Some Properties of Direct Product Graphs of Cayley Graphs with Arithmetic Graphs

S. Uma Maheswari
Lecturer, Department of Mathematics, J.M.J. College for Women (Autonomous), Tenali, A.P., INDIA.

B. Maheswari
Professor, Department of Applied Mathematics, Sri Padmavati Women's University, Tirupati, A.P., INDIA.

Abstract

Nathanson was the pioneer in introducing the concepts of Number Theory, particularly, the "Theory of Congruences" in Graph Theory, thus paving way for the emergence of a new class of graphs, namely "Arithmetic Graphs". Cayley graphs are another class of graphs associated with the elements of a group. If this group is associated with some arithmetic function then the Cayley graph becomes an Arithmetic graph.

In this paper, we present some results related to basic properties of direct product graphs of Euler totient Cayley graphs with Arithmetic V_{n} graph.

Keywords

Euler Totient Cayley Graph, Arithmetic V_{n} Graph, Direct Product Graph.
AMS(MOS) Subject Classification: 6905c

1. INTRODUCTION

EULER TOTIENT CAYLEY GRAPH $\boldsymbol{G}\left(\boldsymbol{Z}_{\boldsymbol{n}}, \varphi\right)$ AND ITS PROPERTIES

Madhavi [3] introduced the concept of Euler totient Cayley graphs and studied some of its properties. She gave methods of enumeration of disjoint Hamilton cycles and triangles in these graphs.

For any positive integer n, let $Z_{n}=\{0,1,2, \ldots . n-1\}$. Then $\left(Z_{n}, \oplus\right)$, where, \oplus is addition modulo n, is an abelian group of order n. The number of positive integers less than n and relatively prime to n is denoted by $\varphi(n)$ and is called Euler totient function. Let S denote the set of all positive integers less than n and relatively prime to n.
That is $S=\{r / 1 \leq r<n$ and $\operatorname{GCD}(r, n)=1\}$. Then $|S|=\varphi(n)$.

Now we define Euler totient Cayley graph as follows.
For each positive integer n, let Z_{n} be the additive group of integers modulo n and let S be the set of all integers less than n and relatively prime to n. The Euler totient Cayley graph $G\left(Z_{n}, \varphi\right)$ is defined as the graph whose vertex set is given by $Z_{n}=\{0,1,2, \ldots . n-1\}$ and the edge set is $E=\{(x, y) / x-y \in S$ or $y-x \in S\}$.
Clearly as proved by Madhavi [3], the Euler totient Cayley graph $G\left(Z_{n}, \varphi\right)$ is

1. a connected, simple and undirected graph,
2. $\varphi(n)$ - regular and has $\frac{n . \varphi(n)}{2}$ edges,
3. Hamiltonian,
4. Eulerian for $n \geq 3$,
5. bipartite if n is even and
6. complete graph if n is a prime.

ARITHMETIC $\boldsymbol{V}_{\boldsymbol{n}}$ GRAPH

Vasumathi and Vangipuram [4] introduced the concept of Arithmetic V_{n} graphs and studied some of its properties
Let n be a positive integer such that $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \ldots p_{k}^{\alpha_{k}}$. Then the Arithmetic V_{n} graph is defined as the graph whose vertex set consists of the divisors of n and two vertices u, v are adjacent in V_{n} graph if and only if $\operatorname{GCD}(u, v)=p_{i}$, for some prime divisor p_{i} of n.
In this graph vertex 1 becomes an isolated vertex. Hence we consider Arithmetic graph V_{n} without vertex 1 as the contribution of this isolated vertex is nothing when the properties of these graphs and enumeration of some domination parameters are studied.
Clearly, V_{n} graph is a connected graph. Because if n is a prime, then V_{n} graph consists of a single vertex. Hence it is a connected graph. In other cases, by the definition of adjacency in V_{n}, there exist edges between prime number vertices and their prime power vertices and also to their prime product vertices. Therefore each vertex of V_{n} is connected to some vertex in V_{n}.

DIRECT PRODUCT GRAPHS

In the literature, the direct product is also called as the tensor product, categorical product, cardinal product, relational product, Kronecker product, weak direct product, or conjunction. As an operation on binary relations, the tensor product was introduced by Alfred North Whitehead and Bertrand Russell in their Principia Mathematica [6]. It is also equivalent to the Kronecker product of the adjacency matrices of the graphs given by Weichsel [5].
If a graph can be represented as a direct product, then there may be multiple different representations (direct products do not satisfy unique factorization) but each representation has the same number of irreducible factors. Wilfried Imrich [1] gives a polynomial time algorithm for recognizing tensor product graphs and finding a factorization of any such graph.

This product is commutative and associative in a natural way (refer [2] for a detailed description on product graphs).

Let G_{1} and G_{2} be two simple graphs with their vertex sets as $V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{l}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ respectively. Then the direct product of these two graphs denoted by $G_{1} \times G_{2}$ is defined to be a graph with vertex set $V_{1} \times V_{2}$, where $V_{1} \times V_{2}$ is the Cartesian product of the sets V_{1} and V_{2} such that any two distinct vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ of $G_{1} \times G_{2}$ are adjacent if $u_{1} u_{2}$ is an edge of G_{1} and $v_{1} v_{2}$ is an edge of G_{2}.

The cross symbol \times, shows visually the two edges resulting from the direct product of two edges.

2. RESULTS

Let G_{1} denote Euler totient Cayley graph and G_{2} denote an Arithmetic V_{n} graph. Then G_{1} and G_{2} are simple graphs. Therefore by the definition of direct product, $G_{1} \times$ G_{2} is a simple graph.

Theorem 2.1: The degree of a vertex in $G_{1} \times G_{2}$ is given by

$$
\begin{aligned}
\operatorname{deg}_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right)= & \operatorname{deg}_{G_{1}}\left(u_{i}\right) \cdot \operatorname{deg}_{G_{2}}\left(v_{j}\right) \\
& =\varphi(n) \cdot \operatorname{deg}_{G_{2}}\left(v_{j}\right) .
\end{aligned}
$$

Proof: Let $\operatorname{deg}_{G_{1}}\left(u_{i}\right)=l$ and $\operatorname{deg}_{G_{2}}\left(v_{j}\right)=m$. Let u_{i} be adjacent to the vertices $u_{1}, u_{2}, \ldots, u_{l}$ in G_{1} and v_{j} be adjacent to the vertices $v_{1}, v_{2}, \ldots, v_{m}$ in G_{2}. Then in $G_{1} \times$ G_{2}, the vertex $\left(u_{i}, v_{j}\right)$ is adjacent to the following vertices.

$$
\begin{array}{ccc}
\left(u_{1}, v_{1}\right), & \left(u_{1}, v_{2}\right), \ldots \ldots \ldots & \ldots \\
\left(u_{2}, v_{1}\right), & \left(u_{2}, v_{2}\right), \ldots \ldots \ldots . \\
\vdots & \vdots & \ldots \\
\left(u_{2}, v_{m}\right) \\
\left(u_{l}, v_{1}\right), & \left(u_{l}, v_{2}\right), \ldots \ldots \ldots . & \left(u_{l}, v_{m}\right)
\end{array}
$$

Also if $\left(u_{r}, v_{s}\right)$ is any other vertex in $G_{1} \times G_{2}$ then it is not adjacent to vertex $\left(u_{i}, v_{j}\right)$, for $r>l$ or $s>m$. This is because vertex u_{i} is not adjacent to vertex u_{r} if $r>l$ and vertex v_{j} is not adjacent to vertex v_{s} if $s>m$, since $\operatorname{deg}_{G_{1}}\left(u_{i}\right)=l$ and $\operatorname{deg}_{G_{2}}\left(v_{j}\right)=m$.
Hence $\operatorname{deg}_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right)=\operatorname{deg}_{G_{1}}\left(u_{i}\right) \cdot \operatorname{deg}_{G_{2}}\left(v_{j}\right)$.
Since the graph G_{1} is $\varphi(n)$ - regular,
we have $\operatorname{deg}_{G_{1}}\left(u_{i}\right)=\varphi(n)$.
Thus $\operatorname{deg}_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right)=\varphi(n) \cdot \operatorname{deg}_{G_{2}}\left(v_{j}\right)$.
In what follows, we show that the number of vertices of $G_{1} \times G_{2}$ is the product of number of vertices of G_{1} and number of vertices of G_{2}. Further the number of edges of $G_{1} \times G_{2}$ is twice the product of number of edges of G_{1} and number of edges of G_{2}.

Theorem 2.2: The number of vertices and edges in $G_{1} \times G_{2}$ is given respectively by

$$
\begin{aligned}
& \text { 1. }\left|V_{G_{1} \times G_{2}}\right|=\left|V_{G_{1}}\right|\left|V_{G_{2}}\right| . \\
& \text { 2. }\left|E_{G_{1} \times G_{2}}\right|=2\left|E_{G_{1}}\right|\left|E_{G_{2}}\right| .
\end{aligned}
$$

Proof: Let n_{1}, n_{2}, n denote the number of vertices and m_{1}, m_{2}, m denote the number of edges of graphs G_{1}, G_{2} and $G_{1} \times G_{2}$ respectively.

Since $V=V_{1} \times V_{2}$, it follows that $|V|=\left|V_{1} \times V_{2}\right|$
$=\left|V_{1}\right|\left|V_{2}\right|$
Hence $\quad\left|V_{G_{1} \times G_{2}}\right|=\left|V_{G_{1}}\right|\left|V_{G_{2}}\right|$.
We know that

$$
\begin{aligned}
& \left|E_{G_{1}}\right|=m_{1}=\frac{1}{2} \sum_{u_{i} \in V_{1}} \operatorname{deg}\left(u_{i}\right) \\
& \left|E_{G_{2}}\right|=m_{2}=\frac{1}{2} \sum_{v_{j} \in V_{2}} \operatorname{deg}\left(v_{j}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
& \left|E_{G_{i} \times G_{2}}\right|=m=\frac{1}{2} \sum_{i, j} \operatorname{deg}\left(u_{i,} v_{j}\right) \\
= & \frac{1}{2}\left\{\sum_{i, j} \operatorname{deg}\left(u_{i}\right) \operatorname{deg}\left(v_{j}\right)\right\}(\text { by Theorem 2.1) } \\
= & \frac{1}{2}\left(\sum_{i \in V_{G_{1}}} \operatorname{deg}\left(u_{i}\right)\right)\left(\sum_{j \in V_{G_{2}}} \operatorname{deg}\left(v_{j}\right)\right) \\
= & \frac{1}{2}\left(2 m_{1}\right)\left(2 m_{2}\right) \\
= & 2 m_{1} m_{2} \\
= & 2\left|E_{G_{1}}\right|\left|E_{G_{2}}\right| .
\end{aligned}
$$

Theorem 2.3: If $n=p^{2}$, then the graph $G_{1} \times G_{2}$ is $\varphi(n)$-regular.

Proof: \quad We know that graph G_{1} is $\varphi(n)$-regular. Then $\operatorname{deg}_{G_{1}}\left(u_{i}\right)=\varphi(n)$ for any i.

If $n=p^{2}$, then G_{2} contains vertices p and p^{2} and there is an edge between p, p^{2} since $\operatorname{GCD}\left(p, p^{2}\right)=p$. Hence $\operatorname{deg}_{G_{2}}\left(v_{j}\right)=1$, for any $v_{j} \in V_{2}$.

Now for any vertex $\left(u_{i}, v_{j}\right)$ in $G_{1} \times G_{2}$, we have

$$
\begin{aligned}
\operatorname{deg}_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right) & =\operatorname{deg}_{G_{1}}\left(u_{i}\right) \cdot \operatorname{deg}_{G_{2}}\left(v_{j}\right) \\
& =\varphi(n) \cdot 1 \\
& =\varphi(n) .
\end{aligned}
$$

Thus every vertex in $G_{1} \times G_{2}$ is of degree $\varphi(n)$.
Therefore $G_{1} \times G_{2}$ is $\varphi(n)$-regular.
Remark 1: If $n=p^{2}$, then $\varphi(n)=\varphi\left(p^{2}\right)=p^{2}-p=$ $p(p-1)$.

So $G_{1} \times G_{2}$ is $p(p-1)$-regular, when $n=p^{2}$.
Theorem 2.4: If n is a prime, then $G_{1} \times G_{2}$ is a completely disconnected graph on n vertices.

Proof: Suppose n is a prime. Then G_{1} is a complete graph and G_{2} is a single vertex graph. Therefore there are no adjacent vertices in G_{2}. Hence by the definition of the direct product, edges do not exist between the vertices of $G_{1} \times G_{2}$. As the product contains $\left|V\left(G_{1}\right)\right|$ vertices, and $\left|V\left(G_{1}\right)\right|=$ n, it implies that $G_{1} \times G_{2}$ becomes a completely disconnected graph on n vertices.

Theorem 2.5: If n is not a prime, then $G_{1} \times G_{2}$ is a finite graph without isolated vertices.

Proof: Suppose n is not a prime. Then G_{1}, G_{2} are finite graphs without isolated vertices. Therefore $\operatorname{deg}_{G_{1}}\left(u_{i}\right) \neq 0$ for any i and also $\operatorname{deg}_{G_{2}}\left(v_{j}\right) \neq 0$ for any j.
Moreover by Theorem 2.1,

$$
\begin{aligned}
& \operatorname{deg}_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right)=\operatorname{deg}_{G_{1}}\left(u_{i}\right) \cdot \operatorname{deg}_{G_{2}}\left(v_{j}\right) \\
& \quad \text { Thus } \operatorname{deg}_{G_{1} \times G_{2}}\left(u_{i}, v_{j}\right) \neq 0 \text { for any } i \text { and } j .
\end{aligned}
$$

So $G_{1} \times G_{2}$ does not have any isolated vertices.
We now examine the connectivity property of the direct product graph of Euler totient Cayley graph with Arithmetic V_{n} graph.

Let us recall the following Theorem proved by Weishel [5], which characterizes connectedness in direct product of two graphs.
Weishel Theorem: Suppose G and H are connected nontrivial graphs in a set of finite simple graphs. If at least one of G or H has an odd cycle then $G \times H$ is connected. If both G and H are bipartite, then $G \times H$ has exactly two components.

A similar result for connectedness is given by Imrich and Klavžar [2]. They obtained a necessary and sufficient condition for the connectedness of direct product of two graphs [[2], Theorem 5.29] which is given in the following.

Theorem: Let G and H be graphs with atleast one edge. Then $G \times H$ is connected if and only if both G and H are connected and at least one of them is non-bipartite. Furthermore, if both G and H are connected and bipartite, then $G \times H$ has exactly two components.

If n is not a prime, then G_{1} and G_{2} both are connected graphs with at least one edge. So, $G_{1} \times G_{2}$ is connected if either G_{1} or G_{2} is non - bipartite. That is either G_{1} or G_{2} contains an odd cycle.

Hence we make the following results related to the connectedness of $G_{1} \times G_{2}$.
Theorem 2.6: Let n be an odd number which is not a prime. Then $G_{1} \times G_{2}$ is a connected graph.
Proof: Suppose n is an odd number which is not a prime. Then G_{1}, G_{2} are connected graphs. Further G_{1} contains a Hamilton cycle. Since n is odd, this cycle is an odd cycle.
Hence by Weishel Theorem, $G_{1} \times G_{2}$ is a
connected graph. -

Theorem 2.7: Let n be an even number such that $n>2$, $n \neq 2^{k}$ and $n \neq 2 p$, where p is a prime. Then the graph $G_{1} \times G_{2}$ is connected. Otherwise it is disconnected.

Proof: Suppose n is an even number such that $n>2$, $n \neq 2^{k}$ and $n \neq 2 p$ where p is a prime. Then n is not a prime number. Hence both G_{1}, G_{2} are connected graphs. Furthermore n being an even number, G_{1} is a bipartite graph. Hence there exists no odd cycles in G_{1}.

We now show that G_{2} contains an odd cycle. Since the even number n is not in the form 2^{k} and $2 p$, it can be written as $n=2^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \ldots . . p_{k}^{\alpha_{k}}$, where
$p_{1}, p_{2}, \ldots \ldots, p_{k}$ are odd primes and $\alpha_{i} \geq 1$. Then G_{2} contains three distinct vertices $2,2 p_{i}, 2 p_{j}$ with GCD $\left(2,2 p_{i}\right)=2$, $\operatorname{GCD}\left(2,2 p_{j}\right)=2$, and $\operatorname{GCD}\left(2 p_{i}, 2 p_{j}\right)=2$. This implies that these vertices are connected. Hence G_{2} contains an odd cycle.

Thus $G_{1} \times G_{2}$ is connected.
Suppose $n=2^{k}$ or $n=2 p$. Then we show that in these cases $G_{1} \times G_{2}$ is disconnected.

Suppose $n=2^{k}$. Then G_{2} contains vertices $2,2^{2}, 2^{3}, \ldots, 2^{k}$. Since $\operatorname{GCD}\left(2^{i}, 2^{j}\right)=2^{i}$ if $1<i<j$ or $\operatorname{GCD}\left(2^{i}, 2^{j}\right)=2^{j} \quad$ if $1<j<i$, which is not a prime. So there is no edge between any two powers of 2 . The only edges are in between 2 and its powers. Hence we cannot find an odd cycle in G_{2}.

Since $n=2^{k}$ is an even number it follows that G_{1} is a bipartite graph. Hence it contains no odd cycles.

Therefore $G_{1} \times G_{2}$ is disconnected.
Suppose $n=2 p$. Then G_{2} contains the vertices $2, p$ and $2 p$. Then by the definition of edges in G_{2}, there are edges between 2 and $2 p$ since $\operatorname{GCD}(2,2 p)=$.2 ; and p and $2 p$ since $\operatorname{GCD}(p, 2 p$. $)=p$. Since p is an odd prime, we get GCD $(2, p)=1$. This implies that there is no edge between the vertices 2 and p in G_{2}. Hence there exists no odd cycle in G_{2}, if $n=2 p$.

Again as n is even, G_{1} becomes bipartite and contains no odd cycle.

Hence $G_{1} \times G_{2}$ is disconnected.
We use the following result given in [2], to prove our subsequent results.

Result: If either G_{1} or G_{2} is a bipartite graph, then $G_{1} \times$ G_{2} is a bipartite graph.

We now find out for what values of $\boldsymbol{n}, \quad \boldsymbol{G}_{\mathbf{1}} \times \boldsymbol{G}_{\mathbf{2}}$

is a bipartite graph?

Theorem 2.8: Suppose $n>2$ is an even number. Then the graph $G_{1} \times G_{2}$ is a bipartite graph.
Proof: If n is an even number then the graph G_{1} is a bipartite graph [3]. Hence $G_{1} \times G_{2}$ is a bipartite graph. (By using the above Result).

Theorem 2.9: The graph $G_{1} \times G_{2}$ is a bipartite graph if n is an odd number such that
$n=p^{\alpha}, \alpha>1$ or $n=p_{i} p_{j}$ where p_{i}, p_{j} are distinct odd primes.
Proof: Suppose n is an odd number. Then G_{1} is not a bipartite graph because it contains an odd cycle. Hence $G_{1} \times G_{2}$ is a bipartite graph if G_{2} is a bipartite graph.

Suppose $n=p^{\alpha}, \alpha>1$ or $n=p_{i} p_{j}$.
We show that G_{2} is a bipartite graph.
If $n=p^{\alpha}, \alpha>1$ then among the vertices p, $p^{2}, \ldots \ldots p^{\alpha}$ of G_{2}, no two prime powers of p are connected by an edge as GCD $\left(p^{r}, p^{s}\right)=1$, for $r, s>1$. So G_{2} contains no odd cycle.

In a similar way, if $n=p_{i} p_{j}$ then also G_{2} contains no odd cycle, because among the vertices p_{i}, p_{j} and $p_{i} p_{j}$ of G_{2}, there is no edge between the vertices p_{i} and p_{j} as
$\operatorname{GCD}\left(p_{i}, p_{j}\right)=1$, for $i \neq j$.
Hence in either case, G_{2} becomes a bipartite graph.
Thus $G_{1} \times G_{2}$ is a bipartite graph.
Theorem 2.10: If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \ldots . p_{k}^{\alpha_{k}}$, where $p_{1}, p_{2} \ldots, p_{k}$ are odd primes such that either $k>2$ or $k=2$ with at least one $\alpha_{i}>1$, then $G_{1} \times G_{2}$ is not a bipartite graph.

Proof: We know that G_{1} is Hamiltonian, and hence it contains a cycle which is odd since n is odd. Therefore G_{1} is not bipartite. So $G_{1} \times G_{2}$ is bipartite if G_{2} is a bipartite graph. Since $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots \ldots . p_{k}^{\alpha_{k}}$, where either $k>2$ or $k=2$ with at least one $\alpha_{i}>1$, it follows that the graph G_{2} contains at least three vertices namely

$$
p_{i}, p_{i} p_{j}, p_{i} p_{k} \text { or } p_{i}, p_{i}^{2}, p_{i} p_{j}
$$

Case 1: Suppose G_{2} contains the vertices $p_{i}, p_{i} p_{j}, p_{i} p_{k}$. Then these three vertices are joined by three edges because $\operatorname{GCD}\left(p_{i}, p_{i} p_{j}\right)=\operatorname{GCD}\left(p_{i} p_{j}, p_{i} p_{k}\right)=$ $\operatorname{GCD}\left(p_{i}, p_{i} p_{k}\right)=p_{i}$.

This gives the existence of odd cycles in G_{2}. Hence G_{2} is also not a bipartite graph. This implies that $G_{1} \times G_{2}$ is not a bipartite graph.

Case 2: Suppose G_{2} contains the vertices $p_{i}, p_{i}^{2}, p_{i} p_{j}$. Then these vertices are joined by three edges because GCD $\left(p_{i}, p_{i}^{2}\right)=\operatorname{GCD}\left(p_{i}^{2}, p_{i} p_{j}\right)=\operatorname{GCD}\left(p_{i}, p_{i} p_{j}\right)=p_{i}$.

This implies that G_{2} contains an odd cycle so that G_{2} is not a bipartite graph. Therefore $G_{1} \times G_{2}$ is not a bipartite graph.

Thus, in either case we have proved that $G_{1} \times G_{2}$ is not a bipartite graph.

ILLUSTRATIONS

Let $n=4$.

Fig. 1
$G_{1}=G\left(Z_{4}, \varphi\right)$

Fig. 2
$\boldsymbol{G}_{2}=\boldsymbol{G}\left(\boldsymbol{V}_{\mathbf{4}}\right)$

Fig. 3: $\quad G_{1} \times G_{2}$ is a bipartite graph

Let $n=8$.

Fig. 4
$G_{1}=G\left(Z_{8}, \varphi\right)$

Fig. 5

Fig. 6
$\boldsymbol{G}_{\mathbf{1}} \times \boldsymbol{G}_{\mathbf{2}}$ is a disconnected graph

Let $n=11$.

Fig. 7
11

Fig. 8

$$
G_{1}=G\left(Z_{11}, \varphi\right)
$$

$$
G_{2}=G\left(V_{11}\right)
$$

REFERENCES

[1] Imrich, W. - Factoring cardinal product graphs in polynomial, time, Discrete Math., 192, 119-144(1998).
[2] Imrich, W. and Klavzar, S. - Product graphs: Structure and recognition, John, Wiley \& Sons, New York, USA (2000).
[3] Madhavi, L. - Studies on domination parameters and enumeration of cycles in some Arithmetic Graphs, Ph. D. Thesis submitted to S.V.University, Tirupati, India, (2002)
[4] Vasumathi, N. - Number theoretic graphs, Ph. D. Thesis submitted to S.V.University, Tirupati, India, (1994).
[5] Weichsel, P.M. - The Kronecker product of graphs, Proc. Amer. Math.Soc., 13, 47-52 (1962).
[6] Whitehead, A.N. and Russel, B. - Principia Mathematica, Volume 2, Cambridge, University Press, Cambridge (1912).

Fig. 9

$\boldsymbol{G}_{\mathbf{1}} \times \boldsymbol{G}_{\mathbf{2}}$ is a null graph

