
International Journal of Computer Applications (0975 – 8887)
Volume 54– No.8, September 2012

Three Reversible Data Encoding Algorithms

based on DNA and Amino Acids’ Structure

Mona Sabry
Computer Science dept., Faculty

of Computer Science and
Information Systems, Ain Shams

University, Cairo, Egypt.

Mohamed Hashem
Information Systems dept.,

Faculty of Computer Science and
Information Systems, Ain Shams

University,Cairo, Egypt.

Taymoor Nazmy
Computer Science dept., Faculty

of Computer Science and
Information Systems, Ain Shams

University, Cairo, Egypt.

ABSTRACT

The field of using biology in cryptography is a new and very

promising direction in cryptographic research. Although in its

primitive stage, DNA cryptography is shown to be very effective.

Currently, several DNA computing algorithms are proposed for

quite some cryptography, cryptanalysis and steganography

problems, and they are very powerful in these areas.

In this paper, we introduce three methods of encoding inspired

from the DNA (or RNA) structure and its relation to the amino

acids in the standard genetic code table. The paper explains

three techniques to convert data from binary form to DNA (or

RNA) form then to amino acids’ form and the reverse. We

proved they are applicable and correctly reversible.

The algorithms can serve in DNA computers and biological

experiments by representing data in the form of amino acids.

They also can be viewed as a simple algorithm to convert data

from a form to another completely different form with the ability

to convert it back to the initial form. Although they don’t include

the use of secret key but they can also be used as an auxiliary

factor in data integrity and digital signature applications.

Keywords

DNA, RNA, Amino acids, codons, encryption, digital signature,

algorithm, encoding, transformation, cryptography,

authentication, confidentiality.

1. INTRODUCTION

DNA cryptography is a new born cryptographic field emerged

with the research of DNA computing, in which DNA is used as

information carrier and the modern biological technology is used

as implementation tool. The vast parallelism [1] and

extraordinary information density inherent in DNA molecules are

explored for cryptographic purposes such as encryption,

authentication, signature, and so on [2]. The new born DNA

cryptography [3], [4] is far from mature both in theory and

realization. However, researchers in DNA cryptography are still

looking at much more theory than practicality. The constraints of

its high tech lab requirements and computational limitations,

combined with the labor intensive extrapolation means, all

prevent DNA computing from being of efficient use in today‘s

security world.

There is not a general theory about applying DNA molecules in

cryptography [5], [6]. Some key technologies in DNA research,

such as Polymerase Chain Reaction (PCR), DNA synthesis, and

DNA digital coding, have only been developed and well

accepted in recent years [7]. In 1999, Clelland et al. [7] achieved

an approach to steganography by hiding secret messages encoded

as DNA strands among a multitude of random DNA. In 2000,

Prof. Gehani [6] presented one-time-pads mechanism based on

DNA to design two encryption methods of one-time-pads of

DNA sequence. One method is to translate the fixed length DNA

plain code sequence cell to DNA cryptograph sequence

according to the defined mapping graph (substitution). The other

is called Exclusive-OR method, which uses biological molecular

techniques to carry through Exclusive-OR operation of DNA

plain code and cipher key sequence.

Another approach is lead by Ning Kang [8] in which he did not

use real DNA computing, but just used the principle ideas in

central dogma of molecular biology to develop his cryptography

method. The method only simulates the transcription, splicing,

and translation process of the central dogma; thus, it is a pseudo

DNA cryptography method. There is another investigation

conducted by [9] which is based on a conventional symmetric

encryption algorithm called ―Yet Another Encryption

Algorithmǁ (YAEA) developed by Saeb and Baith. In this study,

he introduces the concept of using DNA computing in the field

of cryptography in order to enhance the security of cryptographic

algorithms. He combined the mathematical model of the

algorithm with the DNA strands as the secret key to perform a

more secured cryptographic algorithm. DNA cryptography does

not absolutely repulse traditional cryptography and it is possible

to construct hybrid cryptography of them. In 2009, O. Tornea

and M.E. Borda [10] and Xing Wang, Qiang Zhang [11]

proposed this idea by combining DNA computing with RSA.

In our work, we applied the conversion of character or binary

form of data to the DNA form and then to amino acid form in

three different methods. The importance of such transformation

lies mainly in representing data in a biological form that can

make data be able to go through biological experiments and

processes, especially related to Amino Acids and DNA. It is also

a way of viewing data moving through biological processes and

representing it in a binary form which can be used in many

computer applications. In the field of cryptography, the encoding

techniques cannot provide security by their own as they don’t

include the use of a secret key. But they can be embedded into

another encryption algorithm to enhance confusion and therefore

24

International Journal of Computer Applications (0975 – 8887)
Volume 54– No.8, September 2012

25

enhance security. This concept is suitable for applying data

integrity, digital signature and confidentiality.

The next sections are organized as follows: section 2 explains

biological background information that helps us understand the

biological concepts involved in our algorithms. Section 3

contains the design of table then the details of the encoding

algorithms, their inverse and complexity calculation. Section 4

involves discussions and analysis about the algorithms and their

applications.

2. BIOLOGICAL BACKGROUND

DNA is a nucleic acid that contains the genetic instructions used

in the development and functioning of all known living

organisms and some viruses. The DNA double helix is stabilized

by hydrogen bonds between the bases attached to the two

strands. The four bases found in DNA are adenine (abbreviated

A), cytosine (C), guanine (G) and thymine (T).

A gene is a sequence of DNA that contains genetic information.

The genetic code consists of three-letter 'words' called codons

formed from a sequence of three nucleotides (e.g. ACT, CAG,

TTT). Since there are 4 bases in 3-letter combinations, there are

64 possible codons (43 combinations). These encode the twenty

standard amino acids, giving most amino acids more than one

possible codon. There are also three 'stop' or 'nonsense' codons

signifying the end of the coding region; these are the TAA, TGA

and TAG codons.

3. THE ENCODING TO AMINO ACIDS

Any form of data can be represented in a binary form (message,

image or signal). This form can be transferred to DNA or RNA

form according to Table 1. Note that the only difference between

DNA and RNA is that letter ‘T’ in DNA is the same as letter ‘U’

in RNA. The RNA form is transferred to the Amino acids form

according to Table 2 which is a standard universal table of

Amino acids and their codons representation in the form of RNA.

Note that each amino acid has a name, abbreviation (3-letter

form), and a single character symbol (1-letter form). This

character symbol is what we will use in our algorithm.

Table 1. DNA and RNA Representation of bits.

Bit 1 Bit 2 RNA DNA

0 0 A A

0 1 C C

1 0 G G

1 1 U T

Note that the Table 2 and Table 3 are referenced from wikipedia:

http://en.wikipedia.org/wiki/Genetic_code

Table 2. The RNA codon table

nonpolar polar Basic acidic (stop codon)

Standard genetic code

1st 2nd base 3rd

base U C A G base

U

UUU
(Phe/F)

Phenylalanine

UCU

(Ser/S)

Serine

UAU
(Tyr/Y)

Tyrosine

UGU
(Cys/C)

Cysteine

U

UUC UCC UAC UGC C

UUA

(Leu/L)
Leucine

UCA UAA
Stop
(Ochre)

UGA
Stop
(Opal)

A

UUG UCG UAG
Stop

(Amber)
UGG

(Trp/W)

Tryptophan

G

C

CUU CCU

(Pro/P)

Proline

CAU
(His/H)

Histidine

CGU

(Arg/R)

Arginine

U

CUC CCC CAC CGC C

CUA CCA CAA
(Gln/Q)

Glutamine

CGA A

CUG CCG CAG CGG G

A

AUU

(Ile/I)

Isoleucine

ACU

(Thr/T)
Threonine

AAU
(Asn/N)

Asparagine

AGU
(Ser/S)

Serine

U

AUC ACC AAC AGC C

AUA ACA AAA
(Lys/K)
Lysine

AGA
(Arg/R)
Arginine

A

AUG

(Met/M)

Methionine

ACG AAG AGG G

G

GUU

(Val/V)

Valine

GCU

(Ala/A)

Alanine

GAU (Asp/D)

Aspartic
acid

GGU

(Gly/G)

Glycine

U

GUC GCC GAC GGC C

GUA GCA GAA (Glu/E)

Glutamic

acid

GGA A

GUG GCG GAG GGG G

Table 3. The inverse RNA codon table

Amino Acid Codons Amino Acid Codons

Ala/A
GCU, GCC,

GCA, GCG
Leu/L

UUA, UUG,

CUU, CUC,

CUA, CUG

Arg/R

CGU, CGC,

CGA, CGG,

AGA, AGG
Lys/K AAA, AAG

Asn/N AAU, AAC Met/M AUG

Asp/D GAU, GAC Phe/F UUU, UUC

Cys/C UGU, UGC Pro/P
CCU, CCC,

CCA, CCG

Gln/Q CAA, CAG Ser/S

UCU, UCC,

UCA, UCG,

AGU, AGC

Glu/E GAA, GAG Thr/T
ACU, ACC,

ACA, ACG

Gly/G
GGU, GGC,

GGA, GGG
Trp/W UGG

His/H CAU, CAC Tyr/Y UAU, UAC

Ile/I
AUU, AUC,

AUA
Val/V

GUU, GUC,

GUA, GUG

START AUG STOP
UAA, UGA,

UAG

International Journal of Computer Applications (0975 – 8887)
Volume 54– No.8, September 2012

26

3.1. Constructing the English alphabet table:

 In the standard genetic code table (Table 2 or its inverse (Table

3)), we have only 20 amino acids in addition to 1 start and 1 stop

codons. Each amino acid is abbreviated with one unique

character (English letter). In order to construct a complete set of

alphabetical English letters, we need 26 letters with their

transformation-encoding- to DNA.

The letters we need to fill are (B, J, O, U, X, Z). So we will make

these characters share some amino acids their codons. The three

stop codons have 2 of one family type (UAA,UAG) to be

assigned to letter B and one of other type (UGA) to be assigned

to letter J. We have 3 amino acids (L, R, S) having 6 codons. By

noticing the sequence of RNA of each, we can figure out that

each has 4 codons of the same type and 2 of another type.

Those 2 of the other type are shifted to the letters (O, U, X)

respectively. Letter (Z) will take one codon from (Y), so that Y:

UAU, Z: UAC. Now the new distribution of codons is illustrated

in Table 4.

The table illustrates letters from A-Z with the associated amino

acids as explained before. It explains the modification process by

colors; the orange codons are the newly modified ones to be

distributed among acids under the non-yellow letters.

Counting the number of codons of each letter, we will find the

number varies between 1 and 4 codons per letter. We will call

this number 'Ambiguity' of the character. The table shows also

the ambiguity for each letter after modifications. Table 4 also

shows each family from which each group of codons derived

(last row).

Table 4. The final distribution of Amino upon English letters.

Letter A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Ambiguity 4 2 2 2 2 2 4 2 3 1 2 4 1 2 2 4 2 4 4 4 2 4 1 2 1 1

 A GCU UAA UGU GAU GAA UUU GGU CAU AUU UGA AAA CUU AUG AAU UUA CCU CAA CGU UCU ACU AGA GUU UGG AGU UAU UAC

 C GCC UAG UGC GAC GAG UUC GGC CAC AUC

AAG CUC

AAC UUG CCC CAG CGC UCC ACC AGG GUC

AGC

 G GCA

GGA

AUA

CUA

CCA

CGA UCA ACA

GUA

 U GCG

GGG

CUG

CCG

CGG UCG ACG

GUG

Family
GC UA UG GA GA UU GG CA AU UG AA CU AU AA UU CC CA CG UC AC AG GU UG AG UA UA

3.2.Convert from DNA or RNA to Amino

Acids

We have three different ways to use this table to convert from

RNA form to Amino acids form:

- Discrete Encoding.

- Overlapping Encoding.

- Embedded DNA.

1- Discrete Encoding:

Each letter in Table 4 is derived from a family. The family can

have more than one letter as illustrated in Table 5. Having the

message to be encoded in the binary form, we can use table 1 to

convert it to RNA form. We can use table 5 to convert the RNA

form to amino acids form by taking each two RNA characters as

input to the table then choosing randomly one of the

corresponding letters which represent the amino acids.

The inverse encoding is the same using table 5 but in reverse

order.

Table 5. The RNA families and their letters (inverse of table

4).

Hexa-decimal

value

Amino Acid

Family
Letter 1 Letter 2 Letter 3

0 AA K N

1 AC T

2 AG U X

3 AU I M

4 CA H Q

5 CC P

6 CG R

7 CU L

8 GA D E

9 GC A

a GG G

b GU V

c UA B Y Z

d UC S

e UG C J W

f UU F O

International Journal of Computer Applications (0975 – 8887)
Volume 54– No.8, September 2012

27

Algorithm complexity:

Complexity of discrete encoding has two main parts:

- Search table 5 which in worst case and on average will

cost constant N operations.

- Processing the input of size (N) which is the RNA

message:

This loop is LOG (N). LOG is to the base 2 as we take

two RNA to substitute in the table.

So total algorithm complexity is: O(log2 N).

Fig 1: Example of Discrete Encoding.

In the previous example, each two binary digits are used as input

to table 1 to convert them to one RNA character. Then each two

RNA characters representing one family are used in table 5 to

select any of the amino acids in this family.

2- Overlapping Encoding:

In this method, we will use Table 4 with the Ambiguity cells, and

ignore the family cells. Having the input in the form of RNA,

Each 3 RNA are used as input to substitute in table 4. The output

is one amino acid character (column number) and one ambiguity

number (row number).the ambiguity is a number that varies from

0 to 3. The ambiguity number is to be converted to RNA form

through Table 1 and then added to the end of the input to take its

turn in processing.

Steps are summarized through the following algorithm:

1- Input is the RNA form of the

message (Input).

2- Output is the Amino acids form
(Output) which is initially an

empty string.

3- Count number of characters in

Input (Count).
4- If Count <3: go to step 10
5- Else: Take 3 RNA characters from

Input and find their position in

table 4. The position is defined

by an amino acid letter (A) and

ambiguity number (N) ranging from

0-3.
6- Add A to Output.
7- Using table 1, the ambiguity (N)

can be encoded in the form of RNA

(R).
8- Append R to the end of Input.
9- Go to step 3.
10- Make the final Remainder = Input.

input F C I S

HEXA 46 43 49 53

BINARY 0X01000110 0X01000011 0X01001001 0X01010011

Input RNA CACG CAAU CAGC CCAU

Triples
3 RNA

codons
CAC GCA AUC AGC CCA U

A AMINO H A I X P

R AMBIG C G C C G

collect

ambig
UCG CCG

A Amino S P

R
REMAIN

DER
U U

Output FINAL H A I X P S P

Remainder
REMAIN

DER
UU

Fig 2: Detailed Example of overlapping encoding (paper and

pencil).

In the previous example, each two binary digits are used in table

1 to get the corresponding RNA character. Each triple of RNA

are used in Table 4 to get the corresponding row and column.

The column represents the amino acid and row represents the

ambiguity. Collecting all the message ambiguity and reprocess

them again as we explained, until the number of ambiguity

characters is less than 3. Here we call the left ambiguity “the

remainder”.

Fig 3: Example of overlapping encoding (program

implementation).

International Journal of Computer Applications (0975 – 8887)
Volume 54– No.8, September 2012

28

Algorithm complexity:

The algorithm contains four main parts:

- Load of the amino acids genetic table:

It is (64x2) assignment operations to record the amino

acid character and ambiguity of 64 combinations of

the possible RNA triples.

- Search the amino acid genetic table (substitution): in

the worst case and average case, we will have constant

number of operations to reach the result.

- Convert from integer value of ambiguity to RNA: it is

also considered a search in a static table. The worst and

average case will cost constant number of operations.

- Encoding of DNA message to Amino acids:

Suppose (N) is the size of input RNA string. The loop

(log (N+log N)) represents processing of N inputs and

successive additional results of ambiguity. LOG is to the

base 3 as we process triples of RNA per iteration. Inside

the loop we have: (3) constant operations + search in

genetic table + conversion from integer to RNA. In the

worst case we have (71) operations and average (37)

operations per iteration.

So we have total algorithm complexity O (log3 (N + log3

N)).

The inverse of overlapping encoding is implemented as follows:

1- Inputs: the remainder (R) and the

amino acids form (Input)

2- (Output) is the RNA form
3- Define len_R = length of R.
4- Define len_Inp = length of Input
5- While (len_Inp>0), do the following
1. If (len_R< len_Inp), Then
i- (Amino) =Input.substring(len_Inp-

len_R)

ii- Input =Input- Amino
iii- (Ambig) =R

2. Else
i- (Ambig) =R.substring(len_R-len_Inp)
ii- R= R-Ambig
iii- Amino=Input

iv- Input =””

3. Define (E): Substitute in table 4

using each character in (Amino) and
its corresponding in (Ambig) to get

their decode to RNA.

4. Let R=E and go to step5.
6- Output =R.

In the previous algorithm fig.2, we will start with the remainder

and process the amino acid sequence from its end till the start.of

the remainder is placed in reverse order in adverse to end of the

amino acid sequence. One character from the remainder (row

number) in addition to one amino acid (column number) are used

to substitute in table 4 to get the corresponding codons. These

codons are used as remainder with the rest of the amino acid

sequence till they are finished. In the last step the remaining

codons are themselves the RNA form of data.

Handling the Remainder:

Here we will introduce a way of embedding the remainder in the

output message so as to simplify and unify the result. The

remainder is defined to be a small portion of data that is used as a

key to start decoding. Size of remainder is one or two DNA

characters.

 To unify this size we can add DNA character ‘A’ if the size

equals to one. The couple of characters can be decoded using

table 5 to get an amino acid character without a remainder. What

is left is to give the information of the original size of the

remainder to be used in decoding to extract the exact remainder

and continue decoding. This is done by additional two DNA:

“AC” represents the ‘one’ size and “AG” to represent the ‘two’

size. These two DNA can be also decoded to Amino Acid using

table 5. So, the remainder is identified by two Amino acid

characters at the end of the message.

In the inverse algorithm, we can firstly extract the last two

Amino Acid characters to define the remainder. They should be

decoded using table 5. The last amino acid represents the size.

The other represents the remainder itself. If size = one, skip the

last ‘A’ and use one character only of the remainder. Then we

can continue decoding as previously explained given the

remainder and the rest of the message to be decoded.

From the previous example, the final output is “HAIXPSP” and

remainder is “UU”. We will treat the remainder from Table 5 as

‘F’ for ‘UU’ and ‘X’ for ‘AG’ representing that the remainder is

two characters. So the final output is “HAIXPSPFX”.

3- Embedded DNA Encoding:

In this method, we will use Table 4 with the Ambiguity cells, and

ignore the family cells like the overlapping Encoding but the

difference is in the way of placing the Amino acid and

ambiguity. Instead of collecting the ambiguity at the end of the

message and re-encoding them as the original DNA, we embed

each ambiguity in the form of DNA after each Amino acid. Then

the whole result can be transformed to binary form to have the

result in the same form.

The algorithm is as follows:

1- Input is the DNA or RNA form of the
message (Input).

2- Output is the Amino acids form with
embedded DNA representing ambiguity

(Output).

3- If the Input count <3 and !=0
a. Then add ‘A’ character to Input
b. Go to step 3
4- If Input count ==0 then exit.
5- Else: Take 3 RNA characters from Input

and find their position in table 4.

The position is defined by (row) an

amino acid letter (A) and (column)

ambiguity number (N) ranging from 0-3.
6- Add A + N to Output.
7- If input count > 0, go to step 3.

International Journal of Computer Applications (0975 – 8887)
Volume 54– No.8, September 2012

29

As we see the output is in two forms Amino Acid and DNA. We

can unify the form of output by putting all parts in binary form.

The DNA part is encoded to binary using Table 1. the amino acid

part is now acting in the form of characters so they are

transformed to binary form of each character (ASCII code).

Each 6 bits of input is converted to 3 DNA, they then are

converted to one Amino Acid + one DNA. Each couple of output

(Amino Acid + DNA) takes (8 bits +2 bits) =10 bits. This means

that the ratio between input and output is 3/5.

The algorithm complexity is O(log N). The log is to base 3 as

we process each time 3 RNA characters in constant steps of the

loop.

input F C I S

HEXA 46 43 49 53

BINARY 0X01000110 0X01000011 0X01001001 0X01010011

Input RNA CACG CAAU CAGC CCAU

Triples
3 RNA

codons
CAC GCA AUC AGC CCA UAA

A
AMINO

+DNA
H 'C' A 'G' I'C' X 'C' P 'G' B 'A'

Output FINAL
0X01001000

01

0X01000001

10

0X01001001

 01

0X01011000

 01

0X01010000

10

0X01000010

 00

DNA CAGAC CAACG CAGCC CCGAC CCAAG CAAGA

Fig 4: Example of the Embedded DNA encoding algorithm

In the previous example, each two binary digits are substituted in

table 1 to get the corresponding RNA. Each triple of RNA is

used in table 4 to get its corresponding row (ambiguity) and

column (the amino acid). If the last RNA’s don’t complete 3

characters, we add additional ‘A’ characters till they reach 3

RNA’s. Then each amino acid character is converted to binary

(ASCII code). And each ambiguity in the form of RNA is

converted to binary but through table 1. The result is 10 binary

digits each. The whole result is converted to DNA or RNA form

using table 1 so that it is represented in the form of DNA or

RNA.

The inverse algorithm is to convert the RNA form of output to

binary form. Then we take each 10 bits for processing. The first

8 bits are converted to hexadecimal then to a character. The last 2

bits are used to define ambiguity. Using each character with each

ambiguity, we can substitute in table 4 and get the suitable

codons (RNA). The codons are then converted to binary to get

the original form of data.

4. ANALYSIS AND DISCUSSIONS

We have introduced three methods of data encoding to the form

of Amino acids, or we can say our semi-artificially built

distribution of amino acids. “Artificial” because of characters we

added and switching’s of codons we introduced to the genetic

code table and “Semi” because we kept most of the standards in

the genetic code table.

The introduced algorithms proved to meet the main

characteristics of an algorithm. Definiteness: the algorithm is

clearly specified and implemented through a computer program.

Effectiveness: steps are sufficiently simple, basic and easily

reversible. Input is defined to be any sequence of binary data.

Output is defined to be a sequence of English characters

representing the Amino acids in additional to remainder in the

form of RNA or DNA. The outputs can be represented in a

binary form. Finiteness: the algorithm terminates after a finite

number of steps which is proved in the algorithm complexity.

We have proved that the encoding algorithms are reversible and

applicable. The three algorithms can be implemented with one or

many rounds. The idea of representing the amino acid form of

data in English characters makes this form to be used as input to

additional cycles. This is implemented by calculation of the

hexadecimal of each letter. Then we can convert it to the binary

then DNA forms which act as input to a new round.

The importance of such transformation lies mainly in

representing data in a biological form that can make data be able

to go through biological experiments and processes, especially

related to Amino Acids and DNA. It is also a way of viewing

data moving through biological processes and representing it in a

binary form which can be used in many computer applications.

In the field of cryptography, the encoding techniques cannot

provide security by their own as they don’t include the use of a

secret key [12]. But they can be embedded into another

encryption algorithm to enhance confusion specially that the

output can be again represented in a binary form which is

completely different from the binary input. This was successfully

implemented in a previous paper as a hybrid system with a

cryptographic algorithm [13].

Although they don’t depend on secret keys [12], they cannot be

used as hash functions as they are reversible and size of output is

directly proportional related to the size of input and not a fixed

size.

It is obvious that the Discrete Encoding is much simpler to

understand, implement and reverse than Overlapping encoding.

But on the contrary to Overlapping and Embedded DNA, output

of discrete encoding can vary from one implementation to other

but gives the same decoding value. This depends mainly on the

random function used in selection. This is a critical advantage

against known plaintext attacks. But the difficulty of overlapping

and embedded DNA encodings is also an advantage in the field

of cryptography making the attacker’s mission more difficult.

Discrete encoding can be viewed as one-to-one conversion; each

time we have a certain letter in our message, it is encoded to the

same output. This means that each letter is independent and not

affected by the surrounding characters. But the random selection

to codes of some characters enhances the concept of confusion.

 On the contrary, in Overlapping and embedded DNA encoding,

the sequence of characters in the input message clearly affects

the output. This is because it is based on combining triples of

DNA while one character is represented by 4 DNA which allows

to interfering of code between successive characters.

International Journal of Computer Applications (0975 – 8887)
Volume 54– No.8, September 2012

30

This concept is suitable for applying data integrity, digital

signature and confidentiality. As the change of a portion of the

message will lead to completely another output. The remainder is

a very critical member in the process of reverse overlapping

encoding that it is considered the key to decode the message. The

loss of the remainder for instance will make us completely

unable to decode the message. The last portions of the output are

related to the entire input message representing the set of

ambiguity.

In Embedded DNA encoding, the output size is extended by 5/3

of the input size. This concept is increased with the use of

multiple rounds which is suitable for data expansion like key

expansion processes.

We also proved that the complexity of discrete encoding is

O(log2 N) . Complexity of overlapping encoding is O (log3 (N +

log 3N)). And complexity of Embedded DNA encoding is

O(Log3 N).

5. CONCLUSION AND FUTURE WORK
We have introduced three methods of data encoding to the form

of Amino acids. The encoding algorithms and their decoding

proved to meet the main characteristics of an applicable

reversible algorithm. They can be implemented with one or many

rounds. This concept is suitable for applying data integrity,

digital signature and confidentiality. As they don’t include a

secret key they cannot provide security by their own. But they

can be combined with other traditional or biological

cryptographic algorithm to create new security systems.

6. REFERENCES

[1] L. Kari, “DNA Computing: Arrival of Biological

Mathematics,” The Mathematical Tntelligencer, vol. 19,

pp. 9–22, 1997.

[2] S.V. Kartalopoulos, “DNA-inspired cryptographic method

in optical communications,” in authentication and data

mimicking Military Communications Conference, 2005, pp.

774–779.

[3] G. Z. Cui, L. M. Qin, Y. F Wang and X. C. Zhang,

“Information Security Technology Based on DNA

Computing,” 2007 IEEE International Workshop on Anti-

counterfeiting Security, Identification., 2007, pp. 288–291.

[4] A. Leier, C. Richter and W. Banzhaf, “Cryptography with

DNA binary strands,” Biosystems, vol. 57, pp. 13–22,

2000.

[5] M. X. Lu, “Symmetric-key cryptosystem with DNA

technology, ”Science in China Series F: Information

Sciences, vol. 3, pp. 324–333, 2007.

[6] A. Gehani, T. H. LaBean and J. H. Reif, “DNA-based

cryptography,”DNA Based Computers V. Providence:

American Mathematical society, vol. 54, pp. 233–249,

2000.

[7] C. T. Celland, V. Risca and Bancroft C. “Hiding messages

in DNA microdots,” Nature, vol. 399, pp. 533–534, 1999.

[8] KANG Ning, "A Pseudo DNA Cryptography Method",

Independent Research Study Project for CS5231, October

2004.

[9] Sherif T. Amin, Magdy Saeb, Salah El-Gindi, "A DNA-

based Implementation of YAEA Encryption Algorithm,"

IASTED International Conference on Computational

Intelligence (CI 2006), San Francisco, Nov. 20, 2006.

[10] O. Tornea and M.E. Borda,” DNA Cryptographic

Algorithms”, MEDITECH 2009, IFMBE Proceedings 26,

pp. 223–226, 2009.

[11] Guangzhao Cui, Limin Qin, Yanfeng Wang, Xuncai

Zhang,” An Encryption Scheme Using DNA Technology”,

3rd international conference on Bio-Inspired Computing:

Theories and Applications, BICTA 2008, pp. 37 – 42, Oct.

1 2008.

[12] William Stallings. “Cryptography and Network Security”,

Third Edition, Prentice Hall International, 2003.

[13] Mona Sabry, Mohamed Hashem, Taymoor Nazmy,

Mohamed Essam Khalifa, “A DNA and Amino Acids-

Based Implementation of Playfair Cipher”,(IJCSIS)

International Journal of Computer Science and

Information Security,Vol. 8, No. 3, 2010.

