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ABSTRACT 

This work suggests a parallel algorithm for Hermite 

interpolation on Extended Fibonacci Cube (n)EFC1 . The 

proposed algorithm has 3 phases: initialization, main and 

final. The main phase of the algorithm involves 32 N  

multiplications, N  additions, N2  subtractions and N  

divisions. In final phase we propose an efficient algorithm to 

accumulate the partial sums of Hermite interpolation in 

2)(log2  nNO  steps as oppose to the earlier algorithm in 

the literature that involves 2n  steps, where N  is the 

number of nodes, n  the degree of (n)EFC1 .  
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1. INTRODUCTION 
In curve fitting, interpolation is the process of replacing a 

continuous function by a polynomial that agrees with the 

function at specified number of data points. Using 

interpolation polynomial a prediction to a function value is 

made by an interpolating polynomial at new data point. In 

numerical analysis interpolation techniques are of great 

importance as they are used for modeling various scientific 

and engineering problems, via weather forecasting, portfolio 

management, air traffic prediction etc. Many numerical 

interpolation techniques are proposed in literature. Among 

which Hermite interpolation is one of the most widely used 

polynomial fitting techniques which is a special case of 

Birkhoff interpolation [1, 2]. In interpolation when the 

numbers of data points are large, uniprocessor environment 

involves a long computation and large storage space to carry 

out the computation. To get around these difficulties parallel 

computation is an obvious advantage.  

A bunch of parallel algorithms for interpolation have been 

developed over past years by various workers. Azad et al. [7] 

developed parallel algorithm for ! nN   point Lagrange 

interpolation for n -star )(n 2 . Ioana Zelina [4] developed 

parallel Lagrange interpolation on Extended Fibonacci Cube. 

Sarbzi-Azad [6] developed parallel algorithm for Hermite 

interpolation in Pyramid network. Extended Fibonacci Cube 

was introduced by Jie Wu [8] in the year 1997. Unlike 

Fibonacci Cube [3], an extended version of Fibonacci Cube is 

Hamiltonian, whereas less than 3/1  of Fibonacci Cubes are 

not Hamiltonian. Another advantage of Extended Fibonacci 

Cubes is that it could be stretched to construct parallel 

machines of any size. Further Extended Fibonacci Cube 

behaves like faulty hypercube. As Hermite interpolation is a 

higher degree polynomial for a given data set and its error 

bound is less than Newton and Lagrange interpolation. It is 

interesting to investigate the computational efficiency of 

Hermite interpolation in extended version of Fibonacci Cube. 

These features of Extended Fibonacci Cube and Hermite 

interpolation prompted us to develop parallel algorithm for 

Hermite interpolation on Extended Fibonacci Cube. To the 

best of our knowledge this is the first and efficient parallel 

algorithm for Hermite interpolation in Extended Fibonacci 

Cube. In short our contributions in this paper are as follows: 

Developed parallel algorithm for Hermite interpolation in 

extended version of Fibonacci Cube. 

Proposed an efficient algorithm for accumulating the partial 

sums of Hermite interpolation in 2)(log2  nNO  steps 

(See Theorem 2 below). Whereas the algorithm discussed in 

[4] involves 2n  steps. Where ‘ n ’ and ‘ N ’ are degree and 

number of nodes of Extended Fibonacci Cube respectively. 

Determined computational statistics viz. number of data 

communications, multiplications, additions and subtractions 

required for the proposed parallel algorithm. 

The rest of the paper is organized as follows: Section 2 

reviews the Extended Fibonacci Cubes. Section 3 discusses 

the formulation of Hermite interpolation required for the 

parallel algorithm. In section 4 we present the proposed 

parallel Hermite interpolation algorithm. Section 5 discusses 

analysis of the parallel algorithm. Finally, conclusion is drawn 

in section 6.  

2. EXTENDED FIBONACCI CUBES 
Extended Fibonacci Cubes )(EFC  topology is an 

interconnection network generalized by Wu. J. [8] from 

Fibonacci Cube proposed by Hsu [3]. The initial conditions 

used by both topologies are different from the initial 

conditions of Fibonacci series. An Extended Fibonacci Cube 

of order k  )2,1( k  is denoted by (n)EFCk , where 2n  is 

the length of bit string representing the address of nodes in

EFC . It may be mentioned that (n)EFCk is a sub-graph of 

the corresponding hypercube and a node of (n)EFCk is 

addressed by Fibonacci Code )(FC . The simplest version of 

these cubes series is the Fibonacci Cubes.  

Let ))(),(()( 111 nEnVnEFC   [4], where )(1 nV  is the set of 

nodes and )(1 nE  is the set of edges in )(1 nEFC  and 

))1(),1(()1( 111  nEnVnEFC , 

))2( ),2(()2( 111  nEnVnEFC . Using these notations 
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)(1 nEFC  can be defined recursively by using )1(1 nEFC  

and )2(1 nEFC  as follows: 

)2(  10)1(  0)( 111  nVnVnV  where  denotes the 

concatenation of two strings. The initial condition for 

recursion is  1 ,0)3(1 V  and  01 ,11 ,10 ,00)4(1 V . Two 

nodes in )(1 nEFC are connected if and only if their address 

representations differ in exactly 1-bit position. Some 

)(1 nEFC are shown in figure 1 for 5 ,4 ,3n . Note that each 

)(1 nEFC  consists of an )1(1 nEFC  and an )2(1 nEFC . It 

is known that around less than one third of Fibonacci cubes is 

Hamiltonian, whereas all  )(nEFCk  are Hamiltonian. The 

diameter of )(1 nEFC  is given by  2n  and the degrees of 

nodes lie between 








3

n
 and 2n .  

 

3. HERMITE INTERPOLATION 
The Hermite interpolating polynomial in x  for the data set 

)y,y,(x)y,y,(x '
NNN

'
111000 ...   is a polynomial of degree 

12 N  and is given by [5]  

'2
1

0

2
1

0

'
12 )( )()( )]( )(21[)( ii

N

i

iii

N

i

iiiN yxlxxyxlxlxxxH 








     (3.1) 

Where )(xli  is the Lagrange polynomial in x and

''
1212 )( , )( iiNiiN yxHyxH   , for 1,...,1,0  Ni    

From (3.1) we have  
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Where '
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We need the following lemma for the development of the 

proposed parallel algorithm.  

Lemma1. For Lagrange function (x)li  with dataset

110 ... Nxx,x ,  )(' ii xl  is given by 










1

0

'

)(

1
)(

N

ij
j ji

ii
xx

xl  

Proof. 
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On differentiating with respect to x  we have 

Δ))x(x)x)(xx(x)x)(xx(x

++)x(x)x)(xx(x+)x(x)x)(xx((x=(x)l
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Where )x)(xx)(xx(x)x)(xx(x=Δ Ni+iiiiii 11110 ...    

Now  
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4. PROPOSED PARALLEL 

ALGORITHM 
The proposed parallel algorithm is based on the parallel 

algorithm described for Lagrange interpolation in Extended 

Fibonacci Cube [4] using equation (3.2) and the result of 

Lemma 1. Let we are given a dataset 

)y,y,(x)y,y,(x '
NNN

'
111000 ...   and value x , where N  is the 

number of nodes of (n)EFC1 . The parallel algorithm 

computes Hermite interpolations in three phases: 

initialization, main and final phases. Initially, each processor 

)0( NiPi   is given a data point )y,y,(x '
iii  which runs in 

parallel with other processors. Each processor calculates )(xli

, )(xl i
'
i  and the product )()( 2 xlxh ii   for a given value of x . 

Then the partial products at all processors are added to obtain 

the final result. 

Let wP be a processor corresponds to a node of the Extended 

Fibonacci Cube (n)EFC1  with the binary representation w . 

Let us assume each processor node has five registers

54321 R,R,R,R,R . The registers 21  and RR hold the terms 

required for calculating (x)li and the register 5R holds the 

term to calculate (x)l'i . The registers 43  and RR will be used to 

implement all-to-all broadcast algorithm [4] in (n)EFC1 . 

When constructing a Hamiltonian cycle in (n)EFC1 , two 

arrays, Next[w] and Previous[w] are used to indicate nodes 

before and after the nodes w , V(n)w . For any node wP in 

the Hamiltonian ring, the next and previous nodes are 

evious[w]Next[w] PP Pr  and   respectively. Those arrays should 

have been set to their values before starting the initialization 

phase. 

             

          

            

                              )(EFC 31                       )(EFC 41                               )(EFC 51        

Fig 1: )(1 nEFC , where 5 ,4 ,3n

11 10 

01 00 

101 001 011 
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4.1 Initialization Phase 

In this phase the values x , '
ii,i yy,x  are given to the 

processor wP  for storing in its local memory. Recall that i  is 

the order of the Fibonacci number if=w , N=i 1,  

11
0 =)(RP )(

w , 12
0 =)(RP )(

w , i
)(

w x=)(RP 3
0

, i
)(

w x=)(RP 4
0

, 

05
0 =)(RP )(

w  

The initialization phase requires no communication steps and 

no computation steps. Let )(RP
naaa m,...,, 21

 denotes the 

content of register mR  )5 ,4 ,3 ,2 ,1( m  of the node

naaaP ,...,, 21
. Further, let )(RP

t
aaa n

m
)(

,...,, 21
 indicates the 

content of register mR of 
naaaP ,...,, 21

 after step t , where a 

step may involve a set of communication and computational 

operations. Symbol ‘  ’ denotes a communication operation 

between two adjacent nodes. 

4.2 Main Phase 

Algorithm 1. Parallel Algorithm to calculate 

(x)l(x)h ii
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)(RP)(RP
(t)
Next(w)

)+(t
w 33

1   

)(RP)(RP
(t)

ev(w)
)+(t

w 4Pr4
1   

)(RP(x))(RP(x)(RP=)(RP
)+(t

(w)
)+(t

(w)
(t)

(w)
)+(t

w 4
1

3
1

11
1   

)(RP(x))(RP(x)(RP=)(RP
)+(t

(w)
)+(t

(w)
(t)

(w)
)+(t

w 4
1

3
1

22
1   

))(RP(x
+

))(RP(x
+)(RP=)(RP

)+(t
(w)w

)+(t
(w)w

(t)
(w)

)+(t
w

4
1

3
155

1 11


 

forend  
 

)(RP)(RP
)(N

Next(w)
)(N

w 3
12/

3
2/ 

  

)(RP(x)(RP=)(RP
)(N

(w)
)(N

w
)(N

w 3
2/

1
12/

1
2/ 

 

))(RP(x)(RP=)(RP
)(N

(w)w
)(N

w
)(N

w 3
2/

2
12/

2
2/ 

 

))(RP(x
+)(RP=)(RP

)(N
(w)w

)(N
w

)(N
w

3
2/5

12/
5

2/ 1





 

After the execution above instruction sequence, we have 
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Now to this end all processors shall execute the following 

instruction to calculate thi  term of (x)l(x)h ii
2  for 

1 ... ,1 ,0  Ni  of the Hermite interpolation. 
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At the end of this phase 

(x)l(x)h=)(RP www
2

1   

4.3 Final Phase 
In this phase the contents of register 1R of all processors are 

added together to obtain the final result. For parallel Lagrange 

interpolation in (n)EFC1 , the authors in [4] have used an 

algorithm for adding contents of register 1R  of all nodes in 

2n  steps. In the following a new parallel algorithm 

(Algorithm 2) for all-to-one-reduction is suggested for adding 

the contents of register 1R  of all processors. Algorithm 2 

involves   )2(log2  n N  steps (See Theorem 2 below) as 

oppose to 2n  steps discussed in [4]. This is evident from 

the results of Theorem 1, Theorem 2 and Theorem 3. 

Theorem 1. For 3n , the number of nodes N  of (n)EFC1  

is given by 

33 ˆ

5

35

5

35
)( 


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








 
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


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



 
 nnnN  , 

Where 
2

51ˆ       , 
2

51 



   

Proof. The recurrence relation for (n)EFC1  [4] is given by 

5    21   nfff nnn                                              (4.1) 

4   2 43  ff  

The characteristic equation of equation (4.1) is given by 
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Let 
2

51ˆ       , 
2

51 



   

The solution of equation of (4.1) is given by  

nn
n BAf  ˆ                                                 (4.2) 

Where A and B are constants to be determined using 

boundary conditions 

4      2 43  fandf . 

Now using boundary conditions, we have 

33 ˆ 2  BA                                                (4.3) 

44 ˆ 4  BA                                                             (4.4) 
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Thus the number of nodes N(n)N   of (n)EFC1  is given by 

equation (4.5). 

Hence the theorem.                          

Theorem 2. If N is the number of nodes of (n)EFC1  with

3n . Then   2N log2  n  

Proof. From Theorem 1.  
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We will prove (4.6) by induction on n . 

Basis: For 3n , left hand side of (4.6) is 222 2-32-n   

and right hand side of (4.6) is  
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Since 12  , the induction is true for 3n . 

Inductive Hypothesis: Let the inductive hypothesis is true for
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Using inductive hypothesis and the fact that  ˆ  ,    2   

Hence the prove.                       

4.4 Proposed All-to-One Reduction  
We discuss the algorithm for a )(EFC 61 . Following figure 2 

shows the diagram for )(EFC 61 . 

The Hamiltonian path of the network is given by 

0000001000111011

1010100010010001010101000000




 

Let it be 

09876543210                     PPPPPPPPPPP 

 

 

  

 

 

 

 

 

 

 

   
Fig. 2. )(EFC 61  

Our reduction algorithm uses following steps.  

Let 910  ... ...  , PPP  hold data ) ...... , ,( 9210 xxxx  in register 1R  

respectively. 
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Algorithm 2. All-to-One Reduction 

Step1. Processors 97531   ,  ,  ,  , PPPPP  send the content of the 

register 1R  in parallel to 08642   ,  ,  ,  , PPPPP  and at the end of 

the stage 08642   ,  ,  ,  , PPPPP hold partial sum of content of 

1R and the received data. The register 1R  of 2P contains the 

sum )( 21 xx  , 4P  holds )( 43 xx  , 6P holds )( 65 xx  , 8P  

holds )( 87 xx   and 0P  holds )( 09 xx   so on.  

Step2. At this step   , 62 PP send their content to    , 84 PP  

At the end of this step 4P holds )( 4321 xxxx   and 8P  

holds )( 8765 xxxx  . 

Step3.  At this step 4P  sends their content to 8P  and it holds

)( 87654321 xxxxxxxx  . 

Step4. At the end of this step 


8

1i

ix for 8P is added with the 

partial sum )( 09 xx   in 0P . 
 

It is interesting to note that the proposed accumulation 

algorithm involves  N log  data communication steps. 

Theorem 3. The proposed All-to-One-Reduction algorithm 

i.e. Algorithm 2 in final phase of Hermite interpolation, for 

(n)EFC1  involves less than )2( n  communication 

operations as oppose to the earlier algorithm [4] that involves 

)2( n  operations. Thus the proposed Algorithm 2 is 

communication optimal. 

Proof. Since the Algorithm 2 involves N log  steps. Theorem 

3 follows from Theorem 2.                                    
Following Table1 compares the number of steps taken by the 

proposed Algorithm2 and the algorithm discussed in [4] for 

values of 4n . It is evident from Table1 and the plots shown 

in Fig.3 that the steps taken by Algorithm2 is less than the 

algorithm discussed in [4]. 

Table 1. Comparison of the number of steps. 

Degree 

of 

(n)EFC1  
          

No. of 

nodes of 

(n)EFC1  
N  

No. of steps in 

algorithm[4] 

)2( n
 

No. of steps in 

proposed All-

to-One-

Reduction 

N2log  
5 6 3 2.584 

6 10 4 3.321 

7 16 5 4.000 

8 26 6 4.700 

9 42 7 5.392 

10 68 8 6.087 

11 110 9 6.781 

 
 

Fig. 3. Comparison between algorithm [4] and proposed 

algorithm. 

5. ANALYSIS OF COMPUTATIONAL 

STATISTICS 
Theorem 4. The main phase of the algorithm for Hermite 

interpolation involved )N+( 32  multiplications N -additions 

N2 -subtractions and N -divisions. 

Proof. Let M , S , A  and D  represents the number of 

multiplications, subtractions, additions and divisions 

respectively. Now, a closer look of the algorithm reveals that 

there are 2/N  number of data communications at the end of 

thN )32/(   step. 

At )
N

( 1
2
 step we have 42N  1

2
4   =)

N
(=M ,

2  1
2

2  N=)
N

(=A   

42N  1
2

4  =)
N

(=S  and 2  1
2

2   N=)
N

(=D  

At 
2

N
 step, 2=M , 1=A , 2=S , 1=D  

)
N

( 1
2
 step, 0=M , 0=A , 0=S , 1=D  

)
N

( 2
2
 step, 1=M  , 0=S , 0=A , 0=D  

)
N

( 3
2
 step, 4=M  , 2=S , 1=A , 0=D  

Adding number of multiplications, additions, subtractions and 

divisions the theorem follows.                  

6. CONCLUSION 
This work suggests a parallel algorithm for Hermite 

interpolation in extended version of Fibonacci Cube. The 

proposed algorithm at final stage accumulates partial sums in 

less than 2n  steps as oppose to the earlier final phase 

algorithm discussed for Lagrange interpolation in [4], which 

involves 2n  steps. Where ' 'n  and ' ' N  are degree and 

number of nodes of Extended Fibonacci Cube respectively. 

The number of data communications, multiplications, 

additions, subtractions and divisions required for the proposed 

parallel algorithm are )32/( N , )N+( 32 , N , N2 and N  

respectively. 
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