
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.10, October 2012

42

Application of Computational Intelligence to Virtualized
Data Center Management

Eshrak Assaf Amr Badr Ibrahim Farag

Department of Computer Science, Faculty of Computers and Information,

Cairo University, Cairo, Egypt

ABSTRACT

Server Virtualization is a growing trend in almost all the

critical IT infrastructures all over the world. Apart from the

cost savings involved with such approach, it is even useful in

increasing the infrastructure operational efficiency as it speeds

up the operation, enhances the services availability and

minimizes the downtimes. But it is actually worthless if the

available resources are not well managed, that’s why data

center management is really crucial to ensure that the

virtualization applied is beneficial. In this paper, we propose a

new representation for the problem of finding the best

allocation for the virtual machines on the physical hosts. We

also compare the performance of four types of Genetic

algorithms that were used to solve this problem. These are:

Steady State (ssGA), Generational (genGA), Cellular (cGA)

and distributed (dGA).

General Terms

Genetic Algorithms, Computational Intelligence.

Keywords

Virtualization, Cellular Genetic Algorithms, Distributed

Resource Scheduling.

1. INTRODUCTION

Virtualization is a term that is often used these days in a large

number of companies all over the world. It is used to abstract

applications and their components away from the hardware

layer and present a logical view of the resources. The most

popular goals of virtualization are: easier management,

security, scalability, reliability [1]. Virtualization is most

probably used nowadays as it is a popular way of reducing the

costs accompanied with a project as it provides a consolidated

view of resources at many levels. For example server

virtualization maybe used to reduce the number of hardware

machines required for a project. This in turn reduces the costs

accompanied with cooling, hardware maintenance and

datacenter footprint of the servers. This also reduces the

administration effort accompanied with the introduced servers

[2]. It may also be used to provide a consolidated view of the

resources in which server resources like CPU, memory,

storage and network are treated as a pool. Each machine is

then assigned a customized set of resources according to its

processing needs. The resource assignments are highly

scalable as they can be easily adjusted by increasing or

decreasing them according to the demands of the application

deployed. This scalability is very useful as it increases the

agility and responsiveness of the organization as it ensures

that arising business requirements and market needs are

fulfilled in the least time possible.

Virtualization makes it a lot easier to create testing and

development environments as it provides a very flexible

environment that allows you to make full clones of servers

with minimal administrator intervention. Another benefit is

that you can use certain procedures to capture the state of the

server or virtual machine and return to this state when this is

required.

Figure 1. Virtualization Benefits

 It is also very useful in production environments as it can be

used to respond to emerging business needs in a much faster

ways than the old approaches. A pool of resources is always

available and if the required resources are well predicted and

maintained, the needed servers can be made available upon

request. In the era of economic crisis the concept of

virtualization has been proven to be very beneficial in saving

a lot of costs for companies and generate a better value from

their IT investments. It is useful in saving both capital

expenditure (CAPEX) and operational expenditure (OPEX).

The capital expenditure is reduced as virtualization is used in

making a better utilization of the company’s infrastructure.

The operational expenditure is also reduced as virtualization

can be used to reduce the overall number of servers in the

infrastructure. It is used to make a better usage of existing

underutilized computing resources. This directly reduces the

data center costs like power, cooling and datacenter footprint

which helps corporates to move to a greener data center. It

also provides centralized and easier administration for the

servers. Virtualization helps to eliminate the physical

hardware dependencies from server operating systems and

allows the servers to be moved and recovered in a very

efficient way. Ziff-Davis’s Research, February 18, 2008,

shows some common drivers for virtualization [3]. The scale

of the companies that can benefit from virtualization can vary

from small enterprises to large scale enterprises, each

according to its needs.

Virtualization

Benefits

Lower

Hardware

Easier

Maintenance

Faster

Deployment

High

availability

Flexibility

Application

Isolation

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.10, October 2012

43

There are many levels of virtualization [1, 4] as shown in

figure 2, they can be applied individually or combined. The

type of virtualization used depends on the purpose, scope and

budget.

Access Virtualization

Application Virtualization

Processing Virtualization

Network Virtualization

Storage Virtualization

Figure 2. Virtualization Levels

One of the forms of Processing Virtualization is Server

virtualization [1]. Server virtualization is a software layer that

gives us the ability to expose the server’s physical resources

like memory, processing power, storage and network

bandwidth to make them available to several different virtual

machines at the same time. In this way a single physical

server can support multiple independent workloads that can be

of many different operating systems (Windows, Linux, UNIX,

etc.).

Server Virtualization techniques are used for dividing each

physical server into many virtual machines where each is run

and managed separately from the others. This separation is

very useful for the organizations that consider using this

approach due to many reasons like security, supportability of

the applications and also maximizing the utilization of the

physical servers. Just like the physical servers are maintained,

virtual machines are created, managed and maintained from a

virtual datacenter. In order to be able to deploy, configure and

manage virtual machines on a server, a bare metal hypervisor

is installed first on the physical hosts. Virtual clusters are then

created in the datacenter and the hosts are added to those

clusters according to the design that is set. The physical

resources of each cluster are treated as a resource pool to be

available for all the virtual machines, the main resources to

maintain are: memory, CPU, network and storage. Virtual

machines are then created and assigned the relevant resources

according to the requirements and the recommended sizing of

the applications that will be placed on them.

Data center management is used in order to manage the virtual

datacenter in an efficient way and to reduce the costs

associated with the servers by making an efficient use of the

resources available. But in order to achieve this target, special

tools are used to monitor the running servers and make on

demand-provisioning of the shared resources in real time,

while maintaining the operational efficiency and Quality of

service (QOS) guarantees of the applications at the least cost

possible. When the workloads on the servers are fluctuating,

building such tools gets challenging. This is due to the fact

that the resources must be ready for unexpected and peak

workloads. Dynamic Resource allocation is used in order to

create an adaptive, real-time infrastructure where resources

are dynamically managed and intelligently allocated to meet

the demands of the business. This dynamic resource allocation

is applied by using artificial intelligent techniques and

methods and is done based on the on-going performance

utilization. Different types of evolutionary algorithms were

used in calculating the best placement for the virtual machines

on the physical hosts. Using performance measures from the

hosts, the initial placement can change. This change occurs by

moving the virtual machines from host to another without

requiring a downtime.

Figure 3. Distributed Resource Scheduling (DRS)

Artificial intelligence techniques are used to determine the

best allocation for the virtual machines on the hosts. The best

solution should maximize the utilization of the physical

resources and minimize the costs associated with moving the

virtual machines from one host to another. In this research we

used different variants of Genetic algorithms to find a solution

to the proposed problem.

2. RELATED WORK

Virtualized data center management is an emerging topic that

many researches are currently investigating. The research

done in [5] proposed a dynamic processor resource

configuration to load balance the virtual environment. It

introduced a system called VScheduler. This system is used to

adjust the amount of processor resources allocated to virtual

machines in order to improve the overall resource utilization

of the systems. It proposed a two level configuration scheme:

local resource configuration (LRC) for adjusting the resources

assigned to each individual virtual machine and global

resource configuration (GLC) for the data center or the cluster

under consideration. Research results show that the system

didn’t only help in satisfying the resource demands of the

systems but it also ensured the stability of the virtual

infrastructure by minimizing the virtual machines migrations

that were needed to achieve a proper placement for the virtual

machines on the physical hosts.

Another approach was used in [6] where it considered the

historical data to find the best solution to the problem using

the basic genetic algorithm. This strategy also computed the

effect that each solution would have on the system in order to

find a solution which also minimizes the number of dynamic

VM

VM VM VM VM VM VM

Hardware Hypervisor Hardware Hypervisor Hardware Hypervisor

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.10, October 2012

44

migrations as much as possible. The research in [7] used the

same approach to load balance the virtual machines in a large

scale cloud computing environment. The model in [8] also

used genetic algorithms approach to find a solution to the

Virtual Machine allocation problem in a multi-tier distributed

environment. The model that was used allows for both

quantitative and qualitative resources. It also captured the

structure of the distributed infrastructure smoothly and

handled multiple SLAs. Unlike other prediction based

approaches another model in [9] used the approach of

Lyapunov Optimization [10] to get the optimal resource

allocation for virtual machines with time-varying workloads

and heterogeneous applications. The approach used system

queuing information to make online control decisions. In [11]
two techniques were proposed to control the CPU resource

allocation of the servers. The first approach is a Single Input

Single Output (SISO) first-order Kalman filter that

dynamically allocates the CPU of individual Virtual

Machines. The Second uses a Multiple Input Multiple Output

(MIMO) feedback controller which allocates CPU resources

dynamically for multi-tier server applications. This approach

makes global decisions by coupling the CPU resource usage

of all components.

3. THE USED ALGORITHMS

Different variants of Genetic Algorithms were used in this

research, these are:

3.1 Steady State Genetic Algorithm (ssGA)

In ssGA there is only one population, the generated

individuals replace the older ones in the population. The

replacement/deletion strategies determine which individuals

are replaced by the newly generated individuals [12]. When

only one or two individuals are replaced at each generation

then it is called Incremental GA [13]. In the ssGA at each

generation two individuals are selected according to the

selection criteria. Crossover is then applied to the two

individuals and one of them is mutated. The fitness of the

resulting individual is evaluated and it replaces the worst

individual in the population [14]. The work in [15] compares

between the behavior of the generational and the steady state

genetic algorithms. The equations in the study show how

steady state GA balances its elite selection and at the same

time ensures the need for diversity.

3.2 Generational Genetic Algorithm

(genGA)

In the genGA at each generation a newly generated offspring

is used to form a new population that completely replaces the

previous population. This means that individuals can only

reproduce with other individuals only if they are from the

same generation [16].

3.3 Cellular Evolutionary Algorithms

Cellular Evolutionary Algorithms (cEAs) [14] are one type of

Evolutionary algorithms in which the population is

represented as a connected graph. Each individual has a

certain position in the grid and it communicates with its

neighbors. Recombination operators are applied only between

each individual and its neighbors. This leads to the separation

of the population into islands or subpopulations. The Pseudo

code for a simple cEA [17] is shown below:

1. proc Increment(cEA)

2. for k=1 to MAX do

3. for i=1 to Width do

4. for j=1 to Height do

5. neig= Get_Neigh(cEA,pos(i,j));

6. selected_ind=Selection(neigh);

7. pop= Reproduction(Selected_ind);

8. end_for;

9. end_for;

10. cEA= Replacement(cEA,pop);

11. Evaluate_Population(cEA);

12. end_for;

13. end_proc Incerement;

Line2: The cEA algorithm runs either until the best solution is

found or till it reaches a maximum number of generations

(MAX). Lines 3 and 4: The population is represented as grid

with Width and Height. Line 5: The neighboring individuals

are computed and placed in a list (neigh). Line 6: Perform

Selection on the neighboring individuals that were computed

in Line 5. Line 7: Apply the Reproduction operators on the

selected individuals. Line 10: Replace the old generation by

the newly created one. Line 11: Evaluate the fitness of the

individuals of the new population. For each individual the

surrounding individuals are its neighborhood. Those

neighborhoods overlap and the always have the same size and

shape. The types of neighborhoods are:

3.3.1 Linear (Ln)

In this type the breeding is done with the neighboring

individuals in the north, south, east and west directions only.

3.3.2 Compact (Cn)

The breeding occurs with all the (n-1) nearest individuals.

Figure 4. cGA Variations

3.4 Distributed Genetic Algorithm

Distributed (or multiple-deme) GA was proposed as a way of

parallelizing the standard GA (sGA). The algorithm is more

sophisticated since the population is divided into sub

populations where each parent breeds only with the

Compact9 Linear9 Linear5

Compact25 Linear21 Linear13

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.10, October 2012

45

individuals from its sub-population. Unlike the cellular GA

(CGA) that has one string in each sub-population, the dGA

has a relatively large sub-population (>>1). Individuals

migrate between sub-populations every certain number of

generations. Parallel GA’s allows for further exploitation of

genetic information [18-21].

Figure 5. Island Model

4. REPRESENTATION SCHEME

The problem is simply represented so that each individual in

the population is a one dimensional array of a possible

allocation for the virtual machines on the hosts. The optimal

solution should be the one that gets the optimal way to place

the virtual machines on the hosts in a way that satisfies the

resource requirement of each individual virtual machine and

also minimizes the differences of the utilization between the

hosts. Virtual machines in a cluster are given numbers from

VM number 1 to n, where n is the total number of virtual

machines in the cluster. The index of each cell in the

individual represents the virtual machine under consideration.

The allele values represent the hosts where each virtual

machine in the cluster will be placed. H represents the hosts

where the host values can be any number from one to k,

where k is the total number of hosts in the cluster.

Figure 6. Individual Representation

5. FITNESS EVALUATION

In order to calculate the fitness of each individual in the

population, two factors are taken into consideration. The first

one is the deviation of the individual from the calculated

average load of the hosts. The second factor that we consider

is the migration cost. This value represents how different the

individual is from the initial allocation of the virtual machines

on the hosts.

5.1 Deviation from the Average load

Apart from the fact that the model implemented in [6] uses a

different representation scheme for the problem but in this

approach, the deviation from the average load is also used to

define the fitness of each individual. Assume that the VM is

relatively stable in each period of time. The average load of

load of the Virtual machine i at time T in n time periods is

defined as below:

 (1)

The load of each given host H is equal to the sum of the

average utilizations of the virtual machines residing on it at

time T.

  

The mean square deviation of a node to the average load is the

root of sum of the square differences between the sum of the

utilization of each host and the host average load divided by

the number of hosts N.

 (3)
Where the average load of each host is defined as the sum of

the load of all the hosts in the cluster divided by the number

of the hosts at time T as shown below:

  

5.2 Migration Cost

In order to reach a solution that has the least migrations

possible, the delta between each individual and the initial

solution is calculated as in the below equation.

  

Where N is the size of the solution, for each individual in the

population the migration cost δ is the delta between the values

of the individual and the initial allocation of the virtual

machines on the hosts. In order to calculate the delta, for each

index i in the individual, the allele value is compared to that

of the initial solution. The value is acts as a penalty value

where it is equal to one if the allele at this index is the

different from the allele at the same index in the initial

allocation of the virtual machines. This means that the virtual

machine at this index has been migrated to a different host

which implies extra overhead on the environment. This value

is set to zero if the allele value is the same as the initial

solution as this means that no migration would need to take

place.

5.3 The Fitness Function

The best solution is the one that minimizes each host’s

deviation from the average load in order to meet the required

load constraints. The solution needs to ensure at same time

using the least number of migrations possible. In order to

reach this the mean square deviation and the migration cost

needs to be minimized. This makes the fitness function as

follows:



The best solution in the population is the one that gets the best

fitness value after the specified number of iterations.

6. VM SCHEDULING ALGORITHM

6.1 Experiment Setup

This experiment was carried on an existing VMware

environment. The virtual datacenter contains a cluster of four

𝑉 1 𝑉 2 … 𝑉 𝑛

 1. . 𝑘 H(1..k) (1. . 𝑘)

Island2

Island5

Island4 Island3

Island1

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.10, October 2012

46

physical servers were used where each server has 8 dual core

Intel® Xeon(R) CPU L755, 1.86 GHZ, 128 GB of RAM.

Each physical server has an operating system version of

VMware ESXi 5 [22]. The hosts have 51 virtual machines

with different operating system versions. Each virtual

machine is assigned a specific amount of memory, CPU,

storage and networking resources according to its needs in the

environment. The Fitness Evaluation of the individuals

depends on the historical performance data of the virtual

machines in the cluster. So, one month CPU utilization for the

virtual machines on the host was collected and used for

calculating the fitness of the proposed solutions. The

scheduling algorithm in this model was implemented by

introducing a new problem called “VMBest” to the Java

object oriented framework JCell [14, 23]. The framework

was further extended by adding the necessary classes in order

to find a custom solution to the virtual machine allocation

problem.

6.2 Algorithm Analysis

This research provides a new strategy that uses cellular

genetic algorithms (cGA), steady-state GAs, generational

GAs, and distributed GAs algorithms for load balancing the

virtual machines residing in the virtual datacenter. Three

different variants of cGAs were considered: Linear5 (cGA-

L5), Compact9 (cGA-C9) and Compact13 (cGA-C13). The

initial allocation of the virtual machines on the hosts is taken

from an already existing VMware environment. One month

performance data were collected from all the machines in

order to be used for the fitness evaluation. The details for the

algorithm that was used in this approach are:

1. Collect one month historical data for the CPU

utilization for all the virtual machines on the hosts.

2. Calculate the fitness of the initial solution by

calculating the deviation of each host from the average load

and summing up these values. The migration cost in this case

is equal to zero as no migrations occurred yet.

3. Each algorithm is used to find a solution to the

problem in order to find a solution that defines the optimal

allocation for the virtual machines on the hosts.

4. A Random population of individuals is generated

where each individual represents a proposed solution for

allocating the virtual machines on the hosts.

5. The average load that is supposed to be on each host

is calculated by calculating the sum of the utilization of all the

virtual machines on the hosts and dividing the resulting value

by the total number of virtual machines.

6. The fitness values are defined for each individual by

calculating the deviation of each host in the solution from the

average load. The migration cost is also taken into

consideration while evaluating the fitness so as to find a

solution with the least migrations possible from the initial

allocation. The best solution in is one that minimized the

deviation of the CPU utilization of the host.

7. The specific algorithm operators are applied on all

the individuals in the population until the maximum number

of iterations is reached.

6.3 The Mapping Relationship

In order to analyze the performance of the algorithm a sample

of four clustered hosts was used. 51 virtual machines reside

on these hosts. Predefined data for one month is used in order

to reflect the real resource utilization of the virtual machines.

The mapping between each host and its average CPU

utilization is shown below in Table 1.

Table 1. The mapping relationship before using the

algorithm

Host 1 Host 2 Host 3 Host 4

VM CPU VM CPU VM CPU VM CPU

V1 1.5 V17 8 V30 22.9 V41 2.2

V2 8.2 V18 2.1 V31 2.1 V42 0.9

V3 9 V19 8.1 V32 2 V43 2

V4 4.1 V20 0.8 V33 4.1 V44 7.3

V5 1.5 V21 1.3 V34 2.1 V45 0.6

V6 5.5 V22 18.8 V35 2.5 V46 2.3

V7 0.5 V23 5 V36 5.9 V47 2.9

V8 11.8 V24 8.6 V37 1 V48 3.4

V9 0.8 V25 7.3 V38 2.8 V49 1.1

V10 12.9 V26 25.6 V39 3.1 V50 3

V11 6.7 V27 3.8 V40 8.1 V51 0.8

V12 10.1 V28 3.9

V13 6.6 V29 24.4

V14 0.5

 V15 8.6

V16 1.4

Population scale is 10 and the mutation probability applied is

0.2 while the crossover probability is equal to one. The

stopping condition is to reach the allowed maximum number

of iterations. The average load of each host is= 72.625. The

fitness of this initial solution is equal to its deviation from the

average load which is = 124.3. The resulting mapping

relationship after using the algorithm is shown in Table. 2.

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.10, October 2012

47

Table 2. The mapping relationship of the best solution

Host 1 Host 2 Host 3 Host 4

VM CPU VM CPU VM CPU VM CPU

V3 9 V2 8.2 V1 1.5 V7 0.5

V4 4.1 V5 1.5 V10 12.9 V11 6.7

V6 5.5 V8 11.8 V17 8 V26 25.6

V9 0.8 V13 6.6 V18 2.1 V28 3.9

V12 10.1 V15 8.6 V22 18.8 V29 24.4

V14 0.5 V21 1.3 V30 22.9 V35 2.5

V16 1.4 V24 8.6 V33 4.1 V43 2

V19 8.1 V25 7.3 V34 2.1

V20 0.8 V31 2.1 V42 0.9

V23 5 V32 2 V44 7.3

V27 3.8 V37 1 V47 2.9

V36 5.9 V38 2.8 V51 0.8

V39 3.1 V46 2.3

V40 8.1 V48 3.4

 V41 2.2

V45 0.6

V49 1.1

V50 3

This solution was found by using the Compact13 Cellular GA.

The fitness of the final solution is= 25.89, time= 459 ms.

6.4 Performance Evaluation

The below figure shows the average time in milliseconds that

was taken by each of the considered algorithms to reach a

near optimal solution.

Figure 7. Average time taken by each algorithm to find the

best solution

Steady state genetic algorithms took the longest time to reach

the optimal solution, while the Cellular genetic algorithms

were the fastest to converge to the solution. The Compact13

variation of cellular genetic algorithms was the first to get a

near optimal solution. The effect of the population size on the

performance of the considered algorithms is shown in Table 3.

Table 1. The effect of the population size on the

performance

Pop. ssGA genGA dGA
cGA-
L5

cGA-
C9

cGA-
C13

(10,10) 25.960 25.952 26.004 25.963 25.920 25.946

(20,20) 25.957 25.955 25.999 25.965 25.920 25.937

(30,30) 25.961 25.957 25.994 25.968 25.923 25.943

(40,40) 25.970 25.960 25.994 25.957 25.920 25.948

(50,50) 25.972 25.959 25.999 25.962 25.917 25.950

The below Fig.8 and Fig.9 show that increasing the

population size caused a slight degradation in the performance

of the SSGA, the genGA and the dGA.

Figure 8. The effect of the population size on the

ssGA

Figure 9. The effect of the population size on the

genGA

400

450

500

550

600

ssGA genGA dGA cGA-L5 cGA-C9 cGA-C13

Time(ms)

25.945

25.950

25.955

25.960

25.965

25.970

25.975

(10,10) (20,20) (30,30) (40,40) (50,50)

Fi
tn

e
ss

population size

ssGA average fitness

25.946

25.948

25.950

25.952

25.954

25.956

25.958

25.960

25.962

(10,10) (20,20) (30,30) (40,40) (50,50)

Fi
tn

e
ss

population size

genGA average fitness

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.10, October 2012

48

Figure 10. The effect of the population size on

the dGA

The cGAs performance didn’t vary much by changing the

population size. The cGA-L5 and cGA-C9 showed

degradation succeeded by a slight improvement while the

cGA-C13 showed an improvement succeeded by some

degradation in the performance.

Figure 11. The effect of the population size on

the cGA-L5

Figure 12. The effect of the population size on the

cGA-C9

Figure 13. The effect of the population size on

the cGA-C13

7. FUTURE WORK
The approach proposed in this research uses historical CPU

utilization for the virtual machines to find the best allocation

for the virtual machines on the hosts. It only considers the

CPU resource utilization of the virtual machines and the

migration cost of each solution. The research can be further

elaborated by considering other performance metrics like:

memory, network and I/O. The algorithms can also be

integrated with the various hypervisors available in the market

in order to test their applicability in real life environments.

This would be useful in proving that the algorithm doesn’t

violate the applications predefined Service level agreements

(SLAs). The table below shows the how the virtual machines

were placed on the hosts before using the algorithm and the

average CPU utilization of each VM on them.

8. CONCLUSION
This research proposed a new approach for load balancing the

machines with their different resource allocation on the hosts

of the virtual environment. The goal was to get the best

allocation for the specified set of virtual machines on the

physical hosts. In order to do that, a population of one

dimensional integer individuals was randomly created where

each individual represents a solution to the problem. In order

to reflect real life implementations, performance data was

collected from an existing virtual infrastructure over a one

month period of time in order to serve as an input to the

algorithm. The fitness of each solution was calculated based

on the value of the deviation of the hosts from the average

load that is accompanied with the proposed placement. The

migration cost for each virtual machine was also taken into

consideration while calculating the fitness for the individuals.

This is in order to get the best solution with the least number

of migrations possible. The research compared the

performance of some forms of genetic algorithms in finding

the best solution to the problem, these are: cellular GAs,

steady-state GAs, generational GAs, and distributed GAs. It

also considered three variations of cellular GAs that are

determined by the neighborhood shape, these are: Linear5,

Compact9, and Compact13.

9. ACKNOWLEDGMENTS
I would like to thank everyone that has directly or indirectly

inspired me to pursue this research; my doctors, family,

friends and colleagues.

25.988

25.990

25.992

25.994

25.996

25.998

26.000

26.002

26.004

26.006

(10,10) (20,20) (30,30) (40,40) (50,50)

Fi
tn

e
ss

population size

dGA average fitness

25.952

25.954

25.956

25.958

25.960

25.962

25.964

25.966

25.968

25.970

(10,10) (20,20) (30,30) (40,40) (50,50)

Fi
tn

e
ss

population size

cGA-L5

25.914

25.915

25.916

25.917

25.918

25.919

25.920

25.921

25.922

25.923

(10,10) (20,20) (30,30) (40,40) (50,50)

Fi
tn

e
ss

population size

cGA-C9

25.930

25.935

25.940

25.945

25.950

25.955

(10,10) (20,20) (30,30) (40,40) (50,50)

Fi
tn

e
ss

population size

cGA-C13

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.10, October 2012

49

10. REFERENCES
[1] Kusnetzky, D. 2007. Virtualization is More than Virtual

Machine Software.

[2] Cerling, T., et al. 2009. Mastering Microsoft

Virtualization: Sybex.

[3] Ruest, D. and Ruest, N. 2009. Virtualization: A

Beginner's Guide: McGraw-Hill.

[4] Kusnetzky, D. 2011. Virtualization: A Manager's Guide.

First Edition ed, United States of America: O’Reilly. 60.

[5] Jin, H., et al. 2011. Dynamic Processor Resource

Configuration in Virtualized Environments, in

Proceedings of the SCC '11 IEEE International

Conference on Services Computing.

[6] Jinhua, H., et al. 2010. A Scheduling Strategy on Load

Balancing of Virtual Machine Resources in Cloud

Computing Environment, in Proceedings of the PAAP

'10 3rd International Symposium on Parallel

Architectures, Algorithms and Programming.

[7] Sawant, S. 2011. A Genetic Algorithm Scheduling

Approach for Virtual Machine Resources in a Cloud

Computing Environment, in Department of Computer

Science, San Jose State University SJSU ScholarWorks.

[8] Campegiani, P. 2009. A Genetic Algorithm to Solve the

Virtual Machines Resources Allocation Problem in

Multi-tier Distributed Systems. In Proceedings of

VPACT’09 Second International Workshop on

Virtualization Performances: Analysis, Characterization

and Tools.

[9] Urgaonkar, R., et al. 2010. Dynamic Resource Allocation

and Power Management in Virtualized Data Centers. In

Proceedings of NOMS’10 IEEE Network Operations and

Management Symposium

[10] Georgiadis, L., Neely, M., and Tassiulas, L. 2006.

Resource allocation and crosslayer control in wireless

networks. Foundations and Trends in Networking,

Hanover, MA, USA: Now Publishers Inc.

[11] Kalyvianaki, E. and Charalambous, T. 2008. On

Dynamic Resource Provisioning for Consolidated

Servers in Virtualized Data Centers. In Proceedings of

PMCCS'08 the 8th Int. Workshop on Performability

Modeling of Computer and Communication Systems.

[12] Vavak, F. and Fogarty, T.C. 1996. A Comparative Study

of Steady State and Generational Genetic Algorithms for

Use in Nonstationary Environments. Evolutionary

Computing (Lecture Notes in Computer Science),

Brighton, UK: Springer.

[13] Ma, T. and Abdulhai, B. 2002. Genetic Algorithm-Based

Combinatorial Parametric Optimization for the

Calibration of Microscopic Traffic Simulation Models.

ieee.

[14] Alba, E. and Dorronsoro, B. 2008. Cellular Genetic

Algorithms: Springer.

[15] Noever, D. and Baskaran, S. 1992. Steady-state vs.

generational genetic algorithms: A comparison of time

complexity and convergence properties, Santa Fe

Institute.

[16] Sivanandam, S.N. and Deepa, S.N. 2008. Introduction to

Genetic Algorithms: Springer.

[17] Dorronosoro, B. 2004. Cellular Evolutionary Algorithms

Site. 2004 [cited Access; Available from:

http://neo.lcc.uma.es/cEA-web/index.htm.

[18] Yi, W., Liu, Q., and He, Y. 2000. Dynamic Distributed

Genetic Algorithms In Proceedings of Congress on

Evolutionary Computation. IEEE.

[19] Belding, T.C. 1994. The Distributed Genetic Algorithm

revisited. In Proceedings of the 6th International

Conference on Genetic Algorithms.

[20] Mcmahon, M.T. 1998. A Distributed Genetic Algorithm

With migration for the design of composite laminate

structures, in Computer Science and Applications, the

Faculty of the Virginia Polytechnic Institute and State

University: Blacksburg, Virginia.

[21] Alba, E. and Troya, J.M. 1999. A Survey of Parallel

Distributed Genetic Algorithms.

[22] VMware ESXi 5. 2012 [cited Access; Available from:

http://www.vmware.com/products/vsphere/esxi-and-

esx/index.html.

[23] JCell Framework. [cited Access; Available from:

http://jcell.gforge.uni.lu/.

http://neo.lcc.uma.es/cEA-web/index.htm
http://www.vmware.com/products/vsphere/esxi-and-esx/index.html
http://www.vmware.com/products/vsphere/esxi-and-esx/index.html
http://jcell.gforge.uni.lu/

