
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

25

A Stable Covering Set-based Leader Election Algorithm
(SCLEA) for Mobile Adhoc Distributed Systems

Sanaa A. Alwidian

Department of Computer Science and Applications
Faculty of Prince Al-Hussein Bin Abdallah II for IT

The Hashemite University
Zarqa 13115, Jordan

Alaa N. Alslaity
Department of Computer Science

School of Computer and Information Technology
Jordan university of Science and Technology

Irbid 22110, Jordan

ABSTRACT

Leader election process is known as the task of selecting a

particular node or a process to be a unique leader of the

distributed system. Many algorithms were proposed for leader

election in classical, wired distributed systems. However, with

the advent of wireless communication technology, the domain

of distributed computing becomes much wide, and the

concept of leader election in such environments has been

changed due to the dynamic topology resulted from nodes’

mobility. The existing classical leader election algorithms do

not adapt well in mobile ad hoc environments. In this paper,

we propose a new leader election algorithm that is conscious

about nodes’ mobility and the dynamic topology of ad hoc

networks. The main idea of our algorithm is to select a subset

of the nodes to participate in the election process, the selected

nodes should ensure coverage of other nodes and that are of

low mobility. We show through mathematical analysis that

our proposed algorithm, the “Stable CoveringSet-Based

Leader Election Algorithm (SCLEA)” outperforms any other

algorithm that depends on the simple flooding to perform

leader election. The enhancement of our algorithm is advent

in terms of reducing the message overhead associated with

leader election process and minimizing the number of

redundant ELECTION messages as much as possible.

General Terms

Leader Election Algorithms, Distributed Systems. Mobile Ad

hoc Networks

Keywords

Velocity, MANETs, Distributed System, Leader, Leader

Election, ELECTION message, CoveringSet

1. INTRODUCTION

 A distributed system is defined as a system that consists of a

collection of independent computers (or processes) located at

different geographical areas [1]. Due to the distributed nature

of such systems, processes are expected to have equal

responsibilities and interact with each other through message

passing with a desire that there would be no centralized

process that control and manage the system [2]. However,

with this-time technology, people recognized that this desire

could not be completely fulfilled, and there is a need to have

an independent computer (or process) to be assigned an extra

load and to be responsible about the coordination and

management of the system. This particular process is referred

to as the leader.

In distributed systems, a leader is responsible to act as an

initiator and a coordinator and to handle a specific job such as

directory server, token regenerator and central lock

coordinator [3]

The process of selecting and assigning a unique leader in a

distributed system is known as leader election problem. In the

literature, several leader election algorithms have been

proposed for classical distributed systems [4], [5], [6], [7].

However, with the advent of wireless communication

technology, the domain of distributed computing becomes

much wide, and the concept of leader election in such

environments has been changed due to the dynamic topology

resulted from nodes’ mobility. A network that consists of

mobile nodes that move arbitrarily causing the topology to be

dynamic and unpredicted is known as a Mobile Ad hoc

Network (MANET)[8] .Unlike the classical wired systems,

MANETs have challenging characteristics including mobility,

limited bandwidth and constrained resources (such as battery

power). Such features make leader election in MANETs a

non-trivial mission.

Many leader election algorithms have been proposed to work

in ad hoc environments. However, most of them are described

as extrema-finding algorithms in which nodes are assumed to

have a unique ID numbers without considering any other

criteria such as mobility or computational capability [9], and

the elected leader is the node with the largest ID number. In

order for a leader election algorithm to be deployable in

MANETs, the algorithm should take into consideration the

limited resources and the mobility of nodes (not only the node

ID) as key factors to elect the best possible leader.

In this paper, we propose a new leader election algorithm that

is conscious about nodes’ mobility and the dynamic topology

of ad hoc networks. We refer to our proposed algorithm as

the: Stable CoveringSet-based Leader Election Algorithm for

Mobile Ad Hoc Network (SCLEA).

The main idea of our algorithm is to make preferences among

nodes such that only a subset of nodes that provide coverage

of other nodes and that are of low mobility are chosen to

participate in the election process to elect the best possible

leader. The best leader node is the node with lower velocity

than any other available nodes. Depending on the velocity of

nodes as a major factor to elect leaders ensures high stability

of the network.

Proposing this algorithm was motivated by two issues: first,

the need to reduce the communication overhead in mobile ad

hoc environments that is resulted from the redundant

exchange (or broadcast) of messages (ELECTION and OK

messages in the context of leader election). Such extra

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

26

transmission of messages will consume the limited resources

of the ad hoc network such as battery power, bandwidth and

buffers capacity. The second issue that motivate us is the need

to accommodate with the dynamic topology of mobile ad hoc

environment which resulted from the free and arbitrary

movement of nodes. Such free movement, if not taken into

consideration, will have negative impacts on the leader

election process, and might result in either an incorrect

election (i.e. the election of a high-mobility node), or an early

crash of the leader (due to link breakages caused by the high

mobility of nodes).

During the design of our proposed algorithm, we take the two

previously mentioned issues into consideration, and we come

up with an algorithm that is stable and that depends on a

selected subset of nodes (called CoveringSet) to participate in

the leader election process instead of allowing all nodes to do

so.

The rest of this paper is organized as the following: Section 2

discusses the related work. The objectives and assumptions of

the proposed algorithm are discussed in Sections 3 and 4,

respectively. Section 5 illustrates the proposed algorithm, and

a mathematical analysis of the proposed algorithm is provided

in Section 6. Finally Section 7 concludes the paper and

provides future directions.

2. RELATED WORK

Leader election is the process of electing a node (or a process)

as the coordinator of a specific task that is distributed among

several nodes (processes). Leader election is not a recent

problem, and there are many algorithms designed for classic,

static distributed systems. Bully algorithm designed by

Garcia-Molina [10] is one of the most important traditional

election algorithms. Bully algorithm works as follows: when a

node N detects the crash of the current leader, it sends an

ELECTION message to all other nodes with IDs higher than

N’s ID. If no node answers, N wins the election and declares

itself as a leader. However, if one of the nodes with higher ID

responds, N takes over. The higher-up node that receives the

election message sends an OK message back to the sender to

announce that it is available and will take over the election.

The receiver then holds an election unless it already holding

one. This process is repeated until all nodes give up but only

one, which is eventually the newly elected leader. In Bully

algorithm, the best case happens when the node that detects

the leader crash is the node with an ID just below the crashed

leader. In this case, the algorithm requires n-1 messages

(where n is the total number of nodes in the system). In the

worst case, that is, when the lowest-ID process detects the

crash, the algorithm requires O(n2) messages. In addition, this

algorithm is not deployable in mobile ad hoc networks

Mamun et al [11] have proposed a modified version of bully

algorithm to enhance the performance of the algorithm by

minimizing the number of redundant election messages that

are used to discover and elect the leader. The algorithm

proposed in [11] is more efficient than Bully algorithm in

terms of message and time complexity, in the best case, it

requires n-1 message, while in the worst case, it requires 2(n-

1) messages. However, this algorithm also is not deployable

in wireless ad hoc networks

Another modification of the bully algorithm had been

proposed in [12]. The proposed algorithm is an overhead-

aware leader election algorithm that is based on the basic

assumptions of bully algorithm but outperforms the former in

terms of reducing message overhead and time complexity.

The main aim of [12] is to perform leader election by sending

a minimum number of ELECTION messages as much as

possible. This goal is fulfilled by sorting the nodes in a

descending order based on their IDs. Once the current leader

got crashed, the node with the next higher ID (after the

crashed leader) is elected as the new leader. Applying this

algorithm for leader election sufficiently reduces the number

of election messages (O (N) in the worst case, where N is the

total number of nodes in the system). Moreover, the number

of steps required to perform leader election is also reduced,

resulting in time saving, as if compared to Bully algorithm.

However, since the algorithm proposed in [12] relies on the

assumption that the environment is reliable and each node

knows about the entire nodes in the system, then it is difficult

to apply this algorithm on unreliable environments such as

mobile ad hoc networks.

Gerard Le Lann [6] proposed the first leader election

algorithm for unidirectional rings. The main idea of ring

algorithm is that each node prepares an election message that

contains its own ID and circulates this message around the

ring clockwise. The process with the highest ID will have the

priority and assigned as the leader. Le Lann’s algorithm

requires n2
 messages to perform the election, where n is the

total number of nodes. In addition, this algorithm is a single

point of failure and not efficient in mobile wirless

environments.

Authors of [13] and [14] proposed leader election algorithms

for wired networks. They take into consideration the

probability of process crash and link failure. However, they

assume strong and impractical assumptions. In [13], the

network is assumed to be order-preserving. This means that if

a particular message M1 sent by a node N1 at time T1, this

message should be received by all nodes before receiving

another message M2 that is sent by some other node, say N2,

at time T2, where T2>T1. In [14], the authors assumed that

the failure of processes occur before election start. Such

impractical assumptions make these algorithms not

deployable in mobile environments.

Tai Woo Kum [15] proposes a leader election approach to

work in mobile ad hoc networks. In this proposed work, nodes

tend to make another election of a provisional leader while the

original leader is still available and executing. The purpose of

this extra election is to replace the leader with the provisional

leader when the current leader crashes. Although the approach

of [15] can make the system operate fast and might reduce the

performance degradation in distributed systems, but this is not

guaranteed always and failures of nodes and links can occur

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

27

during or after election, making the approach impractical in

mobile ad hoc distributed systems, where link failure is of a

vital impact in the overall performance.

The authors of [16] proposed two algorithms for mobile ad

hoc networks. The algorithms viewed the ad hoc network as

Directed Acyclic Graph (DAC) and impose that each

connected component of the graph should have a single

leader. The proposed leader election algorithms where built

based on the routing algorithm TORA [21]. The first

algorithm designed to adapt to a single topology changes; this

means that a new topology change occurs only after the

algorithm has terminated its execution. While the second

algorithm is designed for concurrent topology changes, which

means that topology changes can occur at any time. Both

algorithms require nodes in the network to communicate with

their neighbours, thus, the algorithms are deployable in ad hoc

environments, however, they have been provided with no

proof of correctness.

Vasudevan et al [17] considered the issue of secure leader

election in mobile ad hoc networks and proposes a leader

election algorithm called the Secure Extrema Finding

Algorithm (SEFA). In SEFA, as the name indicates, is an

extrema finding algorithm which assumes that all nodes that

participate in election process have the same evaluation

function that result in the agreement upon the same candidate

node. In addition, SEFA requires that the parameters used to

select the leader in each round remain constant [17].

In [18], an extrema-finding leader election algorithm for

mobile ad hoc networks had been proposed. Although

designing an algorithm with an extrema-finding aspect is

interesting for environments such as ad hoc networks (because

it is important to select a leader with performance-related

attributes as computational capabilities, battery power or

nodes’ velocity), the algorithms in [18] are considered to be

unrealistic and not suitable for some applications since all

nodes (without any exception) are required to exchange

information in order to elect a leader, and this is impractical.

As a comparative summary, the algorithm proposed in [10] is

costly and has a high message overhead (reaches to O(n2)), in

addition, it is not deployable in mobile ad hoc systems. The

approach in [11] does not take mobility of processes into

consideration, therefore, it is impractical to be deployed in

wireless ad hoc networks. The algorithm proposed in [12]

relies on the assumption that the environment is reliable and

each node knows about the entire nodes, thus, it is difficult to

apply this algorithm on unreliable environments such as

mobile ad hoc networks. The algorithms proposed in [6], [13]

and [14] require large number of messages to perform leader

election, have a single-point-of-failure problem, and rely on

unrealistic assumptions that make it hard to be deployed in

MANETs. The approach of [15] is exposed to frequent link

breakages and failures of nodes that can occur during or after

election, while the two protocols proposed in [16] have been

provided with no proofs of correctness. The approaches

provided in [17] and [18] are both impractical since the

former assumes that all nodes that participate in election

process have the same evaluation function, while the later

assumes that all nodes (without any exception) are required to

exchange information in order to elect a leader, and this is not

realistic!

3. ALGORITHM OBJECTIVES

The main objective of our proposed SCLEA is to decrease the

communication overhead resulted from the redundant

exchange of ELECTION messages between all nodes in the

network. This goal is achieved by selecting a subset of nodes

(rather than all nodes) to participate in the leader election

process. For any hop, Hi, the subset of nodes is chosen with a

guarantee that the nodes belonging to this set will cover all the

nodes in the next hop, Hi+1. Therefore, along all hops, the

nodes will reached via a minimum number of nodes, thus, the

message overhead will be reduced as much as possible. The

second objective of our algorithm is to elect, as a leader, the

most-valued-node among all nodes in the network, rather than

electing the node with higher ordinary ID as in the case of the

previous leader election algorithms. Since the preference

attribute used in this work is the velocity of nodes, then

electing the leader with lower velocity will ensure more

stability and survivability of the leader. Thus, the probability

of the frequent leader crash or the chance that the leader will

move and leave the transmission range of other nodes will be

lower.

4. ALGORITHM ASSUMPTIONS

For our proposed SCLEA algorithm, we model the mobile ad

hoc network as a connected graph that consists of a set of

nodes, such that each node is assigned a unique identifier, ID

and a VALUE. The ID is used to identify nodes during the

election process, while the VALUE represents the capacity of

nodes which is used to make preferences among nodes during

the process of leader election. This value could represent any

performance attribute such as the level of nodes’ velocity

(speed), battery power or computational capabilities. For our

algorithm, we depend on velocity as a major preference-based

attribute, such that nodes with lower velocity (thus, more

stability) will be preferred to be chosen to participate in the

leader election process. There are cases where nodes have the

same capacity, i.e. the same VALUE. In these cases node IDs

are used to break ties among nodes which have the same

VALUE.

In the graph model of the mobile ad hoc distributed system,

each node is represented by a vertex, and the lines (or edges)

between nodes represent communication links. Two nodes are

said to be connected together if they are positioned within the

transmission range of each other, hence, they can directly

communicate with each other. It is worth to mention here that

the graph is not always connected and nodes might lose the

direct communication links toward other nodes. This is due to

the fact that nodes are free to move arbitrarily and gets out of

the transmission range of any particular node. Therefore, the

graph becomes disconnected and changes over time as nodes

move. In our proposed algorithm, we only consider those

nodes that belong to the graph. That is, nodes that still exist

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

28

within the transmission radius of some other node. While

nodes that leave all of the available transmission ranges and

go out of the network scope will not be considered at all.

In addition, we assume that all nodes are periodically

informed about and aware of other nodes. The periodic

updates are achieved through the exchange of periodic

HELLO messages between nodes every HELLO_INTERVAL

time. In this HELLO messages, each node appends its unique

ID and VALUE to inform the neighboring node about its

status. Based on this information, each node maintains a

neighbor table that contains <nbr ID, VALUE> entries. These

entries are ordered ascendingly according to the node’s

VALUE. In case there is a tie (i.e. two or more nodes have the

same VALUE), the order will be based on the node’s ID. This

way of ordering neighbor tables according to nodes’ VALUE

(which represents nodes’ velocity) guarantees that the nodes

with lower mobility will have a higher probability to

participate in the leader election process, thus, the network

will be more stable and less prone to link breakages and

failures.

5. THE PROPOSED ALGORITHM

In this section, we describe our proposed leader election

algorithm, SCLEA. But before we discuss its details, it is

worthy to discuss the ordinary situation of leader election that

happens in mobile ad hoc networks. In such types of

networks, flooding is the major technique that is used for

communication and message transmission between nodes.

Flooding is the process wherein, each node, and upon

receiving a particular message, sends the received message

again to its neighboring nodes (i.e. the nodes that are

positioned within its transmission range) [19]. This process

continues until all nodes in the network receive the message

(at least once). In the domain of leader election, if the current

leader got crashed and a particular source node, S, detects the

crash, it initiates a leader election process by sending an

ELECTION message to all of its 1-hop neighbors. In turn,

those 1-hop neighbors resend the ELECTION message to their

entire 1-hop neighbors (that is, 2-hop neighbors of node S),

and so on. If the network consists of n hops, the process of

leader election terminates when the nodes of hop number (n-

1) send the ELECTION message to all of their next hop

neighbors, that is, the nth-hop neighbors. It is obvious that the

leader election process which is performed depending on the

mentioned naïve flooding technique is of a big cost, and has a

non negligible message overhead, especially when the number

of nodes and hops becomes larger. It can be noticed that a lot

of redundant messages are transmitted because all nodes

(without any preferences) participate in the election of the

new leader. This process is illustrated in Figure 1.

According to Figure 1, it is clear that the number of messages

that should be exchanged between nodes using the simple

flooding is high, imposing heavy traffic on the network. To

overcome this problem, we present an enhanced CoveringSet-

based and velocity-aware algorithm that significantly

decreases the number of messages (ELECTION and OK

messages) that should be exchanged between nodes to

perform leader election task. Message reduction is achieved

by reducing the number of nodes that perform leader election

process. This is done by depending on the CoveringSet, which

is a subset of the 1-hop nodes that guarantee full coverage of

the 2-hop nodes. The algorithm that we apply to select

CoveringSets is described in Section 5.1.

The idea of our proposed algorithm is illustrated in Figure 2.

In this figure, we assumed that node S detects the crash of the

current leader; therefore, it initiates the election process.

Instead of broadcasting the ELECTION message to all its

neighboring nodes (as in the case of the flooding-based

algorithms), node S creates its CoveringSet, then it multicasts

the ELECTION message to its CoveringSet. In turn, each one

of the CoveringSet nodes (colored with blue in the figure)

multicast the ELECTION message further to their CoveringSet

nodes, and so on, until reaching the last hop.

The use of CoveringSet nodes introduces a major contribution

in our work, since it reduces the message overhead associated

with simple flooding-based leader election algorithms.

 Source node.

 Transmission range

 1-hop neighbor

 2-hop neighbor

 Link

S

Fig 1: Flooding-based Leader Election Algorithms

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

29

5.1.Creating CoveringSet
CoveringSet of node X is defined as the set of X's 1-hop

neighbors that ensures full coverage for the entire 2-hop

neighbors of X [20]. It is worthy to mention here that the

neighbors of any node are sorted in ascending order based on

their VALUE (in our algorithm, the value is the velocity or

speed of the node). Also it is important to mention that the

building of CoveringSets is performed in a distributed

manner, that is, each node builds its own CoveringSet

independently from any other node. Therefore, at any time T,

the CoveringSet of a node A is different than the CoveringSet

of a node B (unless both nodes have the same neighbors),

Moreover, the CoveringSet of any particular node N at time

T1 is different than the CoveringSet of the same node at time

T2 (this is determined instantly based on the mobility status of

nodes, and which node have joined the transmission range of

N and which have departed).

In any hop, the members of CoveringSet are chosen carefully

such that they provide full coverage of the nodes in the next

hop. In addition, they are with lower mobility in comparison

with other non-covering set nodes. These two features (i.e. the

selection of a subset of nodes with velocity-awareness) are

important strength points of our proposed algorithm, since

using CoveringSets will reduce message overhead associated

with flooding. In addition, allowing nodes with low mobility

to participate in leader election will enforce stability in the

network, since the lower the mobility of nodes, the more

stable the links, thus, the less probable that the leader will got

crashed.

When a node X wants to send an ELECTION message it

firstly creates its CoveringSet using its neighbor table; starting

from the first entry in the neighbor table (i.e. the neighbor

with lower velocity) until reaching full coverage for the 2-hop

neighbors. For each neighbor, X checks if this neighbor adds

additional coverage (i.e., if it has path(s) to some of the 2-hop

neighbors that are not covered previously by any of the

selected nodes). If so, X adds the current neighbor to its

CoveringSet and checks if there are more nodes that are not

covered by any node yet; if so, X repeats the process for the

next neighbor until all 2-hop neighbors are covered. The

algorithm used to build the CoveringSet is shown in Figure 3.

Fig 2: CoveringSet-based Leader Election Algorithm

(?????)

 Source node.

 Transmission range

 1-hop neighbor

 2-hop neighbor

 Covering set nodes

 Link

S

Fig 3: Building a CoveringSet Algorithm

1. START

2. CoveringSet(x) = NULL

3. For each node m in nbrTable(x);

4. If m gets additional coverage (i.e. it has a path for

some 2-hop neighbors that are not covered

previously by any other node)

5. add m to the CoveringSet(x);

6. If all the 2-hop neighbors are covered (i.e. reached) by

the CoveringSet(x);

7. return CoveringSet(x);

8. END

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

30

5.2. Reply Back Phase
As mentioned previously, ELECTION messages will be

transmitted from one hop to another through the CoveringSet

nodes until reaching the last hop. At this point, the

ELECTION phase terminates and the time to reply back and

send OK messages begins. Nodes are responsible to reply

their parents informing them about their existence. The OK

message includes entries of <ID, VALUE> for each node, to

inform them about their capacity, precisely, their velocity.

The “VALUE” piece of information is very useful for the

parent to decide which one of its children will be considered

as a candidate leader, such that the child with the lowest

mobility will be passed to the parent, the parent of parent, and

so on until reaching the source node that initiates the leader

election. At the end, the node with lower mobility will be

declared as the leader. Figure 4 illustrates how the reply back

process done.

6. MATHEMATICAL ANALYSIS

In the SCLEA algorithm, when a node S detects that the

leader is crashed, S does not send an ELECTION message to

all nodes in its 1-hop neighbor range (as in the case of

flooding-based leader election algorithms) rather, it looks up

its CoveringSet and sends the ELECTION message to the

nodes that belong to this set. For the analysis of this

algorithm, we will denote the number of nodes constituting

the network as N. These nodes are distributed randomly in the

network in the form of hops, where each hop consists of a

particular number of nodes. Let us assume that the number of

nodes in the 1-hop range of the source node S is equal to H1,

the number of nodes in the second hop is H2, the number of

nodes in the third hop is H3, and so on. So the number of

nodes in the last hop, say the ith hop will be Hi. Further, let us

assume that number of nodes that will not participate in the

election process (that is, nodes that do not belong to the

CoveringSets in any hop) is equal to C, so the covering set in

any hop i will be Hi-C

The subsequent discussion illustrates message complexity in

the worst case for both the ordinary leader election algorithms

that depend on flooding to perform election and for our

proposed SCLEA algorithm that depends on CoveringSet

nodes to perform the election of leader.

6.1. Message Complexity in Flooding-based

Leader Election Algorithms:

If node S has H1 neighbors in its 1-hop transmission range and

H2 nodes in its 2-hop transmission range and Hi nodes in its ith

transmission range, then the number of ELECTION messages

that will be sent by the source node S that detects the leader

crash will be equal to H1 messages, which is equivalent to the

number of its 1-hop neighbors. Further, each node in the 1-

hop transmission range will send H2 messages for all of its 1-

hop neighbors (that is, 2-hop neighbors of node S), therefore,

the total number of messages that will be sent by nodes in the

1-hop transmission range will be H1*H2. This process

continues until reaching the last hop i, where the number of

messages that are sent by Hi-1 nodes will be Hi-1 * Hi, where Hi

is the number of nodes in the last hop. The message

complexity associated with flooding-based leader election

algorithms is illustrated in equation 1.

6.2. Message Complexity in Covering Set-

Based Leader Election Algorithm:

If node S has H1 neighbors in its 1-hop transmission range and

H2 nodes in its 2-hop transmission range and Hi nodes in its ith

transmission range, then the number of nodes in the covering

set for these hops will be H1-C, H2-C, H3-C, … and Hi-C,

respectively. Where C is the number of nodes that are

excluded from the covering sets and that will not participate in

leader election. The number of ELECTION messages that will

be sent by the source node S that detects the leader crash will

be only H1-C, where the number of messages sent by the

covering set of the first hop will be H2-C, which is equivalent

to the number of nodes of the covering set in the second hop.

Fig 4: The Reply Back Process

5

4

1

2

3

13

10

9

7

6

S

11

12

8

(7,20)

(8,40

)

(6,15)

(7,20)

(6,15)

(10,50)

(11,5)

(12,10)

(11,5)

14

(10,50)

S

Source.

1-hop neighbor

2-hop neighbor

CoveringSet member.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

31

The nodes of the Hi-1 hop will send messages to their next

covering set nodes only. That is, Hi-C messages. Message

complexity associated with CoveringSet-based leader election

algorithms is illustrated in equation 2.

6.3. A Practical Example
In this section, we provided an illustrative example that shows

clearly the message overhead (complexity) associated with

both flooding-based leader election algorithms and our

SCLEA algorithm. In Figure 5-A it is shown that if a node S

detects the crash of the leader, it initiates a leader election

process, and broadcasts an ELECTION message to all of its 1-

hop neighbors, that is, it sends 6 messages (as H1=6). In turn,

each one of the H1 nodes and upon receiving an ELECTION

message broadcasts the message to its entire 1-hop neighbors.

For example, node 4 broadcasts the election message to its 1-

hop neighbors, in this example node 4 sends 4 messages.

However, It is worthwhile to mention here that in the worst

case, node 4 might have all of the nodes in the second hop

(H2) positioned within its transmission range, in other words,

the nodes of H2 might be neighbors of node 4, in this case,

node 4 will send 8 messages. The same case might apply for

each node in H1, that is, nodes 1, 2, …, 6 may have all of the

8 nodes in the H2 hop as their neighbors, therefore, each one

will send 8 messages, with a total messages sent equals to 48

messages (6*8). In addition, it's clear from the figure that

nodes 4 and 2 have three mutual neighbors, this means that

there are useless redundant messages, and as the number of

nodes increases the number of redundant messages increases.

For simplicity, we didn’t mention more than 2 hops in the

figure. But it should be understood that the previously

mentioned case applies for multiple hops, depending on the

size of the network and the number of hops.

In the other side, Figure5–B shows the improvement achieved

by our proposed algorithm in terms of message overhead

reduction. In this example, node S detects that the leader is no

longer alive, and initiates a leader election process by sending

an ELECTION message to its CoveringSet (i.e. the covering,

1-hop neighbors), namely, nodes 1, 2 and 3, therefore, the

message reduction is obvious such that node S sends only 3

messages instead of sending 6 messages (as in the case of

Figure5-A). Furthermore, each one of the selected covering

nodes forwards the message just to their 1-hop neighbors that

provide coverage to their next hop nodes. Comparing to

Figure5-A, node 4 and 2 will send 2 messages instead of 7. So

the message reduction is evident here in that 5 nodes out of 8

will receive the ELECTION message and forward it further.

7. CONCLUSION

In this paper, we proposed a velocity aware, and covering-set

based leader election algorithm for mobile ad hoc networks.

Our main contribution was in the selection of a subset of

nodes (covering sets) to participate in the leader election

process rather than depending on all of the nodes in the

network (as the case of the traditional leader election

algorithms). The selection of covering sets is performed in a

distributed manner, that is, each node creates its own covering

set independently from any other nodes. In any hop, the

covering set nodes are chosen with a guarantee that they

provide full coverage to the nodes of the next hop, and chosen

to be with minimum velocity among all other nodes. These

selection criteria ensure network stability (due to the low

mobility of nodes) and reduces message overhead (due to

A) Flooding-based Leader Election Algorithms

B) CoveringSet-based Leader Election

Algorithm

S
S

S S
S

S

S

S

Fig 5: A Practical Comparative Example

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

32

reducing the number of nodes that participate in leader

election process.)

In this paper, although we show the improvement achieved by

our algorithm through mathematical analysis, our next step

will be to assess our algorithm by simulation using a well-

known routing algorithms, such as AODV, to study the

impact of covering set nodes with mobility awareness. In

addition, we will use more preference-based attributes (i.e.

value), for example, battery power or distance of nodes to

examine their impact on the leader election process.

8. REFERENCES

[1] Sung-Hoon Park “A Stable Election Protocol based on an

Unreliable Failure Detector in Distributed Systems”.

2011 Eighth International Conference on Information

Technology: New Generations. pp. 979 – 984, April

2011.

[2] Haddar, M.A., Hadj Kacem, A. , Metivier, Y. , Mosbah,

M. and Jmaiel, M. “Electing a leader in the local

computation model using mobile agents”, IEEE/ACS

International Conference on Computer Systems and

Applications, 2008. AICCSA 2008. pp.: 473 – 480,

April, 2008.

[3] Mehdi Mirakhorli, Amir A. Sharifloo, Maghsoud

Abbaspour, "A Novel Method for Leader Election

Algorithm". The 7th IEEE International Conference on

Computer and Information Technology (CIT 2007),

pp.452-456, October 2007.

[4] Mina Shirali, Abolfazl Haghighat Toroghi, and Mehdi

Vojdani “Leader election algorithms: History and novel

schemes”. Third 2008 International Conference on

Convergence and Hybrid Information

Technology(ICCIT’08),pp. 1001-1006, November 2008.

[5] Scott D. Stoller. “Leader Election in Asynchronous

Distributed Systems”. IEEE Transaction on Computers

Journal, volume 49, no. 3 pp.283- 284, March 2000.

[6] G.L. Lann, "Distributed Systems - Towards a Formal

Approach", in Proc. IFIP Congress, pp.155-160, 1977.

[7] Randolph Franklin “An improved algorithm for

decentralized extrema-finding in circular configurations

of processes”. Communications of the ACM Magazine.

pp.336–337, May 1982.

[8] Nourddine E, Mohammed K, Amine B. “Enhancing

AODV Performance based on Statistical Mobility

Quantification”. The IEEE International Conference on

Information & Communication Technology (ICTTA06),

pp. 2455-2460, 2006.

[9] Gerard Tel “Introduction to Distributed Algorithms.

Second Edition”, Cambridge University Press, 1995.

[10] Garcia-Molina H. “Election in a distributed Computing

System”. IEEE Transaction on Computers Journal,

vol31, no. 1 pp. 48-59. 1982.

[11] Quazi Ehsanul Kabir Mamun, Salahuddin Mohammad

Masum, and Mohammad Abdur Rahim Mustafa.

“Modified bully algorithm for electing coordinator in

distributed systems”. WSEAS Transactions on

Computers, Issue 4, Volum 3, pp. 948-953, October

2004.

[12] Muneer Bani Yassein, Ala’a N Alslaity and Sana’a A

Alwidian “An Efficient Overhead-aware Leader Election

Algorithm for Distributed Systems.” International

Journal of Computer Applications, volume 49 no. 6, pp:

10-15, July 2012.

[13] J. Brunekreef, J. Katoen, R. Koymans and S. Mauw.

“Design and Analysis of Leader Election Protocols in

Broadcast Networks”. In Distributed Computing Journal,

vol. 9 no. 4, pp. 157-171, February 1996.

[14] G. Taubenfeld. “Leader Election in presence of n-1

initial failures”. In Information Processing Letters,

Journal vol.33, no.1, pp. 25-28, October 1989.

[15] Tai Woo Kim, Eui Hong Kim, Joong Kwon Kim, and Tai

Yun Kim. “A leader election algorithm in a distributed

computing system”. Proceedings of the 5th IEEE

Workshop on Future Trends of Distributed Computing

Systems, page 481, August 1995.

[16] N. Malpani, J. Welch and N. Vaidya. “Leader Election

Algorithms for Mobile Ad Hoc Networks”. DIALM '00

Proceedings of the 4th international workshop on

Discrete algorithms and methods for mobile computing

and communications, Boston, MA, pp. 96-103, August

2000.

[17] Sudarshan Vasudevan, Jim Kurose, and Don Towsley.

“Design and analysis of a leader election algorithm for

mobile ad hoc networks”. Proceedings of the 12th IEEE

International Conference on Network Protocols, 2004.

(ICNP04), pp:350–360, October 2004

[18] K. Hatzis, G. Pentaris, P. Spirakis, V. Tampakas and R.

Tan. “Fundamental Control Algorithms in Mobil Mobile

Networks”. In Proc. of 11th ACM SPAA, pp: 251-260,

March 1999.

[19] Abdalla MH, Aamir S, Irfan A, Mike W. “Dynamic

Probabilistic Flooding Performance Evaluation of On-

Demand Routing Protocols in MANETs CISIS '08

Proceedings of the 2008 International Conference on

Complex, Intelligent and Software Intensive Systems,

IEEE,pp. 200-204, 2008.

[20] Ala’a N. Alslaity “Stable Neighborhood-Based Route

Discovery Protocol For Mobile Ad Hoc Networks”,

Dissertation, Jordan University of Science and

Technology. May, 2012.

[21] V.D.Park and Scott.M.Corson, “A Highly Adaptive

Distributed Routing Algorithm for Mobile Wireless

Networks”, INFOCOM '97 Proceedings of the

INFOCOM '97. Sixteenth Annual Joint Conference of

the IEEE Computer and Communications Societies.

Driving the Information Revolution, pp. 1405, 1997.

