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ABSTRACT 

For a precise texture classification and analysis, a run length 

matrix is constructed on the Local Binary pattern using fuzzy 

principles in the present paper. The proposed Run Length 

Matrix on Fuzzy LBP (RLM-FLBP) overcomes the 

disadvantages of the previous run length methods of texture 

classification that exist in the literature. LBP is a widely used 

tool for texture classification based on local features. The LBP 

does not provide greater amount of discriminate information 

of the local structure and it has a various other disadvantages. 

The main disadvantage of LBP is, that it compares the centre 

pixel value with its neighbors to derive the one of the three 

possible values {0, 1, 2}. The basic drawback of this 

comparison is that it is very sensitive to noise. And a major 

contrast between the central pixel and its surroundings are 

easily resulted by the slight fluctuations above or below the 

value of the Centre Pixel (CP) and its surroundings. To 

overcome this problem and to represent the missing local 

information effectively in the LBP, the present study 

introduced the concept of fuzzy logic on LBP. This 

overcomes the problem related to noise and contrast. The 

proposed method initially converts the 3×3 neighborhood in to 

fuzzy LBP. In the second stage the proposed method 

constructs the Run Length Matrix on Fuzzy LBP (RLM-

FLBP). On these RLM-FLBP texture features are evaluated 

for a precise texture classification.  

Keywords: Run Length Matrix, Fuzzy LBP, Centre Pixel, 

Local Structure. 

. 

1. INTRODUCTION 
Galloway proposed the use of run length matrix for texture 

feature extraction [1]. The run length matrix proposed by 

Galloway has not been widely used as an effective texture 

classification and analysis method, because these run length 

features are proved to be the least efficient texture features 

among a group of traditional texture features such as co-

occurrence features, the grey level difference features etc…. 

To overcome this, the present thesis investigated a new 

approach that is derivation of run lengths on FLBP.  

The Local Binary Pattern (LBP) approach has evolved to 

represent a significant breakthrough in texture analysis, 

outperforming earlier methods in many applications. Perhaps 

the most important property of the LBP operator in real-world 

applications is its tolerance against illumination changes. 

Another equally important is its computational simplicity, 

which makes it possible to analyze images in challenging real-

time settings.  

Image texture analysis is an important fundamental problem 

in computer vision. During the past few years, several authors 

have developed theoretically and computationally simple, but 

very efficient nonparametric methodology for texture analysis 

based on LBP [2, 3, 4, 5, 6, 7, 8, 9]. The LBP texture analysis 

operator is defined as a grayscale invariant texture measure, 

derived from a general definition of texture in a local 

neighborhood. For each pixel in an image, a binary code is 

produced by thresholding its value with the value of the center 

pixel. A histogram is created to collect up the occurrences of 

different binary patterns. The basic version of the LBP 

operator considers only the eight neighbors of a pixel, but the 

definition has been extended to include all circular 

neighborhoods with any number of pixels. [10, 11, 12]  

Through its extensions, the LBP operator has been made into 

a really powerful measure of image texture, showing excellent 

results in terms of accuracy and computational complexity in 

many empirical studies. The LBP operator can be seen as a 

unifying approach to the traditionally divergent statistical and 

structural models of texture analysis. Perhaps the most 

important property of the LBP operator in real world 

applications is its tolerance against illumination changes. 

Another equally important is its computational simplicity, 

which makes it possible to analyze images in challenging real-

time settings.   

That’s why the LBP method has already been used in a large 

number of applications all over the world, including visual 

inspection, image retrieval, remote sensing, biomedical image 

analysis, face image analysis, motion analysis, environment 

modeling, and outdoor scene analysis. The present study 

developed run length matrix on fuzzy LBP.   

The present paper is organized as follows. The section two 

describes Representation of LBP. Section 3 describes 

derivation of the proposed RLM-FLBP and the computation 

of texture features, section four is for experimental analysis 

and conclusions are described in section five. 

2. Representation of LBP 
The present section introduces the basic concept of LBP. It is 

a gray-scale invariant texture measure computed from the 

analysis of a 3×3 local neighborhood over a central pixel. The 

LBP is based on a binary code describing the local texture 

pattern. This code is built by thresholding a local 

neighborhood by the gray value of its center.  

In a square-raster digital image, each pixel is surrounded by 

eight neighboring pixels. The local texture information for a 

pixel can be extracted from a neighborhood of 3×3 pixels, 

which represents the smallest complete unit (in the sense of 

having eight directions surrounding the pixel). A 

neighborhood of 3×3 pixels is denoted by a set containing 

nine elements:  P= {P0, P1 ...P8}, here P0 represents the 

intensity value of the central pixel and   Pi {i=1, 2… 8}, is the 

intensity value of the neighboring pixel i. The eight neighbors 

are labeled using a binary code {0, 1} obtained by comparing 

their values to the central pixel value. If the tested gray value 

is below the gray value of the central pixel, then it is labeled 
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0, otherwise it is assigned the value 1 as described by the 

Equation (1). 

   {
           
          

       and                           (1) 

di is the obtained binary code, Pi is the original pixel value at 

position i and P0 is the central pixel value. The Fig.1(a) shows 

the grey level values of a 3×3 neighborhood of an image. And 

the Fig.1(b) shows its corresponding binary labeling based on 

Equation (1). The binary weights of the given 3×3 

neighborhood are calculated by the Equation (2). 

           ∑  

 

   

                                                          

As each element of LBP has one of the two possible 

values, the combination of all the eight elements results in 28 

= 256 possible local binary patterns ranging from 0 to 255. 

There is no unique way to label and order the 255 LBP on a 

3×3 neighborhood.  

 

63 28 45  1 0 1 

88 40 35  1  0 

67 40 21  1 1 0 

 (a)    (b)  

20 21 22  1 0 2 

27  23  128  0 

26 25 24  64 32 0 

 (c)    (d)  

Fig.1 (a) Sample Grey level Neighborhood (b) Conversion 

of Fig.1 (a) into Binary Neighborhood (c) Representation 

of Fig.1 (a) Binary Weights  (d) Represented Values with 

Binary Weights. 

 

 Fig.1 shows an example on how to compute LBP. 

The original 3×3 neighborhood is given in Fig.1(a). The 

central pixel value is used as a threshold in order to assign a 

binary value to its neighbors. Fig.1(b) shows the result of 

thresholding the 3×3 neighborhood. The obtained values are 

multiplied by their corresponding weights as shown by Fig.1 

(c). The result is given in Fig.1(d). The sum of the resulting 

values gives the LBP measure which is 227 in this case the 

central pixel 40 is replaced by the obtained LBP value 227. A 

new LBP image is constructed by processing each pixel and 

its 3×3 neighbors in the original image. The binary weights of 

Fig.1(c) can be given in eight different ways. 

3. The Proposed Method of Run Length 

Matrix on Fuzzy Local Binary Pattern 

(RLM-FLBP) 
The major problem of the above approach of LBP is it 

fails in dealing accurately with the regions of natural images 

in the presence of noise, contrast, illumination changes and 

the different processes of caption and digitization. For 

example, even if the human eye perceives two neighboring 

pixels as equal, they rarely have exactly the same intensity 

values. However, the desirable situation would be that the 

LBP of homogeneous images contain more number of ones 

because the human eye can perceive ones. That is LBP takes a 

value 1 for any difference (min to max) of values. Therefore, 

if there is lack of ones, the basic LBP will take only 0 value, 

which means that the real number of possible textures are 28, 

i.e., 256. To overcome the above, the fuzzy membership 

function is introduced by the present study on LBP. To have 

more visual clarity on difference of values between central 

pixel and neighboring pixel fuzzy logic is established, which 

give a set of values between 0 to 1 as {0, 0.1, 0.2, 0.3, 0.4, . . . 

, 1} on the LBP neighborhood. 

Fuzzy logic has certain major advantages over 

traditional Boolean logic when it comes to real world 

applications such as texture representation of real images. The 

main difference between the fuzzy and the classic logic is that 

statements are no longer 0 or 1 in fuzzy, but assume any real 

value between 0 and 1, that allows more human-like 

interpretation and reasoning. 

The incorporation of fuzzy logic by the present 

study into the LBP approach includes the transformation of 

the input variables to respective fuzzy variables, according to 

a set of fuzzy rules. Based on this assumption the present 

paper derived fuzzy rules on 3×3 LBP neighborhood to 

describe the relation between the intensity values of the 

neighboring pixels Pi and the center pixel P0 in a more human 

perception view point. The fuzzy rules of the present approach 

on LBP are given below. 

Rule 0: The more negative      is, the greater the certainty that 

di is 0. 

 Rule 1: The more positive      is, the greater the certainty 

that di is 1. 

These two rules are rewritten in terms of two membership 

functions   
 
           

 
      are defined in Equations (3) 

and (4) as follows:  
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where  
 
      is a decreasing function,  

 
       is an 

increasing function,  ∆G  [0,255] represents a parameter that 

controls the degree of fuzziness. Finally, for a commitment 

between reliability and accuracy, the membership functions 

provide the membership degrees to which a pixel is 

lighter  
 
     or darker  

 
     than the central pixel of a 3×3 

LBP raster window. Using the above fuzzy functional rules, 

the Fuzzy Local binary Pattern (FLBP) of the neighboring 

pixels is given by Equation (5). 

       

 {(      
        

  )  (      
        

  )    (      
        

  )}       

(5) 

The Equation(4) can be rewritten as in Equation(6) 
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By the above equations the FLBP converts a 3×3 window 

neighboring pixel values into the FLBP set, i.e., FLBP   {0, 

0.1, 0.2, 0.3, 0.4, . . . ,1}.  The average membership values of 

FLBP neighboring pixels are useful for characterization of 

textures. But sometimes it is difficult to evaluate. To address 

this difficulty the present approach derived Run length matrix 

(RLM) on the FLBP of the image. By RLM-FLBP a set of 

points are obtained and each set has its own run length 

entropy dimension as described below.  

For a given image, the proposed method defines a 

RLM(i,j) on FLBP as number of runs starting from location 



International Journal of Computer Applications (0975 – 8887) 

Volume 55– No.1, October 2012 

38 

(i,j) of the FLBP image. This may produce an n number of 

RLM-FLBP, which may become a complex procedure for 

texture analysis.  To address this, the present paper concised 

the number of RLM-FLBP based on some lag value as 

described below. The proposed method derived five different 

RLM-FLBP’s.  The RLM-FLBP1 contains the run length 

values for zero and RLM-FLBP2 contains the run length 

values from 0.1 and 0.3, RLM-FLBP3 contains the run length 

values from 0.4 and 0.6, RLM-FLBP4 contains the run length 

values from 0.7 and 0.9,  RLM-FLBP5 contains the run length 

values of 1 respectively. The Fig.2 and Fig.3 explains the 

proposed method of generating five RLM-FLBP images is as 

follows: 

 

Fig.2: Fuzzy Local Binary Pattern (FLBP) Image. 

 

 

Fig.3: Five different RLM-FLBP’s on FLBP image of 

Fig.2. 

 

The proposed RLM-FLBP derived five fuzzy run-length 

matrices such as RLM-FRLM1, RLM-FRLM2, RLM-FRLM3, 

RLM-FRLM4, RLM-FRLM5, which are unique variations of 

the fuzzy run-length matrix.  Finally, five fuzzy run-length 

matrices are combined to form a single matrix called as RLM-

FLBP. 

 

3.1 Computation of Texture Features 
Two sets of texture features are derived from RLM-

FLBP for texture classification. The first set of features used 

from the FRLM (Weska et al., 1976 [13]) is average energy 

(e1), energy (e2), entropy (e3) and standard deviation (e4)) as in 

Equations (7)-(10) and the second set of features obtained 

contains higher order statistics [13] include Small number 

Emphasis (N1), Large number Emphasis (N2), Non 

Uniformity (N3) and Second Moment (N4) as given in 

Equations (11)-(14). These features are stored in the features 

library.  
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4. Experimental Results 
 Experiments are carried out to demonstrate the 

effectiveness of proposed RLM-FLBP method for texture 

image classification. The proposed method is experimented 

with OuTex [14] and Granite [15] color image databases, as 

given in Fig.1.1 and 1.2 respectively.  To do classification, the 

texture images are first divided into non-overlapping windows 

of size 32×32 and the resulting windows are then divided into 

two disjoint sets, one for training and one for testing. Two 

distance classifiers (Manhattan distance (d1) and Euclidean 

distance (d2)) are used to choose the best classification 

technique with the proposed RLM-FLBP. The classifier 

computes the distance between the features for each sample 

and that of the texture classes and assigns the unknown 

sample to the texture class with the shortest distance. The 

classification results for each of the two feature sets are shown 

in Table I, Table II, Table III and Table IV respectively.  

 The first observation is that the performance of the 

two tests is affected very much by different choices of energy 

measures. For example, standard deviation is more suitable 

for the proposed RLM-FLBP features than any other norm. 

Thus, when testing textures extracted from the OuTex album, 

the best performance is achieved by having the statistical 

measure (e4) and the distance measure (d2). The second 

observation is based on higher order statistical features. It is 

observed that the features N1 and N2 are also resulting in good 

classification rate. Therefore the present paper considers e4 

from feature set-1 and N1, N2 from feature set-2 for 

classifying textures. Similarly, by observing the features of 

second dataset (Granite album)   e4 perform high accuracy 

than the other energy features. And the features N1 and N2 are 

also resulting in good classification rate. By the above 

observations the proposed study concludes that the features of 

0 1 0 0 0 0 1 0 3 2 1 0

0 0 2 1 0 0 2 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

4 3 2 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3 2 1 0

0 0 0 0 0 0 3 2 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 1

0 0 0 0 0 1

RLM-FLBP1 RLM-FLBP2

RLM-FLBP3 RLM-FLBP4

RLM-FLBP5

0.1 0 0.2 0.2 0.2 0.9 

0.3 0.3 0 0 0.7 0.6 

0.5 0.6 0.6 0.6 0.3 0.4 

0.8 1 0.8 0.9 0.9 1 

0.8 0.8 0.8 0.2 0.1 1 
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e4, N1 and N2 form a good feature set. Table V summarize the overall classification accuracy using two datasets of two classifiers and 

also two feature sets.  

 

Table 1: Results of texture classification using energy features of OuTex Database. 

Distance 

Measures  

 Energy 

Measures 

OuTex: % of mean classification rate 

FRLM1 FRLM2 FRLM3 FRLM4 FRLM5 Average 

d1 e1 78.5 81.5 82.3 85.6 89.6 83.5 

  e2 84.3 83.7 85.5 86.4 86.5 85.3 

  e3 89.6 85.4 87.6 88.9 87.6 87.8 

  e4 94.4 95.7 97.5 96.5 97.4 96.3 

d2 e1 90.2 91.5 92.5 90.6 89.7 90.9 

  e2 89.6 90.1 92.5 91.5 91.2 91.0 

  e3 90.7 91.5 90.7 92.6 90.3 91.1 

  e4 95.6 96.8 95.7 97.8 96.2 96.4 

 
Table 2: Results of texture classification using higher order statistical features of OuTex Database. 

Distance 

Measures  

Higher order 

statistical 

features 

OuTex: % of mean classification rate 

FRLM1 FRLM2 FRLM3 FRLM4 FRLM5 Average 

d1 N1 88.5 86.5 84.5 86.7 90.5 87.3 

  N2 86.7 85.5 87.5 86.4 86.5 86.5 

  N3 89.6 85.4 87.6 88.9 87.6 87.8 

  N4 94.4 96.7 96.5 98.5 98.4 96.9 

d2 N1 96.4 97.6 96.5 94.9 99.7 97.0 

  N2 95.6 95.5 97.5 96.5 98.2 96.6 

  N3 91.0 85.5 90.7 92.6 90.3 90.0 

  N4 90.2 90.4 91.7 90.8 90.2 90.7 

 

Table 3: Results of texture classification using energy features of Granite Database. 

Distance 

Measures  

 Energy 

Measures 

Granite: % of mean classification rate 

FRLM1 FRLM2 FRLM3 FRLM4 FRLM5 Average 

d1 e1 80.3 80.5 79.3 85.6 93.6 83.9 

  e2 85.5 80.6 86.5 89.6 92.5 86.9 

  e3 87.5 86.3 90.4 90.7 79.5 86.9 

  e4 97.4 95.5 96.3 95.6 96.4 96.2 

d2 e1 89.5 93.5 94.5 90.6 90.7 91.8 

  e2 90.5 89.7 93.5 91.5 89.5 90.9 

  e3 91.6 92.5 92.5 92.4 89.6 91.7 

  e4 97.6 96.5 96.7 97.5 98.2 97.3 

 
Table 4: Results of texture classification using higher order statistical features of Granite Database. 

Distance 

Measures  

Higher order 

statistical features 

Granite: % of mean classification rate 

FRLM1 FRLM2 FRLM3 FRLM4 FRLM5 Average 

d1 N1 90.6 90.5 90.8 86.7 90.5 89.80 

  N2 91.5 89.6 91.5 86.4 86.5 89.10 

  N3 89.5 90.5 87.6 90.4 87.6 89.12 

  N4 94.4 99.7 96.5 96.5 97.4 96.87 

d2 N1 96.6 97.6 93.5 95.6 98.5 96.36 

  N2 96.5 96.5 94.5 98.5 96.8 96.55 

  N3 90.6 94.5 91.5 94.8 91.3 92.54 

  N4 89.2 92.8 92.7 92.8 91.2 91.73 
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Table 5: Mean classification rate of selected features of 

two datasets. 

 

Distance 

Measures  

 Energy 

Measures 

OuTex: % of 

mean 

classification 

rate 

Granite: % of 

mean 

classification 

rate 

d2 

e4 96.4 97.3 

N1 97.0 96.7 

N2 96.6 96.5 

Average 96.7 96.8 

 

4.1 Comparison of the Proposed RLM-

FLBP with other Methods 
Table 5 shows the mean percentage classification rate for 

two datasets of texture images by using the proposed RLM-

FLBP. Other existing methods of gray level run length matrix 

are by Xiaoou Tang [16] and binary run length matrix by 

Ramana Reddy etal [17]. These methods are applied on 

VisTex, Marble texture databases and are represented in Table 

6. From Table 6, it is clearly evident that, the proposed RLM-

FLBP exhibits a high classification rate than the existing 

methods. The graphical analysis of the percentage mean 

classification rate for the proposed RLM-FLBP and other 

existing methods are shown in Fig.4. 

 

Table 6: Comparison of the proposed RLM-FLBP method 

with other existing methods 

Database/     Method VisTex  Marble 

Traditional Run Length by Xiaoou Tang 

[16] 
97.40 95.56 

Binary Run Length by Ramana Reddy 

etal[17] 
95.66 95.86 

Proposed Method: Fuzzy Run Length 97.85 96.94 

 

5. CONCLUSIONS 
The proposed RLM-FLBP overcomes the 

disadvantages of the previous Run length matrices for texture 

classification. In the proposed approach Run lengths are 

evaluated on the fuzzy LBP. LBP is an efficient tool in the 

proposed approach overcomes the traditional problems of 

LBP on noise, contrast and illumination changes. The 

proposed approach reduced the number of different Run 

length matrices by considering the lag value on the FLBP 

image. The proposed RLM-FLBP shows a better performance 

when compared to existing methods. 
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