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ABSTRACT 

Accurate and timely estimation of the spatiotemporal surface 

dynamics is very important for natural resource planning and 

disaster mitigation. This paper discusses a novel technique to 

assess the patterns of the surfaces of a particular severe 

landslide susceptible zone (Kullu-Larji-Rampur geological 

window, near Aut village, district Mandi, Himachal Pradesh, 

India; N 31°44’34.78’’ E 77°12’29.02’’). The spatiotemporal 

surface dynamics of this region, spanning over last 20 years 

(1989 - 2009), has been modelled using Landsat TM images 

acquired during summers of 1989, 2000 and 2009. The 

proposed technique uses image processing to derive 

regression models of selected area segments, these models are 

then used to measure area under the curve to estimate the 

surface area changes. The surface area changes thus obtained 

have also been validated by standard method of pixel 

counting. Principal component analysis has been done in 

order to understand the correlations amongst the estimated 

parameters, namely; segment lengths, percentage area change 

and the area change in the first (1989-2000) and second 

(2000-2009) decades. The results obtained show a fair degree 

of accuracy as compared to the standard method of pixel 

counting.   
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1. INTRODUCTION 
Modelling of surfaces can help in assessment and mitigation 

of Disastrous events. Modelling of surfaces of mountainous 

regions is a bit complex because of the involvement of several 

factors such as slope, aspect, relative relief, geological 

character, drainage, vegetation and land use/land cover [1]. 

Himalayan mountains being tectonically active are highly 

prone to landslide activities [1]. Landslide is the most 

common natural hazard in the region of the study and 

damages and losses have regularly incurred [2, 3]. The Kullu-

Larji-Rampur geological window (KLRW) is severely 

vulnerable to landslides wherein the rocks are not only highly 

deformed but the area also possesses active faults [1]. 

Therefore, a severe landslide susceptible zone falling inside 

KLRW near Aut village, district Mandi, Himachal Pradesh, 

India; has been chosen for the current study. 

Digital change detection is one of the popular processes in 

remote sensing applications aimed at identifying 

spatiotemporal surface dynamics [4, 5]. Wherein, images 

acquired on the same geographical area at different time 

intervals are used for the analysis. Change detection 

approaches are broadly characterized by data transformation 

procedure and analysis techniques to delineate the area of 

significant variability. A variety of digital change detection 

algorithms have been developed so far viz. monotemporal 

change delineation, delta classification, multidimensional 

temporal feature analysis, composite analysis, image 

differencing, image ratioing, multitemporal linear data 

transformation, change vector analysis, image regression, 

multitemporal biomass index and background subtraction [5-

7]. Digital change detection has been successfully applied to 

land use change analysis [8-10], natural resource mapping [2, 

11] and disaster and damage assessment [12-14]. 

This work presents a novel technique for area change 

estimation based upon monotemporal image regression, 

wherein standard image pre-processing techniques viz. 

intensity normalization, registration and edge detection are 

applied to create temporal skeletal images. The skeletal 

segments of each temporal skeletal image are then segmented 

and regressed to obtain polynomial models of various orders. 

The multitemporal polynomial curves for each segment are 

then superimposed on each other and the area enclosed among 

them is calculated using integrals. The proposed methodology 

has been addressed as Integral Method (IM) henceforth. In the 

present study, the segmentation has been done manually 

which may be automated and invites research interests for 

optimum segment selection parameters. The results thus 

obtained by IM are comparable with the results of standard 

Pixel Counting Method (PCM).  

2. METHODOLOGY 
Landsat TM digital imagery were acquired and analyzed for 

three time periods 1989, 2000 and 2009. The key steps in the 

proposed technique are input image description, cropping the 

area of study, intensity normalization, registration, skeleton 

formation, change detection, application of a statistical 

regression model for functional mapping of the segments of 

the mountain and finally estimation of the net shift in the area 

using definite integrals and PCM for accuracy assessment. 

Fig. 1 shows the schema of the steps involved in the pre-

processing, modelling and validation. The proposed technique 

was implemented using image processing toolbox of 

MATLAB and custom scripts. 
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Fig. 1: Major steps of the methodology 

 

2.1 Study Area
In the present study, a particular severe landslide susceptible 

zone (KLRW, near Aut village, district Mandi, Himachal 

Pradesh, India; N 31°44’34.78’’ E 77°12’29.02’’, see Fig. 2) 

has been considered. Aut is a village in the eastern mountain 

ranges of Mandi, located on the bank of river Beas, near the 

confluence of Kullu and Tirthan valleys. The terrain of Aut is 

steep and hilly. Geologically, it is located in seismic Zone No. 

IV near a fault line and is prone to earthquakes [15]. The main 

Kullu Valley is a gently folded antiform having River Beas 

following its axial plane along a fault running NNW-SSE 

from the upper catchment to near Aut where it is intersected 

by a cross fault almost at right angles [16]. This fault is a 

dextral tear fault with a dislocation of nearly 1.5 km [17]. The 

rivers Beas, Parbati, Hurla Nala, Sainj Khad, Tirthan Khad 

etc. follow these fault traces which are well reflected in the 

trellis like drainage pattern. The area west of river Beas from 

Bhuntar and south of Parbati River to Rampur along the 

course of Satluj River is structurally very unique forming 

window in a window  structure [1]. Apart from possessing 

active faults, the KLRW contains highly deformed rocks and 

therefore is susceptible to severe landslides [1]. These unique 

geological characteristics of the region motivated us to choose 

the region near Aut for the present study (see inset of Fig. 2). 

 

Fig. 2: Map of Aut (source-Google earth and Google map)

2.2 Preprocessing 

2.2.1 Input Image 

Input image is a grayscale satellite image. Landsat TM image 

data files consist of seven spectral bands. The resolution is 30 

meters for Bands 1-5, and Band 7. Band 6 resolution (thermal 

infrared) is a collected 120 meters, but is resampled to 30 

meters. When imagery is acquired over large geographic 

areas, scene differences can and do exist due to different 

acquisition dates, view angles, sun angles, and atmospheric 

conditions. Because of this reality, we believe that this form 

of satellite data is best suited for the analysis of relatively 

small geographic areas. The appropriate selection of imagery 

acquisition dates is as crucial to the change detection method as 

is the choice of the sensor(s), change categories, and change 

detection algorithms [6]. Therefore, three cloud-free images 

corresponding to Landsat path 147, row 38 of the concerned 

region of the summer season have been taken for each of the 

years 1989, 2000 and 2009 from U.S. Geological Survey [18]. 

The images are shown in Fig. 3(a/b/c). 

2.2.2 Cropping the area of interest 
The particular area is extracted in the form of the rectangular 

image of size 350 x250 pixels. The area of interest is 

surrounded by the coordinates in the clockwise order as given 

in the order of 31.82N, 77.20E, 31.76N, 77.26E, 31.73N, 

77.22E, 31.75N, 77.20E starting from the top left corner. The 

cropped area of interest is shown in the Fig. 3(d/e/f). 
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Fig. 3: Landsat images of Aut, Himanchal Pradesh for the years (a) 1989, (b) 2000 and (c) 2009 and Corresponding cropped 

images of the actual study site for the years (d) 1989, (e) 2000 and (f) 2009.

2.2.3 Intensity Normalization 
In the intensity normalization function that is used to produce 

the results shown in this paper, the transformation is scaled 

such that the least intense value in the original image is 

mapped to a zero intensity value in the normalized image, 

and, the most intense value in the original image is mapped to 

an intensity value that is equal to the maximum intensity value 

determined by the bit depth of the image. This produces 

results that have a dynamic range that is similar to the one 

produced by the histogram equalization algorithm [19].  

2.2.4 Image Registration 
Of all the various aspects of preprocessing for change 

detection, multidate image registration is one of the most 

important requirements. The process of image registration is 

composed of three steps: 1) Sufficient number of control 

points are prepared; 2) Control points are used to estimate a 

mapping function between the image to be registered to the 

reference datum, to a map, or to a reference image; 3) Using 

the mapping function images are resampled to align with the 

reference system [20]. Four control points (CPs) have been 

taken evenly distributed across the entire image for the 

registration process and the transformation used is affine to 

maintain the parallelism. The CPs selected included river-

intersections, some structure corners, and field boundaries. 

Control points have been chosen in consultation with a 

geologist. Accurate registration of multidate imagery is a 

critical prerequisite of accurate change detection.  However, 

residual misregistration at the below-pixel level somewhat 

degrades areal assessment of change events at the change/no-

change boundaries [6]. The images of the years 2000 and 

2009 are registered with the image of year 1989 taking it as a 

reference image. 

2.2.5 Skeleton formation and Change detection 
After registration, each image is processed to obtain skeletal 

edges using Canny’s edge operator [21] for its robustness 

against noise and efficacy to detect true weak edges. Fig. 4 

shows the typical skeletal images of the study region. In order 

to identify the prospective altered skeletal segments in the 

first (1989-2000) decade, the skeletal image of the year 1989 

has been XORed with the image of the year 2000 (Fig. 5(a)). 

Similarly, the skeletal image of the year 2000 has been 

XORed with the image of the year 2009 in order to identify 

the prospective altered skeletal segments in the second (2000-

2009) decade (Fig. 5(b)). These two XORed images have also 

been further used for area calculation using PCM. 

2.3 Segment Selection, Modelling and Area 

Estimation 
The choice of the segments is a trade-off between their 

lengths and contour complexities. The smoother the contour, 

the larger is the segment length and vice versa. Further, 

choosing too many segments for the sake of accuracy is not 

advisable and the choice of optimum segments becomes 

difficult. Therefore the segments are chosen manually. The 

segment branches in the XORed images having significantly 

visible changes are identified first and regressed upon (using 

pixel indices) to derive polynomial equations for each of the 

branches in the original skeletal images. 

To determine which mathematical equations model the 

dynamic surface in a statistically optimal way, polynomial 

regression model has been used [22]. Each of the identified 

branches are then further segmented such that the order of the 

functional equation (regression curve) for a particular segment 

in each of the original skeletal images doesn't go very high 

because the value of R² (Correlation Coefficient) doesn’t 

change as significantly as the order of the curve after a 
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particular order. This process yielded thirteen segments of 

varying lengths as shown in Fig. 4. Mathematical functional 

mapping was started with liner equation and order of the 

equation was increased until a very optimal value of R² was 

achieved confirming the quality of the fit of the curve, 

however it was kept in mind that every increase in the order of 

the equation must cause a significant increase in the R². The 

highest order of any equation corresponding to its segment 

has been kept as 3 for simplicity. The polynomial equations 

for all the thirteen segments for each of the three years have 

been listed in the Table 1 along with their R² values.  

Table 1. Best fit curves for thirteen segments for three 

years 

Seg.No. Year 

1989 

R² Year 

2000 

R² Year 

2009 

R² 

1 y = -

0.001x2 

+ 0.735x 

- 35.02 

0.967 y = -

0.001x2 

+ 

0.729x 

- 28.13 

0.971 y = -

0.001x2 

+ 

0.674x 

- 13.26 

0.972 

2 y = -

0.006x3 

+ 2.38x2 

- 288.3x 

+ 11697 

0.916 y = -

0.006x3 

+ 

2.38x2 

- 

287.8x 

+ 

11653 

0.931 y = -

0.014x3 

+ 

3.38x2 

- 

284.7x 

+ 

11597 

0.968 

3 y = -

0.239x2 

+ 67.3x 

– 4675 

0.910 y = -

0.179x2 

+ 51.8x 

– 3667 

0.896 y = -

0.051x2 

+ 15.8x 

- 1129 

0.974 

4 y = 

0.06x3 - 

24x2 + 

3343x - 

157105 

 

0.821 y = -

0.05x3 

+ 20x2 

- 2739x 

+ 

124418 

 

0.87 y = -

0.05x3 

+ 19x2 

- 2674x 

+ 

123426 

0.983 

5  y  = -

0.996x + 

191.0 

0.939 y = -

0.915x 

+ 190.7 

0.932 y = -

0.940x 

+ 189.2 

0.933 

6 y = -

0.003x2 

- 0.046x 

+ 173.9 

0.994 y = -

0.003x2 

- 

0.104x 

+ 174.5 

0.992 y = -

0.003x2 

- 

0.086x 

+ 176.8 

0.993 

7 y = -

0.0094x3 

+ 2.87x2 

- 291.4x 

0.898 y = -

0.008x3 

+ 

2.711x2 

0.883 y = -

0.009x3 

+ 

3.037x2 

0.903 

+ 10290 - 

284.0x 

+ 

10077 

- 

319.2x 

+ 

11340 

8 y = -

0.043x2 

+ 15.31x 

- 892.6 

0.901 y = 

0.242x2 

-   

40.14x 

+ 1791 

0.899 y = -

0.164x2 

+ 

39.69x 

- 2126 

0.915 

9 y =   

0.367x2 

- 81.72x 

+ 4762 

0.902 y =   

0.289x2 

- 

64.79x 

+ 3831 

0.939 y =  

0.107x2 

- 

24.92x 

+ 1662 

0.957 

10 y =  -

0.75x2 + 

168.2x – 

9198 

0.896 y =   

3.916x2 

- 

847.4x 

+ 

46059 

0.904 y =  

2.916x2 

- 

629.4x 

+ 

34186 

0.837 

11 y = -

0.236x2 

+ 46.97x 

– 2068 

0.919 y = -

0.086x2 

+ 

15.58x 

- 433.9 

0.911 y = -

0.096x2 

+ 

17.77x 

- 550.5 

0.920 

12 y = -

0.145x2 

+ 32.83x 

– 1575 

0.926 y = -

0.255x2 

+ 

55.30x 

– 2719 

0.912 y = -

0.309x2 

+ 

66.55x 

- 3300 

0.932 

13 y = -

0.504x2 

+ 98.60x 

– 4529 

 

0.914 y =   

0.573x2 

- 

118.8x 

+ 6444 

0.878 y = -

0.331x2 

+ 

62.94x 

- 2683 

0.892 
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Fig. 5: Change detected by XOR Operation of (a) Im1 

(1989) and Im2 (2000) & (b) Im2 (2000) and Im3 (2009)

Fig. 4: Skeletal image of the study region along with 

identified segments

 

For area change estimation during the two decades, the 

modelled polynomial equations for each segment are 

superimposed on each other and the differential area enclosed 

amongst these curves are calculated using definite integrals as 

demonstrated in Fig. 6. In order to compare the results 

obtained by the proposed IM, the change in areas of all the 

segments have also been calculated by PCM [23] in the 

resulting image obtained after the XOR operation (see Fig. 

5(a), 5(b)).  Both methods show quite similar results. Table 2 

shows the results obtained by PCM and IM; and their 

comparisons in terms of absolute error and the percentage 

change in the area for each of the thirteen segments 

 

Fig. 6: Area enclosed by modeled polynomial equations 
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Table 2. Comparison of Area Change estimated by PCM and IM

   Change in Area in Pixels % Area Change per Decade 

  1989-2000  2000-2009  

Seg. No. Seg. Length 

(in Pixels) 

PCM IM Error  PCM IM Error PCM IM 

1 75.95 411 413 2  326 358 32 20.68 13.32 

2 47.67 210 232 22  277 289 12 31.90 24.57 

3 9.08 43 61 18  56 70 14 30.23 14.75 

4 11.00 75 91 16  88 100 12 17.33 9.89 

5 52.22 145 155 10  95 106 11 34.48 31.61 

6 83.19 297 301 4  281 275 6 5.39 8.64 

7 53.77 108 125 17  91 96 5 15.74 23.20 

8 34.98 67 64 3  27 30 3 59.70 53.13 

9 8.17 48 50 2  55 57 2 14.58 14.00 

10 9.62 10 10 0  17 15 2 70.00 50.00 

11 21.12 50 52 2  30 22 8 40.00 57.69 

12 12.50 13 13 0  20 19 1 53.85 46.15 

13 13.52 14 14 0  22 23 1 57.14 64.29 

 

3. RESULTS AND DISCUSSION
In order to understand the correlation among the various 

parameters such as segment lengths, percentage area change 

and the area change in the first decade (1989-2000)  and the 

second decade (2000-2009), principal component analysis has 

been done. PCA is a statistical technique helpful in 

understanding multivariate data. It captures the relevant 

information in a set of input data providing a lower 

dimension, but informative representation of the original data. 

It sequentially creates a set of principal components from the 

original data. The first principal component (PC1) maps the 

maximum variance and information of the input data followed 

by the other principal components (PC2, PC3 and so on) in 

descending order of the variance [24]. Generally a good 

explanation of the data is mapped by the first two principal 

components, i.e. PC1 and PC2. In order to understand, the 

relationships between the samples and variables, a PCA bi-

plot is generally used. In the bi-plot, the loadings for each 

variable can be presented as vectors, superimposed upon the 

scores plot for the same PCs. The length of the loading vector 

of a variable signifies its importance; the angles between the 

vectors show the relationships between the variables 

themselves, and the vector direction is indicative of the 

correlations between variables and samples. Close and 

extreme placements of the loading vectors of the variables, 

suggest a positive and negative correlation respectively 

amongst them. Similarly, the loading vectors which are 

perpendicular to each other through the origin are 

independent. Loadings close to the PC axis are significant 

only to that PC and variables with a large loading on both the 

PCs are significant to them. Statistical software The 

Unscrambler 9.7 has been used here for the PCA.  

Here, the PCA bi-plot (Fig. 7) has been plotted by taking area 

change in the first decade (1989-2000), second decade (2000-

2009), percentage change in the area between two decades 

and the segment length, as variables and their corresponding 

values for each segment as samples. The data was range 

normalized prior to PCA. It may be noted that for area change 

and percentage area change, values obtained by IM and PCM 

have been taken into consideration for the comparison 

purpose. The positioning of these variables or the loading 

vectors can be seen in Fig. 7. These vectors have been 

represented by the red arrows whereas the segment (i.e. 

samples) positions have been represented by numbers in black 

circles. The close positioning of vectors of IM and PCM 

suggest a high degree of correlation in the two methods, also 

evident from the significantly low error values between the 

two methods (see Table 2). The segments highlighted by blue 

(i.e. 1, 2, 4, 5, 6 and 7) and by green (i.e. 3, 8, 9, 10, 11, 12 

and 13) background have high and low area change 
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respectively in both the decades. In general, the blue and the 

green segments also show a low and a high percentage area 

change respectively in the second decade, segments 9 and 3 

being exceptions. This confirms the fact that any smaller 

change in a bigger segment is not reflected significantly 

whereas the same smaller change in a smaller segment is 

reflected significantly in the form of percentage change. This 

also explains the placement of segment lengths loading vector 

in the first quadrant along with percentage area change 

vectors. The segments (i.e. 8, 10, 11, 12 and 13) with 

relatively higher percentage change per decade have been 

marked by dotted violate boundary. Amongst these segments, 

the segments 8 and 11 are relatively larger segments in 

comparison to segments 10, 12 and 13. The reason for a larger 

percentage change for segments 10, 12 and 13 is that they are 

smaller segments, so any smaller change in them will be 

reflected as a larger change. Also, segments 8 and 11 are 

steeper sections causing a relatively larger change [25]. 

Further, the segments whose area change has increased in the 

second decade (i.e. 2, 3, 4, 9, 10, 12 and 13) have been 

marked by yellow dotted boundary and the segments outside 

this boundary have shown a decrease in the area. One of the 

possible reasons for decrease in area can be the reduction in 

vegetation. The other region is the type of soil presence in 

those segments which has been examined during the field 

inspection and it was found that there were clay soils in the 

segments where surface area changes have reduced. As far as 

increase in the surface area is concerned; one of the possible 

reasons can be the accumulation of soils fallen from very 

elevated and steeper sections of the mountain to less elevated 

sections [25, 26]. The segments 8, 10, 11, 12 and 13 become 

the major susceptible zones for landslide occurrences because 

a higher percentage shift in the area shows that there are very 

less vegetation in these segments [27, 28], also confirmed by 

scouting data. Shifting has been quite random for different 

segments and it involves many natural and man-made factors 

(viz. snowfall, cloud burst, urbanisation, intense rainfall, 

vegetation change, earthquake, erosion of lateral margins) for 

its random behaviour which can be modelled provided there is 

sufficient data corresponding to each factor. Further research 

is needed to model the contribution of all the factors that 

actually cause shifting in the area. 

 

Fig. 7: PCA bi-plot plotted using parameters of Table 2 

4. CONCLUSIONS 
A novel technique for area change estimation has been 

applied to a severe landslide susceptible zone. This technique 

can be used for its capability to measure the spatial and 

temporal changes in a mountainous region and to 

subsequently determine an effective means to measure 

landscape stability.  Landslide susceptibility maps can be 

produced based on stability of the segments. The technique 

has been compared with the standard method of pixel 

counting and satisfactory results have been obtained. The 

accuracy of the proposed technique may further be improved 

by optimum selection of segments. However, optimum 

selection of the segments still remains a major challenge and 

needs further research. 
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