
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.9, September 2012

8

Implementation of Dynamic Reconfigurable Audio Player

and Spectrum Analyzer

Vaibhawa Mishra

CSIR-CEERI
Digital Systems Group

Pilani, Rajasthan, India-333031

Kota Solomon Raju
CSIR-CEERI

Digital Systems Group
Pilani, Rajasthan, India-333031

Pramod Tanwar
CSIR-CEERI

Digital Systems Group
Pilani, Rajasthan, India-333031

ABSTRACT

This work presents the implementation of FPGA based run

time reconfigurable audio player system that is targeted to

ML507 board with frequency component display of the stored

audio data. The presented work combines both HW and SW

flows where the complex parts of the architecture are

designed to HW modules. These HW modules can be

reconfigured on the fly by using partial dynamic

reconfiguration. In our work, we are using filter block as

partial reconfiguration module, 16 point FFT to decimate

audio sample data in frequency in SW logic and displaying

the spectrum of the audio signal on the display monitor. Our

aim is to implement reconfigurable complex audio player as

an application of reconfiguration computing, proving how this

technique may be helpful to decrease resource utilization of

the device with negligible performance overhead.

Keywords

Partial Reconfiguration, Spectral Analysis, Audio Player,

Audio Signal Processing.

1. INTRODUCTION
Dynamic Reconfiguration technique for the FPGA devices

can be adapted to increase the device utilization for complex

application on small FPGA with lesser logic cells. Now days,

FPGA are coming with dedicated HW blocks that directs a

new method of realization for high performance embedded

system design. These platforms with FPGAs not only help

system architect to realize complex systems using processor

and configurable IP core but also provide facility of swapping

in and out of used and unused modules on demand.

In this paper, reconfigurable audio player and spectral display

system having dual processor based approach using internal

partial reconfiguration feature of Xilinx FPGA has been

presented. The various filter blocks of the system have been

mapped to a single region and used as Partial Reconfiguration

Module. The filtered audio data has been given to the audio

coder and also stored in the shared memory where it can be

used to calculate its frequency component by using Fast

Fourier Transform algorithm.

This paper is organized as follows. Some of the previous

works are mentioned Section 2. Section 3 presents brief

description of proposed architecture. Architecture analysis of

dual processor based self-reconfigurable platform has been

presented in Section 4. Implementation analysis of the idea

has been discussed in Section 5. The results and conclusions

have been presented in Section 6 and 7 respectively.

2. PREVIOUS WORK
In the Dynamic Partial Reconfiguration area, a lot of research

has been made especially reconfigurable processor [1], video

processing system [2], security system [3] and image

processing [4] and [5]. An audio signal based work has been

presented in [6]. The research related to spectral analyser has

been presented in [7]. A reconfigurable filter design with

partial reconfiguration approach has been presented in [8].

Now days, FPGAs are being used for prototyping a complete

computing system as in [9].

In this presented work, audio data filtering mechanism has

been implemented on the stored audio file with spectral

analysis of the audio data and that spectral information has

been displayed on DVI monitor. Of course, Partial

Reconfiguration method has been used to reconfigure the

filter IP core dynamically.

A dual processor based system has also been used in our

application where a shared block memory has been used for

audio data transfer between two processors.

3. PROPOSED ARCHITECTURE
A dual processor internal self-reconfiguration approach has

been proposed for our application. The design has been

composed of one static region and two reconfigurable regions.

The static part of the design has mainly one hard core

PowerPC processor and one soft core micro-blaze processor.

The Hard core PowerPC has been used to control

reconfiguration and audio processing. It is taking the audio

data from WAV audio file stored in external FLASH memory

and pumps data to both reconfigurable filter blocks dedicated

for left and right channels respectively. This processor is also

used as reconfiguration controller whenever user interrupts its

execution. The other processor, that is micro-blaze in soft

core, is sharing the sampled data through block memory and

runs the FFT algorithm to decompose the data into its

frequency component and transfers the spectral information to

character- graphics mapped controller IP core for DVI

monitor. The schematic of the proposed reconfigurable

architecture is shown in Fig. 1

The application running on 1st processor allows reading and

locating partial bit files for various filters module from an

external Flash memory and dynamically reconfiguring the

part of FPGA after the initial configuration. The HwIcap

module, used for reconfiguration, has been driven through s/w

API (ICAP API). The application running on 2nd processor

handles the 16 – point FFT computation and communicates

spectral information with display controller IP core to view on

monitor.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.9, September 2012

9

P
P

C
1

P2O

O
P

B

IC
A

P
F

L
A

S
H

U
A

R
T

SHARED

MEMORY

P
L

B

V
G

A

c
o

n
tro

lle
r

M
B

A
C

9
7

B
U

S
M

A
C

R
O

L
E

F
T

C
A

H
H

E
L

B
U

S
M

A
C

R
O

R
IG

H
T

C
H

A
N

N
E

L

B
R

A
M

C
O

D
E

R

L
M

B

ILMB

D
L

M
B

Fig. 1 Schematic of proposed reconfigurable architecture

4. ARCHITECTURE ANALYSIS
Proposed architecture can be described in four processing

units as shown in Fig. 2. The proposed architecture is a mixed

of hardware and software co-design. Two of the processing

units like audio reading processing and FFT computing unit

are mapped as software tasks. Rest of the processing units i.e.

filterization of audio data and spectral display unit are

implemented as hardware modules. The suggested

architecture is using two processors, so the execution of the

application can be easily portioned in between both of the

processors to minimize the overall execution overhead.

Audio Reading Unit Filtering Unit
FFT Calculation

Unit
Display Unit

Fig. 2 Processing flow for audio data

As discussed earlier, an audio reading unit of the system is

performed by the hard core PowerPC processor. The main

work of this processing unit is collecting the audio data from

the WAV file stored in external memory at the rate of 48kHz.

The coming data is in 32-bit format that is combination of 16

bit left and right channel data format. These data then passed

to reconfigurable filter IP core for further process. After

processing, the 1st processor collects the data again from the

both filter IP core. The data depends on which type of filtering

mechanism is available at that time of execution in both

reconfigurable filter IP core. The left channel filtered audio

data is then stored in a dual ported shared block memory from

where other processor can share it for FFT calculation unit

and display unit. When user needs to reconfigure one type of

filter core module with other type of filter module, he has to

send control through HyperTerminal and menu will be

displayed asking to select which type of filter he likes to use.

Menu will ask to perform reconfiguration for both type of

channel or only one. Depending on the user inputs, processor

reads appropriate partial bit files from the FLASH memory

and replaces the previous module by new one. It is also

important to mention here that each filter region having low –

pass, high – pass, band – stop and all – pass functionality as a

Partial Reconfigurable Module. At the time when

reconfiguration is in progress, the playing back of audio data

is stopped. Once the reconfiguration is completed, the process

starts again.

In this proposed architecture, the filter unit for audio is

implemented as two reconfigurable cores dedicated for both

left and right channels. The audio filters used for our

implementation are capable to filter 4 kHz tone in the audio

input stereo data. The specifications of the filters are shown in

Table 1.

Table 1 Filter specification used in design

Filter

Specification

Filter Type

Band Stop High

Pass

Low

Pass

Sampling

Frequency (kHz)

48 48 48

Pass Band

Frequency (Hz)

1st Pass

Band

1600 6200 2000

2nd Pass

Band

4200

Stop Band

Frequency (Hz)

1st Stop

Band

3800 3800 4200

2nd Stop

Band

6400

Order 46 44 43

Attenuation (dB) 60 60 60

Pass band ripple

factor

1 1 1

The all pass filter model has 13 clock cycles delayed output.

The filters are modeled with System Generator having single

channel and the model is used twice in the design i.e. for left

channel and right channel. The System Generator token is

used to generate synthesized file. The block diagram for our

filter model is as shown in Fig. 3.

Fig. 3 Block diagram of filter model used in System

Generator

The audio data from the filter block is now ready to play

and to do spectral analysis. The frequency analysis unit uses

16 sets of filtered data for its computation as we are using 16

point FFT [10]. We are giving only real values to FFT

function being executed by soft core micro-blaze keeping

imaginary part of the input value as zero. We are calculating

16 inputs to the output of the FFT in different ways using 10

multiplications and 79 additions. Real and imaginary parts of

the output from X(0) to X(8) depend on simple addition and

subtraction of values from inputs. For the real and imaginary

values of the output from X(9) to X(15) we are using

formulae as shown in expression (1) and (2) where n varies

from 9 to 15.

]}16mod)16[(Re{)}(Re{ nXnX

(1)

]}16mod)16[(Im{)}(Im{ nXnX

(2)

The concept that is working for this software FFT

implementation is to compute X [2k] and X [4k+1],

individually. To compute X [2k] we are taking 8 point real

FFT of input x(n) + x(n+8), where n is from 0 to 7. To

calculate F[4k+1] we are taking 4 point complex FFT as

shown in expression (3) where n ranges from 0 to 3. We are

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.9, September 2012

10

also calculating twiddle factor multiplies for the 4 point

complex FFT.

))}4()12(()8()({*)16/***2exp(nxnxjnxnxnjpi

 (3)

FFT function used in this design is not only computing FFT

values of the inputs but it also produces the magnitude of the

output values with proper windowing of the input sampled

data. Blockman coefficient has been used for windowing of

the input sample to FFT. The output of the FFT is stored and

displayed graphically on an 800x600 DVI resolution display

using Fairchild FMS 3818 D/A [11] to take data from FPGA

to the DVI output.

To calculate frequency resolution of N point FFT, formulae

can be given as (4), where fs is sampling frequency and N is

number of FFT points. For the FFT algorithm that we are

using in our design, the resolution frequency will be 3000 Hz

(48000/16). The output of the FFT is continuously scaled and

stored to a dual ported memory by the 2nd processor. One port

of the memory is attached with processor through bus and

other port is used by display IP core. Each vertical bar

displayed on the monitor represents FFT bins of 3000 Hz. The

left most display is from 0 to 3000 Hz and next one is from

3000 Hz to 6000 Hz. There are 16 bins being displayed so the

right most bar represents 45000 Hz to 48000 Hz.

Nff srs /
(4)

The software code for the 2nd processor continuously reads the

audio data from the memory, calculating its Fourier

transforms, converting it to bar character and then writes to

memory shared with display IP core.

5. IMPLEMENTATION ALANYSIS
The idea has been implemented and tested on ML507 board

having XC5VFX70T-1FF1136 device of Xilinx Virtex

family. Audio output has been routed to stereo speaker. The

spectral chart of the audio has been displayed on monitor

having 800x600 resolution. The complete set-up has been

shown in Fig. 4.

Since proposed approach is based on HW/SW co-design

having dual processor, the base system has been designed

with Xilinx Platform Studio tools. This tool is also capable to

merge the software application for the both processors. Partial

Reconfiguration flow has been adapted using EAPR [12].

Fig. 4 Experimental Setup of the System

The filter’s net-lists has been designed and generated using

system generator tool. The rest of the system net-lists has

been generated using Xilinx EDK. Once the net-list of the

base system and filters are ready, they are integrated in

PlanAhead tools to generate initial bit file and partial bit files.

As in Fig. 1, two processors have been used and both of them

have been clocked on 300 MHz. Rest of the IP cores are

running at PLB Bus Frequency that is 100 MHz. Only Display

controller IP core is running at 40 MHz.

It is very important to describe here that perfect

synchronization mechanism is required between both

processors and the monitor display. Since the 2nd processor’s

speed is much higher than display core, we can keep

processor busy in computing Fourier transforms. There are

two reconfigurable filter IP cores for two channels. One can

internally reconfigure them by loading partial bit files using

ICAP port. User can interact with system using

HyperTerminal. To establish communication through

HyperTerminal, RS232 UART IP has been used. To read

audio data from the FLASH memory, SYSACE controller has

been used. Partial bit files are also stored in Compact Flash

card.

6. RESULTS
Successful implementation of the proposed architecture

validates that using partial reconfiguration; a complex real

time application can be easily tested. It has been also proved

the benefit of partial reconfiguration in minimum resource

utilization. It has been successfully showed that the

application may be partitioned in between two processors with

proper data synchronization. Without using PR flow, eight

parallel filter blocks are required in the circuit. The

implemented system has only two of the many filter blocks in

use at any time of execution. Resource utilization comparison

between with PR flow and without PR flow is as shown in

Table 2. As in Table II, it can be easily seen that a marginal

reduction in resource utilization has been achieved, but the

architecture demands more resources in terms of DSP48E

block. So, our architecture cannot be implemented using

“without PR” flow.

Table 2 Comparison of Resource Utilization

Type of

resources

Resource Utilization (no. of Blocks)

 With PR Without PR

Slice LUTs 2582 18320

Full Used LUT

FF Pair

2340 9360

Slice Registers 2516 10338

DSP48Es 48 192 (cross the max. Limit)

Reconfiguration time taken by ICAP running at 100 MHz has

been also measured. This reconfiguration time has been

compared with that of external partial reconfiguration method

where the downloading of partial bit files has been achieved

through JTAG running at 6 MHz. The comparison of the

above has been shown as Table 3. As shown in Table 3, one

can easily draw an idea that reconfiguration time parameters

depends on the size of the partial bit files. Sizes of various bit

files have been also given as in Table 3. Since only “With

PR” flow has been implemented for our architecture so related

information like size of bit files and reconfiguration time has

not been given in the Table 3.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.9, September 2012

11

Table 3 Comparison of Sizes of the Bit Files and

Configuration Time

D
es

ig
n

m
et

h
o

d
 Bit File Size of

Bit file

Reconfig. Time

Using

JTAG ICAP

Without

PR

Static bit file - - -

With

PR

Static bit file 3.22 MB 6 scc -

P
.

B
.

(L
ef

t

ch
an

n
el

)

Low Pass Filter 314 KB 1 sec 370 mS

High Pass Filter 314 KB 1 sec 370 mS

All Pass Filter 314 KB 1 sec 375 mS

Band Stop Filter 314 KB 1 sec 375 mS

P
.

B
.

(R
ig

h
t

ch
an

n
el

)

Low Pass Filter 316 KB 1 sec 390 mS

High Pass Filter 316 KB 1 sec 390 mS

All Pass Filter 316 KB 1 sec 392 mS

Band Stop Filter 316 KB 1 sec 395 mS

7. CONCLUSION
In this paper, an internal partial dynamic reconfiguration

implementation of the real time reconfigurable audio

spectrum display has been presented. This implementation

involves a mixed HW/SW co design method which uses two

instead of all complex hardware cores on FPGA by taking

reconfiguration advantages. It has been shown that this

architecture proves better in terms of area and performance if

compared with fully software implementation or hardware

implementation.

Spectral analysis has been performed on left channel audio

data only. But this idea may lead to both channel analysis.

Fourier transform has been computed in software and it is

feasible here because processor is running much faster than

display IP core and VGA monitor clock. 16- point FFT

computation has been used but 32 or 64 point FFT may be

used for better performance for spectral analysis. The

hardware implementation of FFT can be also feasible with

proper attention to audio data synchronization. The current

version of the proposed system is having standalone

application, but our next version of the system may integrate a

complete real time GUI libraries as well as more complex

application like run time video processing, MPEG decoding.

Current implementation targets Virtex-5 FX FPGA from

Xilinx. However, this may be realized on other FPGA based

higher reconfigurable platforms.

8. ACKNOWLEDGMENTS
The authors would like to thank Dr. Chandra Shakher,

Director CSIR-CEERI for allowing utilizing the resources of

the institute, as well as Dr. P. Bhanu Prasad, Group Leader,

Digital Systems Group, for valuable contributions and

discussions.

9. REFERENCES
[1] L. Bauer, M. Shafique and J. Henkel,”Efficient resource

utilization for an extensible processor through dynamic

instruction set adaptation,” IEEE Trans. Very Large

Scale Integr. Syst., Vol. 16, pp. 1295 – 1308, October

2008. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1515843.1515848

[2] Bhandari, S.U.; Subbaraman, S.; Pujari, S.S.; Mahajan,

R.; , "Real Time Video Processing on FPGA Using on

the Fly Partial Reconfiguration," 2009 International

Conference on Signal Processing Systems , pp.244-247,

15-17 May 2009

[3] Z. E. A. A. Ismaili and A. Mousa, “Self-partial and

dynamic reconfiguration implementation for aes using

fpga,” CoRR, vol. abs/0909.2369, 2009.

[4] Tumeo, A.; Monchiero, M.; Palermo, G.; Ferrandi, F.;

Sciuto, D.; , “An Internal Partial Dynamic

Reconfiguration Implementation of the JPEG Encoder

for Low-Cost FPGAsb,” VLSI, 2007. ISVLSI '07. IEEE

Computer Society Annual Symposium on , pp.449-450,

9-11 March 2007.

[5] Raikovich, T.; Feher, B.; , “Application of partial

reconfiguration of FPGAs in image processing,” Ph.D.

Research in Microelectronics and Electronics (PRIME),

2010 Conference on , pp.1-4, 18-21 July 2010.

[6] Feilen, M.; Ihmig, M.; Zahlheimer, A.; Stechele, W.; ,

“Real-time signal processing on low-cost-FPGAs using

dynamic partial reconfiguration,” Integrated Circuits

(ISIC), 2011 13th International Symposium on , pp.110-

113, 12-14 Dec. 2011

[7] Youmu Zhang; Jie Yang; , “Design of spectral analyzer

based on FPGA,” Mechanic Automation and Control

Engineering (MACE), 2011 Second International

Conference on , pp.4008-4011, 15-17 July 2011.

[8] Chang-Seok Choi; Hanho Lee; , “An Reconfigurable FIR

Filter Design on a Partial Reconfiguration

Platform,” Communications and Electronics, 2006. ICCE

'06. First International Conference on , pp.352-355, 10-

11 Oct. 2006

[9] Vaibhawa Mishra, Kota Solomon Raju, Pramod Tanwar,

“Implantation of Dynamically Reconfigurable Systems

on Chip with OS Support”, International Journal of

Computer Applications (IJCA), Vol. 49, No 6, July,

2012, pp. 33-35.

[10] The MIT webpage. [Online]. Available:

http://www.mit.edu/~emin/source_code/fft/index.html

[11] Xilinx Inc., “UG347:ML505/ML506/ML507 Evaluation

Platform,” May, 2011.

[12] Xilinx Inc., “Early Access Partial Reconfiguration User

Guide,” March, 2005.

