
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

30

Model Driven Adaptation and Usability for Context

Aware User Interfaces

Wided Bouchelligua

Lille Nord University of France,
F-59000 Lille, France

UVHC, LAMIH, F-59313
Valenciennes, France

CNRS, UMR 8530, F-59313
Valenciennes, France

Adel Mahfoudhi
ENIS, CES, Soukra Road km
3.5, B.P: w 3038 Sfax, Tunisia

Mourad Abed

Lille Nord University of France,
F-59000 Lille, France

UVHC, LAMIH, F-59313
Valenciennes, France

CNRS, UMR 8530, F-59313
Valenciennes, France

ABSTRACT

In recent years, given the development of networks and

technological innovations, the user mobility has increased so

much. That is why the interactive applications must be

executed on both mobile devices as PDAs, mobile phones and

PC. The user is then progressing in a varied and dynamic

environment. Therefore, the challenges of the User Interface

are related to the adaptation to the context of use. This paper

describes a model-based approach to generate user interfaces

adapted to their context of use, while respecting usability. The

Model Driven Engineering is used to provide solutions to the

problems of adaptation and usability and allow automatic

generation of user interfaces. The case study pertaining to a

tourist guide system is used to illustrate our approach.

General Terms
Human Computer Interaction, Design.

Keywords

User Interface, Adaptation, Usability, Model Driven

Engineering.

1. INTRODUCTION
Ubiquitous or pervasive computing is invented in 1991 by

Mark Weiser [1]. It is characterized by the change of context,

which is due to user mobility. For [2]: "ubiquitous computing

makes information available anywhere, anytime". In the field

of pervasive computing, the research work relating to a class

of applications called "context aware" or "context adaptable"

has become numerous, since the explosion of wireless

networks. Schilt and Theimer [3] define a context aware

interactive system as a system that can dynamically capture

information from its context. This information represents

variables such as location, user profile and object sensors of

information.

Currently, several research works on the context aware user

interfaces (also known as plastics) have been conducted. It is

in this context that our research work lies. The User Interface

(UI) should be able to be dynamically adapted to the context

of use while maintaining usability. "A system is usable when

it allows the user to perform his task with effectiveness,

efficiency and satisfaction in the specified context of use" [4].

In the literature, there are several definitions of context [5].

The most widespread definition is that of Dey [6]: "any

information that can be used to characterize the situation of an

entity. An entity is a person, place, or object that is considered

relevant for interaction between a user and an application,

including user and application themselves".

Building on the concept of transformation parameterized by

the context as defined within the framework of Model-Driven

Engineering (MDE) [7,8], the proposed approach assures the

adaptation of the UI to the context of use. It is based on MDE

that goes beyond the framework of Model Driven

Architecture (MDA) [9]. The latter can be summarized in the

elaboration of the Platform Independent Models (PIM) and in

their transformation into Platform Specific Models (PSM) [7],

to cover the methodological aspects. We apply the parameter

setting at the level of the transformation of an abstract user

interface into a concrete user interface, whose generation is

made on three phases parameterized by the user, the platform

and the environmental model respectively.

Because the usability of the user interface is often a

determining factor in the success of a computing project and

its acceptance by users, we use ergonomic criteria that we

insert into the process of generation of an adaptable UI. The

approach of C. Bastien and D. Scapin [10] is adopted in this

research work and the ergonomic criteria are integrated in the

process of UI generation. So, in order to improve the usability

of adaptable UI, an ergonomic model serves as a parameter in

the three transformation modules.

The remainder of this paper is structured as follows. Section 2

presents a state of the art on the model-based approaches for

the adaptation of the UI, approaches for the usability on the

UI and Model-Driven Engineering Approach. As for section

3, it describes the proposed approach in terms of meta-models

and (adaptation and usability) rules. Then, section 4 provides

a case study illustrating the suggested approach. Finally,

section 5 draws the conclusion and provides perspectives to

future research.

2. LITERATURE REVIEW

2.1 UI adaptation
With the aim of making user interfaces adaptable to the

context of use, several approaches were proposed. According

to [11], these approaches are classified into four categories: 1)

Translation Interface, 2) Reverse-engineering and migration

Interfaces 3) Markup languages-based approaches and 4)

model-based approach. The latter is adopted in this research

work because it has the advantage of applying the adaptation

to the context of use of the models, leading to a strong

abstraction. For that reason, this section is limited to the

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

31

presentation of model-based approaches for UI adaptation and

UI usability. In fact, the Cameleon reference framework [12]

represents an excellent framework of UI adaptation as it

defines four essential stages for the development of the user

interfaces in a pervasive environment (Fig 1): tasks and

concepts, abstract user interface, concrete user interface, and

final user interface.

Fig 1: The four main stages of Cameleon framework

The Human Computer Interaction (HCI) engineering has been

the interest of a great deal of research work, among which we

can quote the TERESA method [13] that supplies the tasks as

a single model, and allows the generation of several interfaces

for various platforms. We can also cite the Comets (COntext

sensitive Multi-target widgETS) [14], which essentially

proposes a model for the plastic interactors that can be

adapted to the variation of the screen size. Likewise, the

UsiXML (User Interface eXtensible Markup Language)

[12,15] approach represents a UI approach of engineering

defined according to the Cameleon reference framework [16].

Such an approach describes a context model consisting of

three components: user, environment and platform. But, only

the variant platform is considered during the UI generation.

Hariri [17,18] propose a method of UI conception, by

considering the biggest possible range of every element of the

context <user, platform, environment>. This method is based

on the use of the patterns use to facilitate the choice of

business components related to the system tasks and the

presentation components appropriate to the context of use.

The work of [19] is considered as one of the pioneering

studies to join Model Driven Engineering with the domain of

Human Computer Interaction. The reported approach has

shown that the concepts of the MDE could be successfully

applied to the UI engineering. Sottet [19] proposes meta-

models and models transformations to generate adaptable or

plastic UI, and defines a general context meta-model. Based

on the same approach (MDE), Hachani [20] suggest the

introduction of the context of use at the tasks level rather than

at the interactors level. This approach is characterized by the

definition of the generic rules appropriate to all the contexts of

use. However, both approaches lack a detailed description of

each constituent of the context of use. As in [20] and [21], we

opt for the proposition of a model-based approach and its

transformation according to the characteristics of the context

but we seek to detail the context in accordance with three

generic meta-models (user meta-model, platform meta-model

and environment meta-model).

2.2 UI Usability
Several methods that identify usability problems of interactive

systems exist for the evaluation of user interfaces. For

example, Correani [22] proposes an inspection-based tool for

improving Web site usability. He defines and implements a

number of design criteria for vision-impaired users. In the

same direction, Leporini [23] provides a MAGENTA tool for

supporting inspection-based evaluation of accessibility and

usability guidelines. In addition, building on a method of

assessing compliance with the recommendations, Vigo [24]

proposes an application evaluation that considers specific

device features in the evaluation process. A design

environment GUIDE2ux is proposed by [25] to identify

usability problems automatically and facilitate the job for

designers to verify their designs on the target device easily.

However, despite the existence of several evaluation methods,

most of them are targeted for the evaluation of final products.

But today, with the expansion of model-based approaches for

development user interfaces, research is oriented to integrate

the evaluation at the level of modeling steps.

Among these research works, we find that of Frey [26]

Offering QUIMERA, a quality meta-model. QUIMERA is

composed of Criteria that can be decomposed into sub-

criteria. The meta-model provides different recommendations

specified for each Criterion. QUIMERA covers the evaluation

methods that are specified by metrics and/or practices.

However, this meta-model has not yet been implemented in

order to be used at design time and runtime.

Presently, Sottet [27] proposed not only meta-models and

model transformations to derive plastic UI, but also a meta-

model that allows the characterization of the changes in

models with ergonomic criteria. In [27], Sottet proposed an

adaptation controlled by an intelligent system in order to

automate the generation of plastic UI all along with the

respect of certain ergonomic criteria. This intelligent system

allows the choice of the appropriate transformation to a given

context, while respecting such ergonomic properties. For

example, if the user makes many mistakes, we should choose

the UI that limits his wrong manipulations; i.e., to throw the

rules of model transformations classified as "protection

against error". In this case, it is necessary to create an N

transformation to an N context and the intelligent system

chooses the transformation that best suits a given situation.

2.3 MDE Approach

2.3.1 Principles of MDE approach
Since the recent adoption of the MDA by the OMG [28], the

model driven approach has aroused a big interest. Then, the

MDA approach has become a particular variant of the Model

Driven Engineering to cover the methodological aspects as

well.

The MDE is based on three essential concepts: the models, the

meta-models [29] and the transformations. These frequently-

used terms in the MDE and the relations between them were

widely discussed in the literature [7,30,8,31]. In [30], Bézivin

identifies two fundamental relations: the first relation called

"RepresentedBy" is connected to the notion of model, and the

second called "ConformsTo" defines the notion of model with

regard to that of meta-model (Fig 2).

Although, there are many definitions for the model concept in

the literature, there is a convergence between them. Actually,

they all aim at making reference to the notion of model and

modelled system. Indeed, an aspect of a system is captured by

a model which is linked to a meta-model in a relation called

"RepresentatedBy". A meta-model is a model of a modelling

language, which leads to the identification of a second relation

named "ConformsTo" [30,8]. Such a relation allows to assure

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

32

the productivity of a model because it is in compliance with

its meta-model. This facilitates the transformation of models.

The notion of transformation is another central concept for the

MDE, the mechanism of transformation allows using both

Model and Meta-model notions. The power of the MDE

consists in creating the transformation models, which build on

meta-model corresponding to the source model and the target

model. So the relation "IsTransformedInto" allows the

automation of the transformation of a model into another.

Fig 2: Basic Notions in Model Driven Engineering

2.3.2 Principles of the parameterized

transformation of MDE
Our objective is to handle the adaptation of the UI to the

context of use (user, platform and environment) and to

improve usability of adaptable UI. To do so, our research

work will build on the parameterized transformations defined

by [32]. The cited work describes a parameterized

transformation within the framework of the model driven

engineering for a contextual development. The authors

propose a parameterized transformation focusing on PIM to

PIM transformations (Fig 3).

By the use of this transformation technique, the contextual

parameter identified into the model will be contextualized

with the parameterizable element which represents context

information [32]. Such correspondences are guaranteed by the

transformation parameter setting, whose basic principle is to

take into consideration the properties of the context during the

specification of transformation rules (right of Fig 3). Quoting

[33], "a parameter specifies how arguments are passed into or

out of an invocation of a behavioural feature like an operation.

The type and multiplicity of a parameter restrict what values

can be passed, how many, and whether the values are

ordered".

Indeed, Frankel [34] indicates the importance of the

parameterization in the operations within the models by

associating the tagged values with PIM and PSM. Tagging

model elements allows an easy filtering of some specific

elements.

The use of the parameterized transformations is envisaged

with the aim of either improving new features (values,

properties, operations) or changing the behaviour of an

application. For that purpose, the designer has to specify the

parameters intended to be inserted during the phase of

transformation. In his work, [32] proposes that these

parameters are the context information, thus after the

transformation, the application will join the context

information specified into the parameters as illustrated in Fig.

3

Fig 3: MDE Parameterized transformation

A PIM model can be developed without considering the

contextual information: the name of the user, his profile, the

platform type, and the location etc. can be added as

parameters that will be used during the phase of

transformation. The same PIM model can be transformed and

refined several times by adding, or deleting each time the

information relative to the context, thus obtaining different

CPIM (Contextual PIM). In fact, to the same PIM we can

attribute various CPIM, just by modifying the contextual

information. A CPIM in turn, can generate a CPSM

(Contextual PSM) by resorting to the traditional techniques of

transformation. CPSM specifies operation system

requirements, programming languages, middleware

architectures and networking.

Building on the concept of transformation parameterized by

the context as defined within the framework of MDE. Our

previous research works have focused on the generation of

multi-platform user interfaces [35,36]. We have proposed a

complete approach for generating a UI adapted to the context

of full use [37].

In this paper, the proposed approach assures the adaptation to

the context of use and the usability of the UI. The generation

process consists of three transformation modules starting with

an Abstract User Interface and generating a Concrete User

Interface by inserting the user platform and environment

model, respectively. The ergonomic model serves as a

parameter in the three transformation modules.

3. METHOD BASED ON MODEL

DRIVEN ENGINEERING APPROACH

3.1 The general principles for adaptation

and usability of UI process
The abstraction levels of the Cameleon framework [16]

incorporated in the proposed approach, and shown in Fig 4 are

Abstract User Interface (AUI) and Concrete User Interface

(CUI). The objective of the passage to the concrete level is the

generation of an adaptable interface adapted to the planned

context. Our approach facilitates the adaptation of the UI to

the user, because the latter is a key focus of all UI research,

hence everything revolves around him.

The first transformation (T1 in Fig 4) allows the generation of

the first concrete user interface (CUI1 in Fig 4) adapted to the

preferences of the user having received the information

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

33

suitable to him and echoing them on this intermediate

interface.

On the other side of the coin, we are interested in the injection

of the characteristics of the platform used to assure the

adaptability towards this context. Indeed, for the reasons

behind choosing this injection order of the characteristics are

multiple. On the one hand, it is around the user that revolves

everything and it is his characteristics that are going to impose

the choice of the platform. Besides, it is the user who decides

about the device on which he even wishes to post the

information. Indeed, this variation is going to require the

appearance and the disappearance of the other devices of

interaction. It is also according to his preferences that the

modality: graphic, hearing or even olfactive is going to be

chosen. Then, in case of change at the level of one of the

contextual dimensions, an adaptation is launched to protect

the usability [38]. Certainly, the specific properties and the

capacity characteristics of the target device have to satisfy the

needs of the user. This second transformation (T2 in Fig 4)

adapts the first CUI1 to the characteristics of the platform

which is going to host the application, from which the second

CUI (CUI2 in Fig 4) results.

Fig 4: Parameterized transformation for the adaptation

and usability of UI

Now, having fixed and adapted the characteristics of the target

platform to their own motivations and intentions, the user has

nothing but to choose the environment which is going to host

the application. In fact, this environmental variant has to be in

accordance with the characteristics of the user and the target

platform. Actually, the environmental aspect is going to be

determined by two items. The first one is the profile of the

user, defined as being a first order entity for the process of

adaptation and the second is the accompanied intentions,

naturally, symptomatic of the platform. The latter are going to

be implemented during the process of adaptation to succeed in

the generation of an adaptable UI while taking into account

three facets of the context. Hence, in the third place, we are

going to inject the environmental properties in the third

transformation (T3 in Fig 4) to have the interface (CUI3 in

Fig 4).

The ergonomic evaluation can be carried out at different

stages of the development cycle of the UI and is usually

performed in the final generation of the interface. But aiming

at an early detection of the major problems of usability of an

interface, we will incorporate the ergonomic assessment in the

different transformation modules of the process of generating

the adaptable UI. The three transformations (T1, T2 and T3)

are parameterized by ergonomics criteria involved in proving

the usability of the generated concrete UI (Fig 4).

Therefore, the generation of the concrete user interface is

made up of three phases. In what follows, we clarify the

pillars of our approach: the AUI meta-model, the CUI meta-

model, the user meta-model, the platform meta-model, the

environment meta-model, the ergonomic meta-model and the

transformations rules for the UI adaptation and the UI

usability.

3.2 Context of use Meta-Models

The context is identified by many teams [16,11,12,16] by the

triplet <User, Platform, Environment>. Thus, three categories

of contextual information can be distinguished [6]:

 Information pertaining to the platform (processor,

memory, peripheral equipments, connection

network, the size of the display screen, and the

available interaction tools ...).

 Information relative to the user (his profile, his

current activity, his preferences, his habits, his

cultural characteristics ...).

 The information corresponding to the environment

(light, noise, geographical localization ...).

3.2.1 User Meta-Model
The user model has to contain information allowing the

characterization of the user. Our meta-model (Fig 5) builds

strongly on the work of [39,40]. The contained information is

classified into four categories:

 Information stuff (the name and the first name of

the user, the age, the genre).

 Knowledge (The expertise level of the user in

computer science, the expertise level regarding task

or manipulated concept).

 Preference (The modality of interaction (graphic,

vocal, olfactive, tactile, etc.), font, the character

size, colour and the sound volume).

 Capacity (physical (sensory and motor) and

cognitive capacities).

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

34

Fig 5: User Meta-model

3.2.2 Platform Meta-Model
Although most of the research on adaptable UI made

adaptation to the platform, it did not provide a complete and

detailed platform meta-model. The existing approaches are

limited to its description at a high abstraction level or the

description of the display surface of the platform which

represents the most used interactional resource in the

adaptations made so far. However, the adaptation can be

prepared in the presence and absence of the other interaction

devices. For example, if we do not have a mouse, we can

suggest as a form of adaptation using a vocal interactor where

the activation of the actions will be made vocally. Fig 6

presents our platform meta-model [35]. Generally, the

platform consists of:

 Calculation resources represented in Fig 6 by the

"ComputationalCapacities" class. These resources

do not only include the physical aspects, such as the

memory or processor, but also the software aspects

as e.g. the supported operating system;

 Interaction resources that are the input-output

devices represented in our meta-model by the

"InteractionDevices" class. We identify two classes

of interaction devices: the input devices

("InputDevice" class in Fig 6) and the output

devices ("OutputDevice" class in Fig 6) Certain

devices inherit both classes and are thus

input/output devices, such as the touch screen.

Fig 6: Platform Meta-model

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

35

3.2.3 Environment Meta-Model
In this meta-model, illustrated in Fig 7, we try to cover all the

environmental facets of the context that are susceptible to

react directly or indirectly on the interactive system. In fact,

we are trying to take into account the maximum of

environmental aspects. Therefore, our meta-model consists of

four classes that explain the general characteristics of the

environment.

 The first class characterizes the ambient

environment that surrounds the interactive system

"AmbientEnvironment". But with the spread of

ubiquitous computing, the ambient conditions are

changeable from one moment to another. This class

inherits three sub-classes: "ClimaticEnvironment",

"LuminousEnvironment and

"SonorousEnvironment".

o The class "ClimaticEnvironment" specifies the

climatic conditions susceptible to act on the

interactive system.

o The class "SonorousEnvironment" indicates

the sonor state dominating the interactive.

o The class "LuminousEnvironment", the

luminous environment describing this class is

determined by the intensity of the light which

can be high, medium or low.

 The second class composing our meta-model is the

class "TemporalEnvironment". In this class, we

have specified two attributes; the first is "date" and

it is of the type "Month". As for the second, it is of

the type "time" and it is of the type enumeration

"Time".

 As for the third class, named "SocialEnvironment",

it characterizes the social environment receiving the

interactive system. This class is decorated with a

single attribute: "atmosphere" of the type

enumeration "Atmosphere".

 To specify the characteristics of the environment

where the application is to be deployed, we used the

fourth class named "SpatialEnvironment". Indeed,

this class gives information about the geographical

location of the interactive system.

Fig 7: Environment Meta-model

3.2.4 Validation constraints of Context Meta-

models:
The model validation is an important factor assuring the

reliability and the coherence of a meta-model. Generally, to

strengthen a meta-model, the designer has to associate

constraints with it. Therefore, we have determined a set of

constraints for the validation of the various models of the

context of use. The expression of the constraints is made with

the Object Constraint Language OCL language [41] within the

Kermeta meta-model [42].

As an example, the code below shows a constraint on the

user's meta-model. Indeed, the user having no visual capacity

(namely hearing) cannot select the graphic preference (namely

hearing) as a modality of communication.

inv GraphicalModality is

if(getSensor(getCapacity(self)).visual == Level.lower) and

getPreference(self).modalityOfCommunication!=

Modality.graphical)

then

 // treatment

end

As an example of constraint on the environment meta-model,

we can notice that if the type of the chosen environment is an

internal environment then it is necessary that the value of the

attribute "precipitation" of the class "ClimaticEnvironment" is

"false".

context Environment inv:

self.ambientenvironment.climatenv.precipitation implies

self.spatialEnvironment->forAll(s |

s. oclIsKindOf(OutDoorEnvironment)

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

36

3.3 Ergonomic Meta-Model
Faced with the multitude of the existing recommendations, C.

Bastien and D. Scapin have conducted, since 1997, the

synthesis of about 900 recommendations in the field of

computing ergonomics at the large sense [10]. Their work has

led to a list of 18 criteria divided into eight dimensions. The

set of these criteria can help the evaluator to estimate the

ergonomic quality of the UI in terms of usability.

In the process of building the UI, Sottet proposed a meta-

model that allows the characterization of the model

transformation by ergonomic criteria [27]. Building on this

idea and the ergonomic criteria of C. Bastien and D. Scapin

[10], we propose our own meta-model of ergonomic which

seeks to explain the ergonomic evaluation. An ergonomic

model conform to this meta-model is taken as a parameter for

improve usability of adaptable UI. Fig 8 shows the proposed

meta-model.

Fig 8: Ergonomic Meta-model

In this meta-model, we attempt to present elementary criteria

that are really integrated in the transformation model. But, for

legibility reasons of the model, we have not discarded the

other criteria, which are eight. Some of the criteria are divided

into sub-criteria, 18 of which are counted elementary. So, our

meta-model is composed of three classes.

The first class is the class "Criterion", in which we have

specified a unique attribute that is "name" of the type

"Criterion". We have defined an enumeration called

"Criterion", whose values are the eight basic criteria.

We have also defined a second class called "SubCriterion"

which consists of one attribute "name" of the type "Scriteria",

whose enumeration values "Scriteria" are the sub-criteria of

the basic criteria.

Because certain sub-criteria are in turn subdivided into other

criteria, we have added a third class "ElementaryCriterion".

Just like the other two classes, this class contains one attribute

"name" of the type "Ecriteria", whose enumeration values are

the sub-criteria of the sub-criteria.

The notion of priority between the criteria does not appear in

this meta-model, but is introduced implicitly in the processing

modules. Indeed, the addition of criteria to the processing

modules is done so that some priority is respected in function

of the user preferences outlined in the user model, as well as

the characteristics of the platform and environment presented

in the platform model and the environment model. For

example, to a large screen, if the "minimal actions" criteria are

taken into account, then the "informational density" sub-

criteria will be ignored.

Several constraints are added to the meta-model of

ergonomics. As an example, the code below is intended to

ensure that the hierarchy of criteria is respected. For instance,

if you want to insert the guide criterion in the ergonomics

model, only under incitation criteria, Grouping/Distinction of

Items, Immediate Feedback and Legibility can be put under

this criterion.

invariant crt;

self.criterion->forAll(c.Criterion|

//Criteria with subcriteria

c.name=Criteria::guidance implies

c.subCriterion->forAll(sc : SubCriterion |

sc.mame = Scriteria::prompting

or sc.name = Scriteria::immediateFeedback

or sc.namc = Scriteria::legibility

or (sc.namc = Scriteria::groupingDistinction implies

sc.elementaryCriterion->forAll(ec : ElementaryCriterion |

ec.name=Ecriteria::groupDistByLocation

or ec.name=Ecriteria::groupDistByFormat))))

and(c.name=Criteria::workload implies ...)...

//criteria have not sub criteria

and(c.name=Criteria::consistency implies

c.subCriterion->isEmpty()))

and(c.name::signifianceOfCodes implies ...

};

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

37

3.4 UI Meta-Models

3.4.1 Abstract User Interface Meta-Model
In the literature, the Abstract User Interface (AUI) is defined

in several ways. For instance, [43] defines it as a set of

interconnected workspaces. A workspace is an abstract

structure in which an interaction is organized. The connection

between workspaces is made according to links between the

tasks and the domain concepts. As another example, in [44],

the abstract user interface is defined as the logical windows

and the presentation units. The interactive tasks and/or the

concepts are grouped together in the form of logical windows.

In our approach, the AUI allows the transformation of the

specification in the modelling of the abstract components of

the interface. In order to describe the Abstract User Interface

and the Concrete User interface, we have resorted to the static

model of interactions [45]. Aiming at applying a model-to-

model transformation, we have refined the static model of the

interactions of [45] in the form of two meta-models: the AUI

and CUI meta-models [35]. Indeed, the AUI meta-model

which is shown in Fig 9 describes the hierarchy of the abstract

components "UIComponent" corresponding to the logical

groups of interactions "UISpace". The modelling of the

abstract interface of an application is then made by one or

several "UIGroup" which model containers forming coherent

graphic elements (a window in a Windows environment, for

example). Each "UIGroup" consists of one or several

"UIUnitSuit" and/or "UIUnit". A "UIUnit" gathers a set of

interaction elements which cannot be separated from a logical

business standpoint of the application (a treatment form for

example). It can include one or several "UISubUnit". The

advantage of this modelling is to allow the creation of the

application by assembling the existing elements, resulting in a

strong reusability. The AUI is expressed by means of the

BPMN (Business Process Modeling Notation) [46], through

the use of an ad-hoc sub-process.

Fig 9: Abstract User Interface Meta-model

3.4.2 Concrete User Interface Meta-Model
The Concrete User Interface (CUI) is deduced from the

Abstract User Interface to describe the interface in terms of

graphic containers, interactors and navigation objects. It is

also expressed through the BPMN notation. The CUI meta-

model extended from the static model of the interactions of

[45] is presented in Fig 10. The meta-model presented in [35]

has been expanded to cover vocal components. The meta-

model (Fig 10) consists of one or several windows

represented in the meta-model by the "UIWindow" class

(graphical modality) and by the "UIVocalForm" class (vocal

modality). Besides, the "UIPanel" class (respectively

"UIVocalGroup"') allows the modelling of the possible

hierarchies of containers. The interactors presented by the

"UIField" class (respectively "UIVocalComponent") of the

concrete interface are classified according to their types in

three groups: "UIFieldMultimedia", "UIFieldData" and

"UIFieldControl".

Unlike any other approaches of the UIs conception, an

original characteristic of our concrete user interface is

represented by the use of the functional services [45]. A

functional service is a set of treatments that allows the

execution of a precise operation on the element with which it

is connected [45]. In our meta-model, a functional service is

connected to any type of container and to all the constituents

belonging to it.

The service of personalization can ensure several types of

personalization: a linguistic personalization "useoflanguage"

dependent on the language of the user, a guide personalization

"useoftooltip" according to the skills of the user (computing

and business), a presentation personalization of the interface

(background, font, color) according to the preferences of the

user and to the environment in which the application is

executed, and so forth. Default values are given to the class

attributes "PersonalizationService" which are used when none

of the rules of transformation would be valid. The use of the

functional services at the level of the concrete interface has

the advantage of being able to apply the impact of several

properties of the context from the very phase of modeling.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

38

Fig 10: Concrete User Interface Meta-model

3.5 Transformations, adaptation and

usability rules
The generation process of CUI follows the approach proposed

in Fig 11. As mentioned before, there are three transformation

steps. In what follows we detail these transformations and

show the impact of each context parameter and ergonomic

criteria on the result of each transformation.

3.5.1 Step 1: Transformation of AUI into CUI1

parameterized by user model and ergonomic

model
The generation stages of the concrete user interface from

abstract user interface lean strongly on the work of [43,15].

The three transformations of the approach are developed with

the transformation language Kermeta [42]. The transformation

of an AUI into a CUI1 (T1 transformation) is implemented by

the following four stages:

 Creation of the application: creation of the

application in the "ConcreteUserInterface" target

model by the "AbstractUserInterface" of the source

model;

 Realization of the abstract containers;

 Choice of the interactors;

 Definition of the navigation.

We have developed a set of rules allowing the T1

transformation. As an illustration, we clarify the phase of the

choice of the interactor in what follows. This stage aims at

associating an adequate interactor with the abstract

component of AUI. Such a choice depends on the properties

of the abstract component: its type (Input or Output) its nature

(Specify, Select, Turn ...) and the user preferences.

The following excerpt of our code shows the

"UIFieldSpecification" method for the choice of the

appropriate interactor. In that case, we need to choose the

interactor for an abstract component of the "Select1FromN"

nature. Having retrieved the nature of the constituent (nat:

Nature init uic.nature) and if the constituent can

"Select1FromN", the program evaluates the number of

concepts treated by the constituent. This number (enumNB) is

obtained through the restoration of the annotation attached to

this constituent through link lnk. If the number of the treated

concepts is strictly lower than 5, then the realization of the

abstract constituent will be in the form of a label

"UIStaticField", calling the method createStaticField (uiw,

uic, lnk), and a set of radio buttons "RadioButton" is created,

calling the method (createRadioButton (uiw, uic, lnk)). On the

contrary, the realization is in the form of a drop-down list

(createDropDownList (uiw, uic, lnk)).

//UIFieldSpecification

operation

UIFieldSpecification(inputmodel:AbstractUserInterface,

uic:CollapsedUIUnit,uiw:UIWindow,evaluationModel:Ergon

omicModel)

is do

//restore nature of component

var nat : Nature init uic.nature

//recuperate restore manipulated concepts

var lnk : Link

lnk := getAllLinks(inputmodel).

detect{c|stdio.writeln ("link" + c.uicomponent.name)

c.uicomponent.name == uic.name}

// Select one item from N

if(nat == Nature.Select1FromN) then

if(lnk.uicomponentannot.enumNB>0)and

lnk.uicomponentannot.enumNB<5)

then

 createStaticField(uiw,uic,lnk)

 from var i : Integer init 0

 until i == enumNB-1

 loop

 createRadioButton(uiw,uic,lnk)

 end

else

 createStaticField(uiw,uic,lnk)

 createDropDownList(uiw,uic,lnk)

end end

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

39

Several existing characteristics in the model of the user can

have an impact during the realization of the AUI. Certain

characteristics have an impact on the choice of the concrete

object of interaction, such as the preference property of the

user in terms of the modality of communication. The impact is

thus expressed in terms of the reshaping of the interface. The

extract of the Kermeta code below illustrates the impact of the

preference modality of communication on the realization.

operation transform (inputModel : AbstractUserInterface,

paramModel:UserModel, evaluationModel :

ErgonomicModel)

: ConcreteUserInterface is do

AUI2CUI := Trace <UIElement, CUIElement>.new

AUI2CUI.create

result := ConcreteUserInterface.new

var modpref : Modality init

getPreference(paramModel).modalityOfCommunication

if (modpref == Modality.graphical)

then

 stdio.writeln("Graphical Modality")

 //Graphical treatment

else if (modpref== Modality.auditive) then

 stdio.writeln("Auditive Modality")

//Auditive treatment

 end

end

Other characteristics in the model of the user influence are the

properties of the objects of interactions rather than the choice

of concrete object. The extract of the following code allows

the function to create a service (createServicePerso method).

It shows the activation of the two services "useoflanguage"

and "useoftooltip" as example. The latter is activated if the

user does not have strong computer capacities ("Computer

aptitude").

operation createServicePerso(nameuiw :String,pref :

Preference,

knl : Knowledge) : PersonalizationService is do

var srv:PersonalizationService init

PersonalizationService.new

srv.name :=nameuiw

if pref.language != Language.french then

 srv.useoflanguage := true

 srv.language := pref.language.name

else

 srv.useoflanguage := false

end

if knl.computerAptitude!= Level.hight then

 srv.useoftooltip := true

else

 srv.useoftooltip := false

end //rest of code

result := srv

end

Our research work lies within the reference of C. Bastien and

D. Scapin [10] and adopts the perspective [47] in the

distribution of the criteria of ergonomics in the process of

generation of UI (Fig. 11]).

The first transformation module consists in concretizing

abstract containers while at the same time taking into account

the characteristics of the user. This concretization is motivated

by the incitation criteria, explicit actions, user control and

protection against errors. We decided to insert the incitation

criteria at this level because the concretization of the

containers allows the specification of the container type and

therefore, it offers the possibility of associating a label and/or

another additional indication with the container of text fields

type. Besides, because the type of the container is known,

then we can associate buttons with concrete containers and

therefore the explicit actions and user control criteria can be

inserted at this level. Moreover, the text fields can be replaced

by drop-down lists to minimize the risk of seizing erroneous

values. At this stage, it is the protection against errors

criterion that is implemented. In the following, we detail the

rules of the criteria of usability injected at this level.

Fig 11: Injection of ergonomic criteria in transformation

modules

Incitation: it is to associate a label with each text field to

guide the user. Besides, at the level of the label, further clues

about the entry format of data can be added. For an input field

having enumeration type (unit of measurement or some other

symbol), we add a label next to the input field to properly

guide the user.

In this first transformation module a component of the type

"specify" in AUI is transformed into a "FieldIn" (Textfield) in

the first concrete user interface generated. The code below is

an excerpt from the kermeta code which outlines the method

explaining the incitation criteria.

//prompting criterion

var nat : Nature init uic.nature

var tp : AnnotationType

init lnk.uicomponentannot.type

if (nat == Nature.Specify) then

 //TextField creation

 createFieldIn(uiw,uic,lnk)

 if (prompting == true) then

 if (tp == AnnotationType.EEnumerator) then

 //Creation of Label with symbol

 createStaticField(uiw,uic,lnk,symbol)

 end

 end

end

Explicit actions: The system should an explicit action of

validation by the user (eg. : Entry, Validation, OK) following

an entry of data ("FieldIn", "DropDownList", "RadioButton",

"CheckBox"). The following code lines present the insertion

of this criterion following an entry of data of the type of text

field.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

40

operation createFieldIn(uiw :UIWindow,

uic : CollapsedUIUnit,lnk : Link) is do

var fi : UIFieldEdit

init UIFieldEdit.new fi.name := lnk.uicomponentannot.data

uiw.uifieldW.add(fi)

stdio.writeln("creation of FieldIn"+ fi.name)

//explicit actions

if (ExplicitUserAction == true) then

var bt : UIButton init UIButton.new

bt.name := "OK"

uiw.uifieldW.add(bt)

stdio.writeln("creation of UIButton"+ bt.name)

end

end

User control: Allowing the user to interrupt an action or

processing in progress at any time using the button "cancel".

//user control

var btCancel : UIButton init UIButton.new

btCancel.name := "Cancel"

uip.uifieldP.add(btCancel)

stdio.writeln("creation of UIButton"+ btCancel.name)

Protection against error: The protection of the user

against error can be translated at this level, by the fact of

creating a list happening instead of the text field. In fact, the

user has only to choose the appropriate values and he is

protected against entering the incorrect values.

if (ErrorProtection == false) then

createFieldIn(uiw,uic,lnk)

else

if (lnk.uicomponentannot.enumNB >5)then

createDropDownList(uiw,uic,lnk)

else

createRadioButton(uiw,uic,lnk)

end

end

3.5.2 Step 2: Transformation of CUI into CUI2

parameterized by platform model and ergonomic

model
The obtained CUI1 is the source model of the second

transformation that takes as parameters the characteristics of

the platform. We have addressed the impact of the property

screen size and inputting/outputting devices of the platform.

The following code produces the testing for the required

devices of graphical or vocal interaction.

operation transform (inputModel : ConcreteUserInterface,

paramModel : Plateform, evaluationModel:ErgonomicModel)

:ConcreteUserInterface is do

CUI2CUI1 := Trace <CUIElement, CUIElement>.new

CUI2CUI1.create

result := inputModel

var width :Integer

init getScreen(getOutputD(getID(paramModel))).width

var height:Integer

init getScreen(getOutputD(getID(paramModel))).height

getCUIWindow(inputModel).each{uiw1|if

(MouseExist(paramModel)

and ScreenExist(paramModel)and

KeyboardExist(paramModel))

or(TouchPadExist(paramModel)and

ScreenExist(paramModel)

and KeyboardExist(paramModel)) or

TouchscreenExist(paramModel)

then

 /*Treatment*/
else stdio.writeln("Inexistent Device")

end}

getVocalGroup(inputModel).each{vg|if

VisiocasqueExist(paramModel)

or (MicrophoneExist(paramModel)and

ScreenExist(paramModel)

and then

getVocalForm(vg).each{vf|

 /*Treatment*/

else stdio.writeln("Inexistent Device")

end}

end

Concerning the second transformation, we have tried to find a

solution to have the possibility of specifying the platform and

injecting the corresponding ergonomic criteria so as to create

the adequate interface independently. Therefore, the second

transformation module is controlled by several criteria among

which minimal actions, informative density, legibility and

protection against error can be mentioned. Thus, the injection

of the ergonomic criteria depends on the choice of the

platform, that is why, we can favor one ergonomic criterion to

another with regard to the platform characteristics, namely the

screen size. For that reason, we have introduced the notion of

priority between the criteria in an implicit manner.

The already-realized work in [48] presents a development

process of a plastic UI that is applicable to the context of use.

The latter takes into account the context of use is considered

especially on the platform. The UI for PC is produced first,

and following a series of iterations starting from the, UI of the

PC for an iPhone is produced. That is to say, to create an

interface for the iPhone, it is necessary at the first place to

create an interface for PC. The distribution of ergonomic

criteria in [48] is done in iteration and certain criteria taken

into account for a given platform can be non-applicable or

another platform. In our work we have tried to find a way to

be able to specify the platform and create the appropriate

interface independently (the relationship between UI for

different platforms is horizontal).

The injection of ergonomic criteria relies then on the choice of

the platform. So we can focus on one ergonomic criterion

instead of another depending on the characteristics of the

platform, namely for example the size of the screen. And that

is how we introduced the notion of priority between the

criteria, which is made implicitly.

 For a large-sized screen:

Minimal actions: This is to reduce the path length of

interaction, limiting, particularly, the actions of navigation,

which do not contribute to the achievement of the business

task. Of course, to limit the navigation we replace the

windows with panels while respecting the relationship

between windows regardless of being sequential or

simultaneous.

If the relationship between windows is sequentially, then the

target window becomes panel in the source window, without

forgetting the deletion of target window.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

41

var width : Integer init

getScreen(getOutputD(getID(paramModel))).width

var height: Integer init

getScreen(getOutputD(getID(paramModel))).height

if ((width >= withMin) and (width <= withRef) and (height

>= heightMin) and (height <= heightRef)) then

 //treatment

else //Minimal Action

 //sequential relationship

 if (String.clone(newrs.type)

 .equals("Sequential")) then

 stdio.writeln("window source: " + uiwsrc.name)

 stdio.writeln("window target: "

 + uiw1.name)

 createPanel(result,uiw1,uiwsrc)

 stdio.writeln("Creation of panel in window "

 +uiwsr.name+"in the place of window " + uiw1.name)

 result.uiwindow.remove(uiw1)

 end

end

// operation createPanel

operation createPanel(outputmodel :

ConcreteUserInterface,uiw1 :UIWindow,

uiwsr : UIWindow) is do

 //create new Panel

 var uip: UIPanel init UIPanel.new

 uip.name := uiw1.name

 getCUIPanel(uiw1).each{p| createUIPanelP(p,uip)}

 getCUIFieldW(uiw1).each{f| createFieldPanel(uip,f)}

 uiwsr.uipanel.add(uip)

end

If the relation between windows is simultaneous, then both

windows become two panels in source window if it exists or

in a new window.

operation createPanels(outputmodel :

ConcreteUserInterface,uiw1 : UIWindow,

uiwsr : UIWindow,nwin : UIWindow) is do

 //first panel

 var uip1: UIPanel init UIPanel.new

 uip1.name := uiw1.name

 getCUIPanel(uiw1).each{p|createUIPanelP(p,uip1) }

 getCUIFieldW(uiw1).each{f|createFieldPanel(uip1,f)}

 nwin.uipanel.add(uip1)

//second panel

 var uip2: UIPanel init UIPanel.new

 uip2.name := uiwsr.name

getCUIPanel(uiwsr).each{p|createUIPanelP(p,uip2)}

getCUIFieldW(uiwsr).each{f|createFieldPanel(uip2,f)}

 nwin.uipanel.add(uip2)

 end

On the other hand, in order to satisfy the the sub-criterion

"minimal actions", each panel composed only of buttons is

deleted and replaced by destinations panels related to these

buttons.

//panels

var panels : OrderedSet<UIPanel>

panels := getCUIPanel(uiw1)

var panel : UIPanel init panels.each{p|

stdio.writeln(p.name)

var fields : OrderedSet<UIField>

fields := getCUIFieldP(p)

var test : Boolean init true

var Nb : Integer init 0

fields.each{f|if(f.getMetaClass()!= UIRadioButton)

then test:= false
else Nb:=Nb+1

stdio.writeln(Nb.toString)

end}

stdio.writeln(test.toString)

if test == true then

var rs : OrderedSet<UIRelationShip>

 //UIRelationShip

 rs := getRelationShip(inputModel)

 //.detect{src|

var rscp : UIRelationShip

init rs.detect{u|u.source == p.name}

var ps : OrderedSet<UIPanel>

ps := getCUIPanel(uiw1)

var panelt : UIPanel init ps.detect{pt|

rscp.target == pt.name}

//var paneltar : UIPanel init panelt

from var j : Integer init 0

until j == Nb

loop

var fs : OrderedSet<UIField>

fs := getCUIFieldP(panelt)

fs.each{f|stdio.writeln(f.name)}

createPanelW(panelt,uiw1)

j := j + 1

end

uiw1.uipanel.remove(p)

uiw1.uipanel.remove(panelt)

end

}

 For a small-sized screen:

The height of a small-sized screen is not sufficient to display

all information and the user must (scroll) to watch the entire

window. This informational density negatively influences the

performance of the user who can easily fall into error if he

does not see the rest of the window.

The insertion of the two criteria of informational density and

protection against error at this level of transformation is

crucial to solving this problem.

Informational density: To reduce the informational

density we replace the panels with windows. The window

should also be divided into multiple windows appropriate to

the size of the screen.

if ((width >= withMin) and (width <= withRef) and (height

>= heightMin) and (height <= heightRef)) then

getCUIPanel(uiw1).each{cuip|

// RelationShip Treatment

var uirs : OrderedSet<UIRelationShip>

uirs := getRelationShip(inputModel)

var rscp : UIRelationShip init uirs.

detect{u|u.source == cuip.name}

var newrs : UIRelationShip init

UIRelationShip.new

newrs := rscp

createWindow(result,cuip,uiw1,srv)

stdio.writeln("Creation of window in

the place of panel " + cuip.name) }

Legibility: The fact of replacing the panels by the window

increases the legibility and clarity of the interface.

Protection against error: The navigation between

windows is realized by the buttons "next" and "previous".

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

42

As a consequence, the quality of the interface in terms of

informational density and protection against error increases.

3.5.3 Step 3: Transformation of CUI2 into CUI3

parameterized by environment model and

ergonomic model
The third transformation injects the properties of the

environment that will host the application. Environment

properties do not affect the objects of interaction, but do affect

the existence or nonexistence of interface services. The

following code shows the activation of service

"useofbackground".

getService(inputModel).each{srv|

if(getLuminousEnv(getAmbiantEnv(paramModel)).lightInten

sity

== Level.hight)or (getSocialEnv(paramModel).atmosphere

== Atmosphere.religious)or(getSpatialEnv(paramModel).

getMetaClass() == OutDoorEnvironment and

getTemporalEnv

(paramModel).time == Time.daytime) then

 srv.useofbackground :=true

 srv.background :=BackGroundType.light

end

The third transformation module takes the environment meta-

model as a parameter. Certainly, this meta-model includes all

the facets of the environmental context susceptible to react

directly or indirectly to the interactive system and to this level

of transformation; the only ergonomic criterion on which we

decided to inject in this module is the legibility criterion.

The injection of ergonomic criteria in the third transformation

module parameterized by environment model can mainly

improved the legibility criteria.

Legibility: The performance is enhanced when the

presentation of information on the screen reflects the

characteristics of the environment. Good legibility facilitates

reading the information presented. For example, if we are at

night, we use an appropriate interface. Hence the criterion of

clarity depends sometimes on environmental characteristics,

which explains the insertion of this criterion at the level of

this transformation module.

4. CASE STUDY
In order to illustrate the generation and the adaptation

processes, a real-world case study is investigated. The

application concerns the case of a Tourist Guide System

(TGS), whose scenario is adapted from [49].

It is assumed that the mayor's office of a touristic town

decides to provide visitors with a tourist guide. This system

offers the possibility to choose the visit type (tourism,

shopping, work, etc.). During the visit, the system firstly

offers tourists several choices of visit circuits, secondly shows

the way to be followed, and thirdly delivers information on

the points of interest close to the visitor. Throughout the

circuits, the system can deliver to the tourist all kinds of

information on the characteristics of a touristic area, or the

promotion of a range of clothing while passing in front of a

store. Tourists in this city, can use this system to find a place

such as a restaurant or a hotel nearby, to get information about

a place (a place, a street, a building, monument, ...) to know

the routes of access, etc.. One possibility for detecting the

position of the user can be used (now using the GPS system).

Various users can reach the system. The tourist who is using

this guide system can be a child or an adult. The User

Interface must have the ability to display text and messages in

the language of the user. The UI must also respect the user

preferences with regard to the colors (background, text, ...)

and the preferred modes of interaction of the user (graphical,

vocal, ...).

The system is used on platforms of various types (PC, PDA,

cellular phone, etc.). In addition, the UI should be adaptable to

an unknown target platform based on these characteristics that

are taken into account during the process of adaptation. As

certain users of the system will be on the move, the

characteristics of the environment are unstable and the system

has to be adapted to these changes. The use of the system can

be influenced essentially by the level of light and noise.

As the tourist guide system is large, we are then interested in

the generation of the concrete user interface for the task of

"Search itinerary". We suppose to have the abstract user

interface from Fig 12 as a result of the transformation of the

task model "Search itinerary" [49]. This transformation is

explained in details in [35]. The result of the transformation is

an XML file which is in accordance with the AUI meta-model

(Fig 12)

Left of Fig 12 shows the tree based abstract user interface for

the task of "Search itinerary". This interface contains a

"UIGroup" called "Search itinerary". This "UIGroup" gives

access to two "UIUnitSuit" ("Specify coordinates" and "Show

result"). The "UIUnitSuit_Specify coordinates" container

contains two abstract containers of the type ExtendedUIUnit

("Choose starting point" and "Choose destination point"). For

both containers, we can find two abstract components of the

type CollapsedUIUnit ("Choose a category" and "Specify").

The "UIUnitSuit_Show result" container includes three

abstract components of the type CollapsedUIUnit ("Choose a

planning category", "Calculate the itinerary" and "Show map

with itinerary"). We have developed an editor with the tool

Graphical Modeling Framework (GMF) of Eclipse for the

abstract user interface. Right of Fig 12 presents a visualization

of the XML abstract user interface by Abstract User Interface

editor.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

43

Fig 12: (Left) The tree-based description of Abstract User Interface (Right) Abstract User Interface

For our case study and to better explain the impact of the

ergonomic model of the transformation, we choose only a few

ergonomic criteria for injecting into the process of generating

the user interface. The criteria are guidance, workload,

explicit control and error handling. The ergonomic model that

we added as a parameter is presented by the following xml

code.

<?xml version="1.0" encoding="ASCII"?>

<ErgonomicMetaModel:ErgonomicModel xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"

xmlns:ErgonomicMetaModel="ErgonomicMetaModel"

.../ErgonomicMetaModel.ecore">

 <criterion name="guidance">

 <subCriterion name="prompting"/>

 <subCriterion name="legibility"/>

 </criterion>

 <criterion name="workload">

 <subCriterion name="brevity">

 <elementaryCriterion name="concision"/>

 <elementaryCriterion name="minimalActions"/>

 </subCriterion>

 <subCriterion name="informationDensity"/>

 </criterion>

 <criterion name="explicitControl">

 <subCriterion name="explicitUserAction"/>

 <subCriterion name="userControl"/>

 </criterion>

 <criterion name="errorManagement">

 <subCriterion name="errorProtection"/>

 </criterion>

</ErgonomicMetaModel:ErgonomicModel>

4.1 Step 1: Transformation of AUI into

CUI1 parameterized by user model and

ergonomic model
The transformation T1 having as a source model the abstract

user interface of Fig 12 and as transformation parameters the

user model and the ergonomic model of (Left of Fig 13)

generates a first ergonomic concrete user interface adapted to

the user characteristics.

The transformation output is an XML file that is in

accordance with the CUI meta-model (Fig 10). Right of Fig

13 presents the visualization of the CUI1 with our

ConcreteUserInterface editor.

The realization of the AUI is in graphical mode since the user

has chosen a modality of graphical communication. A set of

personalization services is activated giving as an example the

service "Use of language" which results from the fact that the

user prefers the English language.

Following the addition of our ergonomic model, the concrete

user interface resulting from the first transformation contains

two panels. The first panel "Specify coordinates" contains

three radio buttons that correspond to the names of the

category. The second panel "Show result" contains a list box

instead of the text field for entering planning category. Hence

the criteria "protection against errors" and "incitation" are

satisfied. The injection of the two sub-criteria "explicit

actions" and "user control" resulting in the two buttons "Ok"

and "Cancel". The protection against error is translated by the

fact of replacing the text field either by the radio buttons or a

list according to the number of elements.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

44

Fig 13: (Left) The tree-based description of user and ergonomic models (Right) Concrete User Interface specific to the the user

and ergonomic models

4.2 Step 2: Transformation of CUI into

CUI2 parameterized by platform model

and ergonomic model
As a concrete example, left of Fig 14 gives the tree-based

description of "iPAQ Hx2490 Pocket PC" and of ergonomic

model. The refinement of the CUI1 taking into account this

platform allows the generation of a concrete interface

responding to the properties of this platform, as in the

example of the value of the screen size (height="320"

width="240"). Moreover, the choice of the appropriate

interactor is related to the inputting devices that exist in the

platform. In this case, we have a touch screen (TouchScreen)

and a text input device (TextInputDevice). That is why the

concretisation in the graphic form is possible.

Taking into account the properties of the platform "iPAQ

Hx2490 Pocket PC" (Left of Fig 14), the transformation of

CUI1 (Right of Fig 13) produces a CUI2 with a remodelling

of containers. Right of Fig 14 presents the visualization of the

CUI2 with our ConcreteUserInterface editor. Given the size of

the screen "iPAQ Hx2490 Pocket PC" and the number of

manipulated concepts (>5), the realization of the abstract

component "CollapsedUIUnit_Choose a planning category" of

AUI is a "UIUpDropDownList". A "UIStaticField" interactor

called "Planning category" is added in order to support the

guidance/prompting criteria defined in [10].

In this second concrete user interface, the "minimal actions"

sub-criteria is taken into account. During the second

transformation module, the panel "Show result" is replaced by

three panels "Show result", "Calculate the itinerary" and

"Show map with itinerary". And before proceeding to this

transformation, our program demonstrates that the platform

characteristics (screen size, for example) can achieve this

transformation and therefore allow the insertion of this

criteria.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

45

Fig 14: (Left) The tree-based description of platform and ergonomic models (Right) Concrete User Interface specific to the the

user, platform and ergonomic models

4.3 Step 3: Transformation of CUI2 into

CUI3 parameterized by environment model

and ergonomic model
Our case study is situated in an open environment

(outDoorType). As regards the ambient characteristics that

specify this type of environment, it will be restored to the

intensity of light as well as that of the sound level. This model

(Left of Fig 15) is going to feed the third module of

transformation which will lead to the generation of a concrete

interface adaptable to the context of use passing through the

three elements that define it.

Taking into account the properties of environment (Left of Fig

15), the transformation of CUI2 (Right of Fig 14) producing a

CUI3 (Right of Fig 14) with the background service retains

"light" value since the light intensity was high.

The dark letters on a light background are easier to read than

the other way around and therefore taking into consideration

the sub-criteria "legibility" is translated by the addition of the

attribute Color which presents the color of the letters which

has the value "Blue".

Fig 15: (Left) The tree-based description of environment and ergonomic models (Right) Concrete User Interface specific to the

the context of use and ergonomic models

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

46

5. Conclusion and perspectives
In this paper, we have presented a model driven engineering

approach for the development of adaptive UI while preserving

usability. To apply "model-to-model" transformations, we set

up two meta-models: Abstract User Interface meta-model and

Concrete User Interface meta-model. In order to adapt the UI

to its context of use, we proposed three meta-models

describing the context of use. The generation process consists

of three transformation modules starting from an AUI and

generating a CUI by inserting the user, platform and

environment model, respectively. Encountered by a new

context, a definition of a model for this context will be

enough. So, our transformations rules are generic. The second

objective of our research is the preservation of the adaptive UI

usability. To achieve this objective, we propose a ergonomic

meta-model that serves as a parameter in the three

transformation modules of the process of generating adaptive

UI.

The continuation of our work will naturally lead to study the

possibility of merging the three transformation modules into a

single model that has a source model which is the abstract

interface, a target model which is the concrete interface and

four parameter models that are the user, platform,

environment and ergonomic. The problem that arises is the

causal relationship between the different thirds of the context

of use as well as the priority between the different ergonomic

criteria of the ergonomic model.

6. REFERENCES
[1] Weiser, M. 1991. The computer for the 21st century.

Scientific American, Vol. 265, No.3, pp. 94-104.

[2] Agoston, T-C., Ueda, T., and Nishimura, Y. 2000.

Pervasive Computing in a Networked World. In Global

Distributed Intelligence for Everyone, INET2000, 10th

Annual Internet Society Conference, July 18-21,

Yokohama, Japan.

[3] Schilit, B. and Theimer, M., 1994 Disseminating active

map information to mobile hosts. IEEE Network, 8(5),

pp. 22-32.

[4] ISO 9241-11 1998. Exigences ergonomiques pour

travail de bureau avec terminaux à écrans de

visualisation (TEV) - Partie 11: lignes directrices

relatives à l’utilisabilité.

[5] Strang, T., and Linnhoff-Popien, C. 2004. A context

modeling survey. In International Workshop on

Advanced Context Modelling, Reasoning and

Management, UbiComp2004-The Sixth International

Conference on Ubiquitous Computing,

Nottingham/England.

[6] Dey, A. (2000) Providing architectural support for

building contextaware applications. Master’s thesis,

College of Computing, Georgia Institute of Technology.

[7] Bézivin, J., Blay, M., Bouzeghoub, M., Estublier, N.,

Favre, J. M. 2005. Action spécifique CNRS sur

l’Ingénierie Dirigée par les Modèles (Rapport de

synthèse). CNRS, France.

[8] Favre, J. M. 2004. Toward a Basic Theory to Model:

Model Driven Engineering. The Workshop on Software

Model Engineering, Wisme’2004, Lisbonne, Portugal.

[9] MDA 2012. Model Driven Architecture.

http://www.omg.org/mda.

[10] Bastien, J. M. C., and Scapin, D. L. 1993. Ergonomic

Criteria for the Evaluation of Human-Computer

Interfaces (version 2.1). Technical report N156, INRIA,

May.

[11] Samaan, K., and Tarpin-Bernard, F. 2004. Task models

and Interaction models in a Multiple User Interfaces

generation process. In Proceedings of 3rd International

Workshop on TAsk MOdels and DIAgrams for user

interface design TAMODIA’2004. Prague, Check

Republic, November, ACM, pp 137-144.

[12] Vanderdonckt, J. 2005. A MDA-Compliant

Environment for Developing User Interfaces of

Information Systems. In: Proc. of CAiSE’05, pp 16-31,

Springer-Verlag, Berlin.

[13] Mori, G., Patern, F., and Santoro, C. 2003. Tool Support

for Designing Nomadic Applications. In Proceedings of

the International Conference on Intelligent User

Interfaces, pp 141-148, Miami.

[14] Calvary, G., Coutaz, J., Dassi, O., Balme, L. and

Demeure, A. 2004. Towards a new generation of widgets

for supporting software plasticity: the “comet”. The 9th

IFIP Working Conference on Engineering for Human-

Computer Interaction Jointly with The 11th International

Workshop on Design, Specification and Verification of

Interactive Systems, Bastide, R., Palanque, P., Roth, J.

(Eds), Lecture Notes in Computer Science 3425,

Springer, ISSN 0302-9743, Hamburg, Germany, pp 306-

323.

[15] Limbourg, Q. and Vanderdonckt, J. 2004. UsiXML: A

User Interface Description Language Supporting

Multiple Levels of Independence. In Matera, M., Comai,

S. (eds.): Engineering Advanced Web Applications.

Rinton Press, Paramus, pp 325-338.

[16] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L. and Vanderdonck, J. 2003. A Unifying

Reference Framework for Multi-Target User Interfaces.

Interacting with Computers 15, 3, pp 289-308.

[17] Hariri, M. A., Lepreux, S., Tabary, D., and Kolski, C.

2009. Principes et étude de cas d’adaptation d’IHM dans

les SI en fonction du contexte d’interaction de

l’utilisateur. Ingénierie des Systèmes d’Information (ISI),

14, pp. 141-162.

[18] Hariri, M. A., Tabary, D., Lepreux, S., and Kolski, C.

(2008) Context aware Business adaptation toward User

Interface adaptation. Communications of SIWN, 3, pp

46-52

[19] Sottet J-S, Calvary G, Favre J-M, Coutaz J, Demeure A,

Balme L (2005) Towards Model-Driven Engineering of

Plastic User Interfaces. Conference on Model Driven

Engineering Languages and Systems (MoDELS’05)

satellite proceedings, Springer LNCS, pp 191-200

[20] Hachani, S., Dupuy-Chessa, S., and Front, A. 2009. Une

approche générique pour l’adaptation dynamique des

IHM au contexte. IHM’09, Grenoble, France.

[21] Sottet, J. S., Calvary, G., Favre, J. M. 2006. Mapping

Model: A First Step to Ensure Usability for sustaining

User Interface Plasticity. The Workshop on Model

Driven Development of Advanced User Interfaces

MoDELS’06.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.3, September 2012

47

[22] Correani, F., Leporini, B., Patern, F. 2006. Automatic

inspection-based support for obtaining usable web sites

for vision-impaired users. Universal Access in the

Information Society, 5(1) pp 82-95.

[23] Leporini, B., Patern, F., Scorcia and A. 2006. Flexible

tool support for accessibility evaluation. Interacting with

Computers, 18(5)pp 689-890.

[24] Vigoa, M., Aizpuruaa, A., Arruea, M. and Abascala, J.

2009. Automatic device-tailored evaluation of mobile

web guidelines. The New Review of Hypermedia and

Multimedia, 15(3) pp 223-244.

[25] Meskens, J., Loskyll, M., Seibler, M., Luyten, K.,

Coninx, K. and Meixner, G. 2011. GUIDE2ux: A GUI

Design Environment for Enhancing the User eXperience.

Proc. of the 3rd ACM SIGCHI Symposium on

Engineering Interactive Computing Systems. Pisa, Italy,

June 13-16.

[26] Frey, A. G, Céret, E., Dupuy-Chessa, S., and Calvary, G.

2011. QUIMERA: a quality metamodel to improve

design rationale. Proc. of the 3rd ACM SIGCHI

Symposium on Engineering Interactive Computing

Systems. Pisa, Italy, June 13-16, 2011.

[27] Sottet, J. S., Calvary, G., Coutaz, J., Favre, J. M. 2007 A

Model-Driven Engineering Approach for the Usability of

Plastic User Interfaces, In the proceedings of

Engineering Interactive Systems joining Three Working

Conferences : IFIP WG2.7/13.4 10th Conference on

Engineering Human Computer Interaction, IFIP WG

13.2 1st Conference on Human Centred Software

Engineering, DSVIS - 14th Conference on Design

Specification and Verification of Interactive Systems,

University of Salamanca, Spain, March 22-24.

[28] OMG 2012. Object Management Group.

http://www.omg.org.

[29] Terrase, M., Savonne,t M., Leclercq, E., Grison, T., and

Beker, G. 2005. Points de vue croisées sur les notions de

modèle et métamodèle. IDM’05 Premières Journées sur

l’Ingénierie Dirigée par les Modèles, Paris 30 juin, 1

juillet.

[30] Bézivin, J. 2004. In Search of a Basic Principle for

Model-Driven Engineering. Journal Novatica, Special

Issus.

[31] Kleppe, A., Warmer, J., and Bast, J. 2003. MDA

Explained-The Model Driven Architecture: Practice and

Promise. Addison-Wesley.

[32] Vale, S., and Hammoudi, S. 2008. Context-aware Model

Driven Development by Parameterized Transformation.

In proceedings of Model Driven Interoperability for

Sustainable Information Systems, MDISIS, Montpellier,

France.

[33] OMG 2003. UML 2.0 Superstructure. OMG document

ptc/03-08-02.

[34] Frankel, D. 2005. Reflection of the State of MDA. MDA

Journal, Meghan-Kiffer Press, pp 1-9.

[35] Bouchelligua, W., Mahfoudhi, A., Mezhoudi, N., Daassi,

O., and Abed, M. 2010 User Interfaces Modelling of

Workflow Information Systems. In Barjis, J. (Ed.)

Enterprise and Organizational Modeling and Simulation.

Lecture Notes in Business Information Processing,

Volume 63, Springer-Verlag Berlin Heidelberg, pp 143-

163.

[36] Bouchelligua, W., Mezhoudi, N., Mahfoudhi, A., Daassi,

O., Abed, M. 2010. An MDE Parameterized

Transformation for Adaptive User Interfaces. G-a

Tsihrintzis, E Damiani, M Virvou, R-. Howlett, Lc. Jain

(Ed.), Intelligent Interactive Multimedia Systems and

Services, Springer-Verlag, Berlin Heidelberg, pp 275-

286, juillet, ISBN 978-3-642-14618-3.

[37] Bouchelligua, W., Mahfoudhi, A., Abed, M. 2012. A

Model Driven Engineering Approach Toward User

Interfaces Adaptation. International Journal of Adaptive,

Resilient, and Autonomic Systems (IJARAS), 3, pp 65-

86.

[38] Thevenin, D., and Coutaz, J. 1999. Plasticity of User

Interfaces: Framework and Research Agenda. In Proc. of

7th IFIP Int. Conference on HCI Interact’99, Edinburgh,

Scotland, pp 110-117

[39] Card S, Moran T, Newell A (1983) The psychology of

Human-Computer Interaction. Lawrence Erlbaum

Associates.

[40] Habieb-Mammar, H. 2004. EDPHA: un Environnement

de Développement et de Présentation d’Hyperdocuments

Adaptatifs. Unpublished doctoral dissertation, Institut

National des Sciences Appliquées (INSA) de Lyon.

[41] OCL 2006. Object Constraint Language, OMG

specification.

[42] Kermeta 2012. Kernel Meta-modeling Framework.

http://www.kermeta.org/.

[43] Thevenin, D. 2001. Adaptation en Interaction Homme-

Machine : Le cas de la Plasticité. Unpublished doctoral

dissertation, Université Joseph Fourier, Grenoble I, pp

212.

[44] Vanderdonckt, J. 1997. Conception Assistée de la

Présentation D’une Interface Homme-Machine

Ergonomique Pour Une Application de Gestion

Hautement Interactive. PhD thesis, Facultés

Universitaires Notre-Dame de la Paix, Institut

d’Informatique, Namur.

[45] Brossard, A., Abed, M., and Kolski, C. 2008. Context

Awareness and Model Driven Engineering: A multi-level

Approach for the Development of Interactive

Applications in Public Transportation. In proceedings of

27th European Annual Conference on Human Decision-

Making and Manual Control, EAM’08, Delft, Hollande.

[46] BPMN 2012. Business Process Modeling Notation.

http://www.bpmn.org.

[47] Daassi, O. 2007. Les COMETs : une nouvelle génération

d’Interacteurs pour la Plasticité des Interfaces Homme-

Machine. PhD thesis.

[48] Serna, A., Calvary, G., Scapin, D. 2010. How Assessing

Plasticity Design Choices Can Improve UI Quality: A

Case Study. In Proceedings of the 2nd ACM SIGCHI

symposium on Engineering interactive computing

systems (EICS’10).

[49] Hariri, M. A. 2008. Contribution à une méthode de

conception et génération d’interface homme-machine

plastique. PhD thesis.

