computer Experiments with

Newton’s Method”, 2003

[2] http://hal.inria.fr/docs/00/05/43/27/PDF/co37th2.pdf.

Accessed 5 August 2012

[3] Tatham, S., “Fractals derived from Newton-Raphson".

http://www.chiark.greenend.org.uk/ ~sgtatham/ newton/.

Accessed 5 August 2012

[4] Bourke, P., “Gallery of fractals created using the Newton

Raphson method”,

http://paulbourke.net/fractals/newtonraphson/ (Accessed

5 August 2012)

[5] Barnsley,M.F., Devaney,R.L., Mandelbrot,B.B.,

Peitgen,H.O., Saupe,D., Voss,R.F., Heinz-Otto Peitgen,

DietmarSaupe, “The science of Fractal Images”, Springer-

Verlag, 1988

[6] Barnsley,M., “Fractals Everywhere”, Academic Press Inc,

1988

[7] Falconer,K., “Fractal Geometry: Mathematical Foundations

and Applications”,Wiley, 2003

[8] Peitgen,H., Juergens,H., and Saupe,D., “Fractals for the

Classroom”,Springer-Verlag, New York, 1992

[9] Mumford,D., Caroline Series David Wright , “Indra's

Pearls: The Vision of Felix Klein” , Cambridge University

Press, 2002

[10] Aravind, H., Rajgopal, C. and Soman,K.P., “A

 Simple Approach to Clustering in Excel”, International

 Journal of Computer Applications 11(7):19–25, December

 2010.

