
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

19

Measuring Maintenance Effort in Object Oriented

Software with Indirect Coupling

Nirmal Kumar Gupta

CSIS Department, BITS-Pilani
Pilani, Rajasthan

India

Mukesh Kumar Rohil
CSIS Department, BITS-Pilani

Pilani, Rajasthan
India

ABSTRACT

Measurement of maintenance effort in object oriented

software engineering is one of the major challenges. Coupling

among classes is one of the major factors determining the

maintenance effort. Coupling is measured as strength of

interconnection or interdependence between different parts of

the Classes in object oriented software. It is widely accepted

that there is strong relationship between high coupling and

poor maintainability. Indirect coupling which is transitive in

nature manifests between two seemingly unrelated parts of the

system through hidden connections plays a major role in

determining maintenance effort. This research proposes a set

of metrics which determines maintenance effort for software

with Indirect Coupling.

General Terms

Software Quality, Software Engineering, Object Oriented

Tesing.

Keywords

Indirect Coupling, Software Maintenance Effort, Object

Oriented Software, Software Quality.

1. INTRODUCTION
In Software Engineering, two design concepts (i.e. coupling

and cohesion) are significant in developing good software

[13]. Coupling is the degree to which one component is

dependent on other software components. A component with

high coupling value is highly interdependent on other

software components and vice versa. If a component is highly

interdependent then any change in the component requires

significant changes in other components to which it is coupled

[1]. Hence highly coupled components require high

maintenance effort. It can be noted that a system cannot

completely be devoid of coupling for the proper functioning

of a system. There is some need of some connections among

various sub components (classes) of a system. Hence

maintaining loose coupling among components is desirable

characteristics of good software design [2].

Object oriented software has various kinds of relationships

among its components. Eder et al. [4] identify three different

types of relationships. These relationships are interaction

relationships between methods, component relationships

between classes, and inheritance between classes, are then

used to derive different dimensions of coupling which are

classified according to different strengths. Hitz and Montazeri

[5] approach coupling by deriving two different types of

coupling: object level coupling and class level coupling which

are determined by the state of an object and the state of an

object’s implementation, respectively. While our

understanding of coupling is improving, most research has

been applied only to direct coupling which is, coupling

between classes that have some direct relationship [14].

However, there has been little investigation into indirect

coupling, which is, coupling between classes that have no

direct relationship [11]. The discussion in existing literature

just implies that indirect coupling is little more than the

transitive closure of direct coupling.

Various researchers have worked in this area and tried to

address the high coupling relating it with the maintenance

effort by minimizing effect of coupling by keeping the value

of indirect coupling as low as possible [5]. This indirect form

of coupling has a stronger impact over maintenance effort as

compared to direct coupling. This increased maintenance

effort is due to the effort required in tracing and modification

of the software components. It leads to increase in effort

required with the increase in length and number of

connections between software components [6]. Therefore one

must try to achieve the value of indirect coupling as low as

possible.

Measurement of indirect couplings can be achieved in many

ways [6]. The most basic measure of coupling involves simply

counting the number of other classes to which a given class

has a linkage. If a STUDENT studies in a UNIVERSITY and

admitted to some COURSE, and then assuming STUDENT,

UNIVERSITY and COURSE are three classes, STUDENT

would have a coupling value of 2. By this measure, an

understanding of which classes are most coupled within the

system can be made.

In this paper, we will propose set of metrics which will relate

maintenance effort with indirect coupling. We will first

propose direct coupling and indirect coupling metric and then

we will relate indirect coupling to maintenance effort. This

gives us a clear idea, how indirect coupling affects

maintenance effort. The rest of the paper is organized as

follows. Sec. 2 discusses the related work done in measuring

maintenance effort in object oriented software engineering

through indirect coupling, followed by our proposed solution

in Sec. 3. Section 4 talks about experimental results, and Sec 5

concludes our work.

2. RELATED WORK
Various researchers have put their efforts to define and

measure various forms of couplings. According to Fenton and

Pfleeger [7] “There are no standard measures of coupling”.

Many of the researches use some variation of Yourdon and

Constantine’s [8] original definition which defines as “a

measure of the strength of interconnection” between modules.

They suggests that coupling should be concretely defined in

terms of the probability that coding, debugging, or modifying

one module will necessary require consideration of changes of

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

20

another module. Such kind of definitions are not formal since

they don’t specify the meaning of “strength” or

“interconnection”. But such idea is an excellent heuristics for

guiding the design of the software.

Berard [12] provides a new taxonomy to object-oriented

coupling. He divides coupling into two basic categories:

interface and internal coupling. Interface coupling exists when

one object (client) makes use of another (server) object

interface by calling its public method. In this case any change

occurs to the interface of server object, should make

correspondingly change in client object, but immune to any

change occurs in the internals of classes of server object.

Internal coupling occurs when an entity accesses an object’s

state, either from the “inside” or “outside”. “Inside” Internal

coupling occurs when that entity is a constituent of the

accessed object, for example its method or a component

object. “Outside” internal coupling occurs when that entity is

a subclass or an unrelated object. He emphasizes that internal

coupling is stronger and hence less desirable than interface

coupling. Even more, outside internal coupling is always

stronger than its counterpart inside internal coupling.

Yang et al. [6] defines direct coupling as: a given class C is

directly coupled to another class D, if there is an explicit

reference to class D within the source code of class C. Class

C has explicit reference to class D, if class D is the declared

type of any expression or sub-expression contained within the

source code of class C [6]. Direct coupling has compilation

dependency which makes the dependent classes to undergo

recompilation whenever a change is made in the class on

which they are depending for proper functioning of the

system. Therefore any change in coupled class D will requires

subsequent change in class C also, otherwise class C may not

compile. On the other hand, Indirect coupling which is

transitive in nature is defined as: if a class X is coupled to

class Y, which is in turn coupled to class Z, then class X is

transitively dependent on class Z and hence indirectly

coupled. Thus a modification on Z may cause a cascading

effect along the connections, i.e. ripple effect [4] if there are

more number of classes involved between X and Z in general.

However, Indirect coupling manifests through hidden

connections between seemingly unrelated parts of software

system. This means, that this type of coupling exists but not

visible through direct connection. Therefore it is very

important to investigate this aspect of coupling and its impact

over the maintainability of a class which contributes to the

overall quality of the software.

Eder et al. [4] gave another taxonomy of object-oriented

coupling. He classifies coupling into three general forms:

interaction, component and inheritance. Interaction coupling

effectively refers to the following type of coupling: content,

common, external, control, stamp and data coupling which are

applied in the object oriented context, where the participants

of coupling are methods and classes instead of modules.

Component coupling concerns type usage relationship; class

C is component coupled to C` if any of C’s instance variable,

local variables or method parameters of type C` are accessed

by C. Component coupling represents compile time

dependencies in the object oriented context. Finally,

inheritance coupling refers to the inheritance relationship

between a class and its direct or indirect subclass.

Chidamber and Kemerer [2] [9] were first to define the

metrics called Coupling Between Objects (CBO) for object-

oriented coupling. The coupling for a class is the number of

classes to which it is coupled. A class is deemed to be coupled

to another class if it accesses one or more of its variables or

invokes at least one of its methods. The inheritance based

coupling is ignored. They state that high value of CBO means

that high coupling value which result in high maintenance

effort and therefore should be avoided [15].

2.1 Limitations
Based on our literature study we identify following limitations

within the established metrics.

1. There are various issues with the definition of CBO. One

is that definition is not specific as to whether a couple is

counted in terms of instances or the number of classes.

2. Indirect coupling or strength between any two classes is

measured as multiplications of direct coupling values

along the path. The value of indirect coupling or strength

leads to decrease as the path leads to increase since

indirect coupling is multiple of direct coupling. The value

of indirect coupling is maximum when the path length is

one and leads to decrease as the path length increase.

Consequently, it signifies that maintenance effort required

decreases as path length increases and will be maximum

when the path length is one.

3. The established metrics indirectly depends only upon the

longest path even if the multiple paths exist between any

two classes. If there are multiple paths exist between any

two classes, then the value of indirect coupling is

measured as maximum of various independent or shared

path. Indirect coupling does not depend upon the number

of paths existing between two classes; rather it only

depends upon the path with highest indirect coupling

value. So established metrics do not take into account the

number of paths or number of connections existing

between two classes.

3. PROPOSED SOLUTION
In this section we will describe maintenance effort in object

oriented software engineering through indirect coupling.

Indirect coupling can be related with an analogy. Like in real

life, you ask for your friend for particular task, which in turn

asks to his friend so that the task which you have assigned to

your friend could be completed. It means, there is direct

relationship between you and your friend and also there is

direct relationship between your friend and his friend. So,

there is no direct relationship between you and your friend’s

friend, but there is transitive relationship or indirect

relationship between you and your friend’s friend. In sense,

there is effort in conveying the task to your friend’s friend.

Although, this relation seems to be hidden, but exists in real

life. So, effort required to complete the task which you have

assigned to your friend will be more than if it would had been

done by your friend.

3.1 Direct Coupling
The coupling metric that takes account of the degree of

coupling, functional complexity and transitive (i.e. indirect)

coupling between classes, an object-oriented software system

can be regarded as a directed graph [3]. The classes

comprising the system are the vertices in the graph. Suppose

such a system comprises a set of classes .
Let be the set of methods of the class , and be the set

of instance variables of class . is the set of methods

and instance variables in class invoked by class for j ≠ i

(is defined to be null). Then the edge from to

exists if and only if is not null. Thus an edge of the

graph reflects the direct coupling of one class to another. The

graph is directed since is not necessarily equal to .

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

21

 , the set of all methods and instance variables in other

classes that are invoked by class , can be defined as [3]:

 ⋃

 (1)

The extent of direct coupling from class to class depends

upon the number of methods and variables in the set .

The class is said to be coupled strongly if this value is large.

Using the above notations we can define direct coupling from

class to class as [3]:

| |

| | | | | |
 (2)

In the above equation denominator represents the total number

of methods and variables used by class , which accounts for

the total functionality of class . This guarantees that the

direct coupling from class to class ,

 is independent

of class size. As per the definition in equation (2) the value of

 will always be in the range from zero to one.

3.2 Indirect Coupling
Suppose that the two direct coupling values

 and

 for

classes , and , but the value of direct coupling

 is

zero. Even though there is a dependency between classes

and because is depending upon which in turn depends

upon class . Because of this indirect dependency any

modification done in class may affect class . Therefore at

the time of maintenance activities such indirect relations must

be considered and the maintenance effort will depend upon

the coupling path between and . This maintenance effort

depends upon the fact that how strongly the individual classes

are coupled together. Therefore we can define this effort as:

 (

) (3)

A coupling between two classes exists if there is a path from

one to the other made up edges whose direct coupling values

 are all non-zero. The maintenance effort required depends

upon the sum of all those values. Thus we define effort

required because of this indirect coupling between classes

and due to a specific path p, as:

 () (∑

)

 (∑
| |

| | | | | |

) (4)

Here denotes the edge between vertices s and t.

We are assuming that coupling between any two classes will

always be less than 1, so indirect dependency due to longer

paths will lead to increase. Longer will be the path, higher

will be the indirect coupling and vice versa. Here we measure

Maintenance effort in terms of value of indirect coupling

which is directly proportional to indirect coupling.

 Effort α Indirect Coupling

Higher the value of indirect coupling, greater maintenance

effort required in tracing and modification and vice versa.

3.2.1 Relationship between Indirect Coupling and

Maintenance Effort

Effort α Σp Chains length(p)

Effort [10] is associated with the sum of direct coupling

measured along each path in the set of paths or chains exist

among different software components (classes) [2]. This

theory states that Effort is directly proportional to length of

the path. This theory can be related by extending our previous

analogy in which we has completed our task by delegating to

your friend’s friend. If we extend the same analogy to one

more level, then the effort required will increase rather if it

had been done by your friend. Similarly, if our path will

increased by one, then indirect coupling will increase which is

sum of direct coupling along the path, so maintenance effort

required to trace or modification or change will increase cost.

Effort is associated with the sum of lengths (measured in

terms of edges) of all chains in the set Edges. This theory

states that greater is the length of the chain, more effort will

require to trace.

Effort α Number of Chains

Effort is associated with the number of chains or set of paths.

This theory states that Effort is directly proportional to

number of chains or path exists between different software

components (classes). This theory can be related by extending

our previous analogy in which we assume that there is only

one path to get the task completed by your friend’s friend.

Now, we assume that there is another task which may or may

not through overlapping route, but the destination is same. So,

there is multiple path exists between source and destination.

Even, the length of path may or may not be same. Since,

multiple path or relationship exists between source and

destination, so effort required in getting the work done will be

more. Similarly if there is multiple paths exist between

different software component, which may or may not have

overlapping edge in common and even path length may vary,

then maintenance effort required in tracing the path and

modification will costs more.

Thus, effort required in this situation can be determined using

the following algorithm. This algorithm considers that if there

are multiple paths between two classes and partially they are

overlapping then redundant effort for such common edges

must be removed.

Assume for the two classes and various coupling paths

ps (s > 0) exist and partially they may be overlapping. Each

path ps consists of a certain number of edges eks, (1 ≤ k ≤ ns).

Each edge is formed between two classes if they are directly

coupled. Here ns is the total number of edges along path ps. If

the maintenance effort required along edge eks is denoted by

E(eks) then the algorithm can be written as:

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

22

Initialize Eo=0

for each path ps

 initialize for all rk = false

 for each edge eks in path ps

 if rk == false

 Eo(new) = Eo(old) + E(eks)

 rk = true

 endif

 endfor

endfor

Fig 1: Algorithm for computing maintenance effort when

multiple, possibly overlapping coupling paths exist

between two classes.

Thus increasing the number of paths or connections between

different software components (classes) will increase indirect

coupling productively which resulting in increase in the

maintenance effort required in modification or extending the

functionality of the class and tracing the path.

4. EXPERIMENT
We consider the case study with EasyMock v3.1 software for

validation of our proposed metrics. EasyMock is open source

library that provides an easy way to use Mock Objects for

given interfaces. It helps to create mock objects which can be

easily used in conjunction with JUnit. We have used a set of

37 classes from the source code of EasyMock. We identified

coupling relations of different lengths between these classes.

A coupling length of more than one involves more than two

classes. The number of classes identified for different

coupling lengths are summarized in Table 1. We have

considered coupling lengths from 2 to 5 and identified the

number of such paths existing in our class cluster.

Table 1. Number of paths and total number of classes

involved for different path lengths.

Path
length (n)

Total Number of
classes
involved

Number of paths
(Nn)

2 36 65

3 27 46

4 18 31

5 11 19

Table 2 summarizes the overall coupling of all individual

paths having a path length of 2. The overall coupling along a

path must be computed in such a manner that it must represent

the overall effort required during maintenance activities

following that path. This maintenance effort increases in an

incremental manner along with the path length. Here p

denotes the path number; Ce1 and Ce2 are coupling values of

individual edges along the path and is computed using

equation (2). Co represents the overall coupling for the

corresponding path.

Table 2. Summarizing coupling values for each path for a

path length of 2.

p Ce1 Ce2 Co p Ce1 Ce2 Co

 1 0.39 0.37 0.76 34 0.14 0.28 0.42

2 0.37 0.38 0.75 35 0.26 0.10 0.36

3 0.44 0.32 0.76 36 0.10 0.06 0.16

4 0.04 0.62 0.66 37 0.39 0.23 0.62

5 0.58 0.47 1.05 38 0.55 0.66 1.21

6 0.04 0.29 0.33 39 0.51 0.37 0.88

7 0.49 0.13 0.62 40 0.38 0.69 1.07

8 0.29 0.15 0.44 41 0.43 0.44 0.87

9 0.55 0.43 0.98 42 0.61 0.29 0.9

10 0.38 0.47 0.85 43 0.18 0.34 0.52

11 0.04 0.20 0.24 44 0.44 0.31 0.75

12 0.26 0.42 0.68 45 0.20 0.06 0.26

13 0.18 0.21 0.39 46 0.37 0.38 0.75

14 0.44 0.14 0.58 47 0.48 0.73 1.21

15 0.49 0.31 0.80 48 0.43 0.09 0.52

16 0.13 0.42 0.55 49 0.34 0.01 0.35

17 0.07 0.38 0.45 50 0.50 0.64 1.14

18 0.40 0.34 0.74 51 0.19 0.66 0.85

19 0.42 0.34 0.76 52 0.53 0.16 0.69

20 0.29 0.07 0.36 53 0.38 0.29 0.67

21 0.16 0.10 0.26 54 0.19 0.58 0.77

22 0.56 0.15 0.71 55 0.33 0.48 0.81

23 0.20 0.14 0.34 56 0.61 0.67 1.28

24 0.23 0.34 0.57 57 0.33 0.35 0.68

25 0.75 0.45 1.20 58 0.60 0.21 0.81

26 0.71 0.03 0.74 59 0.35 0.63 0.98

27 0.20 0.16 0.36 60 0.39 0.60 0.99

28 0.34 0.27 0.61 61 0.18 0.24 0.42

29 0.46 0.49 0.95 62 0.59 0.27 0.86

30 0.56 0.53 1.09 63 0.20 0.31 0.51

31 0.36 0.25 0.61 64 0.33 0.54 0.87

32 0.55 0.45 1.00 65 0.50 0.65 1.15

33 0.48 0.17 0.65

Mean of Co =
∑

Similarly we have Table 3 which summarizes the overall

coupling of all paths having a path length of 3. We also

compute mean of coupling values computed of all paths for

different path lengths.

Table 3. Summarizing coupling values for each path for a

path length of 3.

p Ce1 Ce2 Ce3 Co p Ce1 Ce2 Ce3 Co

1 0.31 0.46 0.40 1.17 24 0.26 0.63 0.81 1.70

2 0.49 0.56 0.59 1.64 25 0.70 0.35 0.03 1.08

3 0.57 0.15 0.14 0.86 26 0.27 0.11 0.69 1.07

4 0.95 0.30 0.34 1.59 27 0.11 0.28 0.52 0.91

5 0.13 0.13 0.67 0.93 28 0.47 0.20 0.37 1.04

6 0.40 0.32 0.30 1.02 29 0.78 0.09 0.76 1.63

7 0.42 0.39 0.37 1.18 30 0.68 0.01 0.37 1.06

8 0.12 0.64 0.47 1.23 31 0.47 0.11 0.25 0.83

9 0.53 0.57 0.59 1.69 32 0.18 0.76 0.17 1.11

10 0.78 0.71 0.48 1.97 33 0.57 0.96 0.25 1.78

11 0.56 0.58 0.83 1.97 34 0.71 0.50 0.55 1.76

12 0.21 0.76 0.29 1.26 35 0.07 0.40 0.54 1.01

13 0.55 0.80 0.40 1.75 36 0.64 0.75 0.10 1.49

14 0.60 0.32 0.15 1.07 37 0.15 0.59 0.42 1.16

15 0.64 0.47 0.30 1.41 38 0.51 0.16 0.44 1.11

16 0.61 0.65 0.70 1.96 39 0.67 0.28 0.52 1.47

17 0.63 0.51 0.81 1.95 40 0.27 0.23 0.61 1.11

18 0.50 0.66 0.46 1.62 41 0.25 0.19 0.76 1.20

19 0.20 0.54 0.60 1.34 42 0.31 0.30 0.70 1.31

20 0.21 0.44 0.18 0.83 43 0.20 0.65 0.33 1.18

21 0.65 0.49 0.16 1.30 44 0.76 0.96 0.82 2.54

22 0.03 0.75 0.03 0.81 45 0.04 0.37 0.63 1.04

23 0.34 0.66 0.64 1.64 46 0.60 0.68 0.68 1.96

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

23

Mean of Co =
∑

In Table 4 we summarize the mean values of completed

overall coupling values for different path lengths.

Table 4. Mean values of overall coupling values for

different path lengths.

Path length (n) 2 3 4 5

Mean of Co 0.71 1.36 1.95 2.72

In Fig.2 we draw the frequency of paths in paths in different

coupling slots for path length of 2, 3, 4 and 5. In Fig.2(a) we

observe that there are more number of paths having a coupling

value in the middle range. If there are more number of paths

in the higher coupling range it would mean more maintenance

effort will be needed.

(a)

(b)

(c)

(d)

Fig 2: Frequency of paths in different coupling slots for (a)

path length of 2 (b) path length of 3 (c) path length of 4 (d)

path length of 5

Since here it is in the middle range comparatively less

maintenance effort will be needed for classes which are

coupled with coupling path length of 2. In Fig 2(b) many

paths are in the lower coupling range that means overall

maintenance effort will be less for path length 3 in taken case

study. Similarly in Fig 2(c) and Fig 2(d) we observe that

coupling range for Co is larger and most of the paths are

having larger values and fall at the end in these figures.

Therefore, maintenance effort in this case is larger for classes

coupled with these path lengths.

5. CONCLUSION
In this research we have identified some limitations of

established coupling measurement metrics which measure the

indirect coupling between any pair of classes in a class

cluster. We have provided our metrics which is in relation

with the maintenance effort required for these classes. In our

experiment it is shown that as the path length increases

between two classes the value of indirect coupling also

increases as it is expected since the maintenance effort must

increase. This increase in Indirect coupling value depends

upon how strongly the classes are coupled together. Strongly

coupled are expected to require more effort at the time of

maintenance.

6. REFERENCES
[1] Briand, L., Daly W. and Wust J., 1999, A Unified

Framework for Coupling Measurement in Object-

Oriented Systems. IEEE Transactions on software

Engineering, Vol. 25, 91-121.

[2] Chidamber S.R. and Kemerer C.K., 1991, Towards a

Metrics Suite for Object Oriented Design, Proceedings of

6th ACM Conference on Object Oriented Programming,

Systems, Languages and Applications (OOPSLA’91),

(Phoenix, Arizona, 1991), 197-211.

[3] Dallal J. and Briand L., 2010, An object-oriented high-

level design-based class cohesion metric, International

Software Technology, 52 (12), 1346-1361.

[4] Eder, J., Kappel G. and Schrefl M., 1994, Coupling and

cohesion in object-oriented system, Technical report,

Univ. of Klagenfurt.

[5] Hitz H. and Montazeri B., 1995, Measuring Coupling

and Cohesion In Object-Oriented Systems, Proc. Int'l

Symp. Applied Corporate Computing (ISACC '95),

Monterrey, Mexico, Oct. 25-27.

[6] Yang H. and Tempero E., 2007, Measuring the Strength

of Indirect Coupling, In Proceedings of the 2007

Australian Software Engineering Conference (ASWEC

'07). IEEE Computer Society, Washington, DC, USA,

319-328.

[7] Fenton N.E. and Pfleeger S.L., 1997, Software Metrics -

A Rigorous & Practical Approach, ITP London, (1997).

[8] Yourdon E. and Constantine L., 1979, Structured Design:

Fundamentals of a Discipline of Computer Program and

System Design. Prentice-Hall.

[9] Chidamber S.R. and Kemerer C.K., 1994, A Metrics

Suite for Object Oriented Design. IEEE Transactions on

Software Engineering, Vol. 20 (June 1994), 476-493.

[10] Slaughter S., Harter D. and Krishnan M., 1998,

Evaluating the Cost of Software Quality,

Communications of the ACM, 41 (8), 67-73.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.2, September 2012

24

[11] Yang H. and Tempero E., 2007, Indirect Coupling as a

Criteria for Modularity. In Proceedings of the First

International Workshop on Assessment of Contemporary

Modularization Techniques (ACoM '07). IEEE Computer

Society, Washington, DC, USA, 10-11.

[12] Berard E., 1993, Essays on Object-Oriented Software

Engineering, volume 1, chapter 7. Prentice Hall,

Englewood Cliffs, New Jersy.

[13] Gui G. and Scott P.D., 2006, Coupling and cohesion

measures for evaluation of component reusability. In

Proceedings of the 2006 international workshop on

Mining software repositories (MSR '06). ACM, New

York, NY, USA, 18-21.

[14] Li, W., and Henry, S. 1993. Object-oriented metrics that

predict maintainability. J. Systems and Software 23(2),

111–122.

[15] Card, D. N., Church, V. E., and Agresti, W. W. 1986. An

empirical study of software design practices. IEEE

[16] Transactions on Software Engineering 12(2): 264–271.

