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ABSTRACT 

Nathanson was the pioneer in introducing the concepts  of 

Number Theory, particularly, the “Theory of  Congruences” 

in Graph Theory, thus paving way for the emergence of  a 

new class of graphs, namely “Arithmetic Graphs”. Cayley 

graphs are another class of graphs associated with the 

elements of a group. If  this group is associated with some 

arithmetic function then the  Cayley   graph becomes an  

Arithmetic  graph. 

In this paper, we present some results related to basic 

properties of direct product graphs of Euler totient Cayley 

graphs   with Arithmetic    graph. 
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1. INTRODUCTION 

EULER TOTIENT CAYLEY GRAPH  (    ) AND 

ITS PROPERTIES 

Madhavi  [3] introduced the concept  of  Euler totient Cayley  

graphs  and studied  some of its properties. She   gave 

methods of enumeration  of disjoint Hamilton cycles and 

triangles in these graphs. 

For any  positive integer   , let    {            }   Then 

(    ),  where,  is  addition modulo    is an abelian  group 

of order      The number of  positive integers less than      and 

relatively prime to     is denoted by  ( ) and is called Euler 

totient  function. Let   denote the set of all positive integers 

less than    and relatively  prime to        

That is     {                   (     )     }   Then 
| |   ( )   

Now we define Euler  totient  Cayley  graph  as follows. 

For each positive integer    , let    be the additive  group of 

integers modulo   and let   be the set of all integers less than 

  and relatively prime to  .  The Euler totient Cayley   graph   

 (    )   is   defined  as  the  graph  whose  vertex  set   is  

given   by    {           }   and the edge set is  

   {(   )  ⁄                  }   

Clearly as proved by  Madhavi  [3],  the  Euler totient Cayley  

graph   (    ) is 

 

 

 1.         a connected, simple and undirected  graph, 

 2.        ( ) - regular and has    
   ( )

 
    edges,  

 3.         Hamiltonian, 

 4.        Eulerian   for          

 5.        bipartite  if     is even  and 

 6.        complete  graph  if    is  a prime. 

ARITHMETIC    GRAPH  

Vasumathi  and Vangipuram [4]  introduced the concept of  

Arithmetic     graphs  and studied some of its properties 

Let   be a positive integer such that     
    

        
  . 

Then the Arithmetic     graph is defined as the graph whose  

vertex set consists of the  divisors of      and two vertices      

are adjacent  in      graph  if and only if GCD (   )       for 

some prime divisor     of       

In this graph vertex 1 becomes an isolated vertex. Hence we 

consider Arithmetic graph      without vertex 1 as the 

contribution of this  isolated vertex  is  nothing when the 

properties of these graphs and enumeration of some 

domination parameters are studied.  

Clearly,      graph  is  a connected graph.  Because  if     is a 

prime, then      graph consists of a  single vertex. Hence it is a 

connected graph.   In other cases,  by the definition of 

adjacency  in        there exist edges  between prime number 

vertices  and  their  prime power vertices   and  also  to their   

prime  product  vertices.  Therefore  each vertex  of       is 

connected to some  vertex in        

DIRECT PRODUCT GRAPHS  

In the literature, the direct product is also called as the tensor 

product, categorical product, cardinal product, relational 

product, Kronecker product, weak direct product, or 

conjunction. As an operation on binary relations, the tensor 

product was introduced by Alfred North Whitehead and 

Bertrand Russell in their Principia Mathematica [6].  It is also 

equivalent to the Kronecker product of the adjacency matrices 

of the graphs given by Weichsel [5]. 

If a graph can be represented as a direct product, then there 

may be multiple different representations (direct products do 

not satisfy unique factorization) but each representation has 

the same number of irreducible factors. Wilfried Imrich [1] 

gives a polynomial time algorithm for recognizing tensor 

product graphs and finding a factorization of any such graph. 

http://en.wikipedia.org/wiki/Alfred_North_Whitehead
http://en.wikipedia.org/wiki/Bertrand_Russell
http://en.wikipedia.org/wiki/Principia_Mathematica
http://en.wikipedia.org/wiki/Kronecker_product
http://en.wikipedia.org/wiki/Adjacency_matrix
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This product is commutative and associative in a 

natural way (refer [2] for a detailed description on product 

graphs).   

 Let    and    be two simple graphs with their 

vertex sets as     {            } and     {            } 
respectively.  Then the  direct  product of these two graphs  

denoted  by           is  defined  to be  a graph with  vertex 

set         ,  where         is the  Cartesian product of the 

sets      and         such that  any  two distinct  vertices (     )  
and (     )  of           are adjacent if         is an edge of  

   and       is an edge  of    . 

The cross symbol      shows visually the two edges 

resulting from the direct product of two edges. 

2. RESULTS 

 Let     denote Euler totient  Cayley graph and      

denote an Arithmetic Vn graph.  Then     and     are simple 

graphs. Therefore by the definition of direct product,    
     is a simple graph. 

Theorem 2.1:   The degree of a vertex in         is given 

by   

         (     )        (  )       (  )

    ( )       (  )  

 Proof: Let     (  )             (  )   . Let    be 

adjacent to the vertices              in    and     be 

adjacent to the vertices              in      Then in    

   , the vertex   (     ) is adjacent to the following vertices. 

  (     ),    (     )    (     ),     

  (     ),    (     )     (     ),  

                                                         

   (     )      (     )     (     ). 

  Also if  (     ) is any other vertex in        then 

it is not adjacent to vertex (     ), for      or       This 

is because vertex       is not adjacent to   vertex      if    >    
and vertex    is not adjacent to vertex     if        since 

     (  )       and       (  )    . 

Hence             (     )        (  )       (  ). 

 Since the graph     is   ( )- regular,    

 we have         (  )    ( ).  

         Thus           (     )      ( )       (  ). ■ 

 In what follows, we show that the number of 

vertices of          is the product of number of vertices of 

    and number of vertices of   .  Further   the number of 

edges of          is twice the product of number of edges of 

     and number of edges of   .  

Theorem 2.2:  The number of vertices and edges in        

is given respectively by           

 1.   |        |   |   | |   |. 

 2.   |      |     |   | |   |. 

Proof: Let       ,     denote the number of vertices and    
  ,     denote the number of edges of graphs       and 

        respectively. 

  

 Since          , it follows that | |  |     | 

                                                  |  | |  | 

                Hence     |        |   |   | |   |. 

We know  that 

 
1

1

1

1
deg

2
i

G i

u V

E m u


    

 
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2
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,
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                 
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  
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 (   )(   )  

            

    |   | |   |.  ■ 

Theorem 2.3:  If        then the graph        is 
    ( )  regular. 

Proof:   We know that graph    is   ( )  regular. Then 

     (  )     ( )  for any  .  

  If           then       contains vertices     and    

and there is an edge between  ,     since GCD(    )   .  

Hence      (  )      for   any          . 

 Now for any vertex (     ) in       , we have 

                      (     )        (  )       (  )  

                         =   ( )     

                                        =    ( )  

 Thus every vertex in        is of degree   ( ).  

            Therefore         is   ( )  regular.  ■ 

Remark 1: If       then   ( )     (  )        
 (   ). 

 So         is  (   )-regular, when        

Theorem 2.4: If    is a prime,  then          is a completely 

disconnected graph on     vertices. 

Proof:  Suppose   is a prime. Then      is  a complete graph  

and      is a single vertex graph    Therefore there are no  

adjacent vertices in      Hence by the definition of  the  direct  

product, edges do not exist  between the vertices of           
As the product  contains  | (  )|  vertices,  and  | (  )|  
    it implies that          becomes a  completely 

disconnected graph on     vertices. ■ 
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Theorem 2.5: If    is not a prime, then        is a finite 

graph without isolated vertices. 

Proof:  Suppose   is not a prime. Then  ,    are finite graphs 

without isolated vertices. Therefore        (  )     for   any  

   and   also      (  )     for   any   .  

 Moreover by Theorem 2.1,  

           (     )        (  )       (  )   

 Thus         (     )     for any   and  .  

 So        does not have any isolated vertices. ■ 

We  now examine   the connectivity  property of  

the  direct product graph  of  Euler  totient  Cayley graph  with  

Arithmetic     graph. 

Let us recall the following Theorem proved by 

Weishel [5], which characterizes connectedness in direct 

product of two graphs. 

Weishel Theorem:  Suppose   and   are connected non-

trivial graphs in a set of finite simple graphs. If at least one of   

         has an odd cycle then      is connected.   If both 

   and   are bipartite, then        has exactly two 

components.   

A similar result for connectedness is given by 

Imrich   and   Klavžar [2]. They obtained a necessary and 

sufficient condition for the connectedness of direct product of 

two graphs [[2], Theorem 5.29]   which is given  in the 

following. 

Theorem:  Let   and    be graphs with atleast one edge.  

Then     is connected if and only if both   and    are 

connected and at least one of them is non-bipartite.  

Furthermore, if both   and   are connected and bipartite, then  

      has exactly two components.   

 If     is not a prime,   then       and     both are  

connected  graphs   with at least one edge.   So,          is 

connected if either    or    is non - bipartite.  That is either 

   or    contains an odd cycle. 

 Hence we make the following results related to   the 

connectedness of        . 

Theorem 2.6:  Let    be  an odd number  which is not a 

prime. Then        is a connected graph. 

Proof:  Suppose     is   an odd number  which is not a prime.  

Then    ,    are connected graphs. Further      contains a   

Hamilton cycle. Since    is   odd, this cycle is an odd cycle. 

 Hence by  Weishel Theorem,          is a  

connected  graph.  ■ 

Theorem 2.7:  Let   be an even number such that    ,  

        and     , where   is a prime.  Then the graph 

        is connected.   Otherwise it is disconnected. 

Proof:  Suppose     is   an even number  such that    ,  

        and      where    is a prime.  Then     is not a 

prime number. Hence   both    ,    are connected graphs. 

Furthermore     being an even number,      is a bipartite 

graph. Hence there exists no odd cycles in    .  

 We now show that    contains an odd cycle. Since 

the even number    is not in the form       and      ,   it can 

be written as      =      
    

        
  ,       where 

  ,    ……,    are odd primes and     . Then    contains 

three distinct vertices           with GCD (     )      

GCD (     )      and GCD (       )   . This implies 

that these vertices are connected. Hence      contains an odd 

cycle. 

 Thus        is connected. 

 Suppose          or       .  Then we show that 

in these cases         is disconnected.   

 Suppose          Then     contains vertices 

                 Since GCD(     )      if          or 

GCD  (     )       if       ,  which is not a prime. So 

there is no edge between any two powers of 2.  The only  

edges are in between  2 and    its powers. Hence we cannot 

find an odd cycle in      

Since        is an even number it follows that     

is a bipartite graph. Hence it contains no odd cycles. 

 Therefore        is disconnected.   

Suppose        .  Then    contains the vertices 

     and    . Then by the definition of edges in    , there are 

edges between  and     since GCD (    .) = ;  and     and 

     since  GCD (    .) =      Since    is an odd prime, we 

get GCD  (    ) = 1. This implies that there is no edge 

between the vertices  and     in   . Hence there exists no 

odd cycle in      if       . 

Again as     is even,    becomes bipartite and 

contains no odd cycle. 

   Hence         is disconnected.  ■ 

 We use the following result given in [2], to prove 

our   subsequent  results. 

Result:  If either       or     is a bipartite graph, then     
     is a bipartite graph.  

 We now find out for what values of  ,           

is   a  bipartite graph? 

Theorem 2.8:  Suppose      is an even number. Then the 

graph        is a bipartite graph. 

Proof:  If    is an even  number then the graph   is a bipartite 

graph [3]. Hence         is a bipartite graph. (By using the 

above Result).   ■ 

Theorem 2.9:   The graph         is a bipartite graph if      
is an  odd number such that  

                                         are  distinct 

odd primes. 

Proof:  Suppose   is an odd number.  Then    is not a 

bipartite graph because it contains an odd cycle. Hence  

       is a bipartite graph if    is a bipartite graph. 

 Suppose        ,      or             

 We show that     is a bipartite graph.  

 If              then among the vertices     
         of   , no two prime powers of      are connected 

by an edge as GCD (     )      for         So    

contains no odd cycle. 
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 In a similar way,  if          then  also    

contains no odd cycle,  because among the vertices       and  

     of   , there is no edge between the vertices             as 

GCD (     )= 1,  for     . 

 Hence in either case,      becomes a bipartite graph.  

 Thus         is a bipartite graph.  ■ 

Theorem 2.10: If       
    

        
      where 

              are odd primes such that either          or   

     with at least one        then         is not a 

bipartite graph.  

Proof:  We know that    is Hamiltonian, and hence it 

contains a cycle which is odd since   is odd. Therefore     is 

not bipartite. So         is bipartite if      is a bipartite 

graph. Since         
    

        
      where either        

or       with at least one          it follows that the graph 

    contains at least three vertices namely  

                or         
      . 

Case 1:  Suppose     contains the vertices               

 Then these three vertices are joined by three edges 

because    GCD(        )       GCD(             )   

GCD (        )          

 This gives the existence of odd cycles in    . Hence 

   is also not a bipartite graph. This implies that        is 

not a bipartite graph. 

Case 2:  Suppose    contains the vertices      
      . Then 

these vertices are joined by three edges   because GCD 

(      
   )      GCD (    

         )     GCD (          )          

 This implies that      contains an odd cycle so that 

     is not a bipartite graph. Therefore           is not a 

bipartite graph.  

 Thus, in either case we have proved that        is 

not a bipartite graph. ■ 

ILLUSTRATIONS 
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 Fig. 3:           is a bipartite graph 

 

Let   = 8. 

 

 

 

Fig. 4 
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Fig. 5 
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Fig. 6 

       is a disconnected graph 
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Let   = 11. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 
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Fig. 8 
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Fig. 9 

         is a null graph 
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