
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.13, September 2012

26

A Cloud based P Systems Algorithm

Eamd Nabil
Computer Science Dept.

MUST University

Cairo- Egypt

Hala Hameed
Computer Science Dept.

MUST University

Cairo- Egypt

Amr Badr
Computer Science Dept.

Cairo University
Cairo-Egypt

ABSTRACT

A P system is a computability model which is biochemically

inspired, it is a general distributed model, highly parallel,

nondeterministic, based on the notion of a membrane

structure. Till this moment, there is no exact idea about the

real implementation of P systems. P systems are used in

solving NP-complete problems in polynomial time, but with

building the whole exponential search space. Cloud

computing assume infinite memory and infinite processing

power. This paper proposes an algorithm that uses the cloud

resources in a fully parallel manner as a step towards P

systems implementation, the nondeterminism property of P

systems is certainly not maintained. The paper used the SAT

problem as the case study.

General Terms

Membrane computing, Artificial Intelligence, Algorithms,

Optimization, Satisfiability problem, Natural Computing,

Cloud computing.

Keywords

P systems, Membrane computing, Cloud computing, SAT

problem.

1. INTRODUCTION
Membrane computing is the branch of natural computing

which investigates computing models that are abstracted from

the structure and functioning of living cells as well as from

their interactions in tissues or higher-order biological

structures [1].

P system structure consists of several cell-like membranes;

these membranes are placed inside a unique "skin" membrane.

The structure is represented using Venn diagram without

intersected sets and with a unique superset. The structure has

multiple regions delimited by the membranes. In each region,

there are some objects which could evolve and transform into

other objects. Very important property of a P system is that it

works in a distributed, maximally parallel, selective

commutative and nondeterministic fashion [2].

Although P systems achieved a great success in the theoretical

design of solutions to NP-complete problems, these solutions

have a fundamental drawback from a practical point of view.

It is not clear yet what is the actual real implementation of

Membrane Computing. It could be implemented in vitro, in

vivo or in silico. In any case, a membrane will have a space

associated that could be a piece of memory in a computer, a

pipe in a lab, or a volume of bacteria. Only brute force

algorithms will be able to implement little instances of such

problems. If we take an in vivo implementation where each

feasible solution will be encoded in an elementary membrane,

and such elementary membrane is implemented in a bacteria

of mass 7×10−16 kg., for example E. Coli. Then, a brute

force algorithm which solves an instance of an NP problem

with input size 40, for example, it will need approximately a

mass 6 × 1024 kg., which equals approximately mass of the

earth. So, it is not practical for a P system to be implemented

in solving relatively large NP-Complete problems.

Despite the difficultiesthat are related to P systems

nondeterminism, attempts have been done to implement P

systems on dedicated reconfigurable hardware, as done by

Petreska & Teuscher [3], or on a cluster of computers, as

performed by Ciobanu& Guo [4], or in a distributed fashion,

as reported by Syropoulos et al. [5]. All these studies made

use of P system model,yet, our study can be considered a

better approximation for the P system model implementation,

as we merge the cloud space into our work.

According to the aforementioned problem of real

implementation of P systems -till now, we proposed applying

P systems on the cloud computing model as we mentioned

before. Cloud computing model assumes –theoretically- that

infinite resources Cloud based implementation of P systems

maintains the maximal parallel processing property, but of

course, nondeterminism is not maintained because the cloud

model consists of a huge amount of deterministic Turing

machines.

In this paper, an algorithm is proposed to solve satisfiability

(SAT) problem which is one of the most common NP-

complete problems. The proposed algorithm solves SAT

problem as a case study, but of course it could be generalized

over other NP-complete.

The paper is organized as follows: Section 2 gives an

introduction to P systems, while section 3 explains the cloud

computing model. In section 4, the SAT problem is illustrated

by an example. Section 5 depicts the proposed cloud based P

systems algorithm. Finally section 6 introduces conclusions

and future work.

2. INTRODUCTION TO P SYSTEMS
Membrane computing has been inspired by the structure of a

simple living cell. Cell means membranes. The contents of a

living cell are separated from its surrounding by an external

membrane. Inside the living cell itself, there are several

compartments where independent (and distributed)

biochemical processes can take place in maximally parallel

manner. Communication is possible, as objects can transfer

from time to time and from one compartment to another inside

the cell through the internal membranes. Objects can also

transfer from the cell inner side to the outside of the cell and

vice versa, through the external membrane [2, 6, 7].

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.13, September 2012

27

Non-determinism occurs as a result of the unknown sequence

of objects processing order (undergoing biochemical

reactions) which can differ from time to time. Moreover,

living cells have put back the focus onto the notion of multi-

setobjects where a cell contains substances swim in an

aqueous solution. In such circumstances, the concentration of

an object is important, in computer science, the concentration

of an object has been translated to multiplicities of an object,

hence, multi-sets. This model of a living cell has been the

inspiration for computing devices that can work in distributed,

maximally parallel Nondeterministic manner [2, 8, 9].

Processing is done by firing rules rather than executing

commands/statements. Firing of rules takes the form of

running biochemical reactions between reactors. A

reaction/rule cannot be fired unless there is sufficient amount

of the reactors existing in the current compartment.

A priority relation between evolution rules can be considered

[1]. The evolution is done in parallel for all objects that are

capable of evolving. This way, we can obtain a computing

device that starts with a certain number of objects and then it

is continuously increased through the evolution process. If the

system halts (i.e. no objects can further evolve), then the

computation is finished, with the result given as the number of

objects in a specified membrane. If the development of the

system goes forever, then the computation fails to have an

output. Also membrane division can be considered. This way,

an enhanced parallelism is obtained, which can be very useful

from the computational complexity point of view. A

membrane can dissolve and its contents are sent to the parent

membrane [1].

Fig 1: Basic Membrane structure

There are many variants of P systems, below is the class of P

systems with active membranes [1], which could be

constructed in the following form:

Where:

1. m 1 (the initial degree of the system);

2. O is the alphabet of objects;

3. H is a finite set of labels for membranes;

4. is a membrane structure, consisting of m membranes

initially having neutral polarizations, labeled with

elements of H;

5. w1,……, wm are strings over O, describing the multisets

of objects placed in the m regions of

6. R is a finite set of developmental rules, of the following

forms:

a)
 { }

Object evolution rules, associated with membranes and

depending on the label and the charge of the

membranes. Hint: For simplicity, the label is written

only onceoutside the brackets and the internal label is

omitted.

b) (b)

 { }

Communication rules: An object is introduced in the

membrane, and possibly modified during this process;

also the polarization of the membrane can be modified,

but not its label.

c)

 { }

Out communication rules: An object is sent out of the

membrane, and possibly modified during this process;

also the polarization of the membrane can be modified,

but not its label.

d)
 { }

Dissolving rules: In reaction with an object, a membrane

can be dissolved, while the object specified in the rule

can be modified.

e)

{ }

Division rules for elementary membranes: In reaction

with an object, the membrane is divided into two

membranes with the same label, and possibly of

different polarizations; the object specified in the rule is

replaced in the two new membranes possibly by new

objects; the remaining objects are duplicated and may

evolve in the same step by rules of type (a).It is possible

to allow the change of membrane labels. For instance, a

division rule can be of the below more general form.

 { }

3. CLOUD COMPUTING
Cloud computing is the delivery of computing and storage

capacity as a service [10] to a community of end-recipients.

The name comes from the use of a cloud-shaped symbol as an

abstraction for the complex infrastructure it contains in system

diagrams. Cloud computing entrusts services with a user's

data, software and computation over a network [11].

There are three types of cloud computing model [11]:

1. Infrastructure as a Service (IaaS)

Infrastructure as a Service is a provision model in which

an organization outsources the equipment used to

support operations including storage, hardware, servers

and networking components. The service provider owns

the equipment and is responsible for its housing,

running and maintaining. The client typically pays on a

per-use basis.

2. Platform as a Service (PaaS)

Platform as a Service (PaaS) is a way to rent hardware,

operating systems, storage and network capacity over

the Internet. The service delivery model allows the

customer to rent virtualized servers and associated

services for running existing applications or developing

and testing new ones.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.13, September 2012

28

3. Software as a Service (SaaS)

Software as a Service (SaaS) is a software distribution

model in which applications are hosted by a vendor or

service provider and made available to customers over a

network, typically the internet.

The proposed algorithm makes use of cloud as (platform as a

service). The algorithm could be written, for example, in c#

programming language and Windows azure platform.

4. THE SATISFIABILITY PROBLEM
Satisfiability (SAT) problem is one of the Constraint

satisfaction problems (CSPs), and it is considered an NP-

complete problem. It consists of a logical propositional

formula in n variables and the requirement is to assign a value

(true or false) for each variable that makes the formula true

[12, 13]. Equally important is to determine whether no such

assignments exist, which would imply that the function

expressed by the formula is identically false for all possible

variable assignments. In this latter case, we would say that the

function is unsatisfiable, otherwise it is satisfiable.

In complexity theory, the satisfiability problem (SAT) is a

decision problem, whose instance is a Boolean expression

written using only AND, OR, NOT, variables, and

parentheses [12]. A wide range of other naturally occurring

decision and optimization problems can be transformed into

instances of SAT [14]. A class of algorithms called SAT

solvers can efficiently solve a large enough subset of SAT

instances to be useful in various practical areas such as circuit

design and automatic theorem proving, by solving SAT

instances made by transforming problems that arise in those

areas.

For k-SAT, the formula consists of a conjunction of clauses

and each clause is a disjunction of k variables, any of which

may be negated.

3-satisfiability (3-SAT) is a special case ofk-satisfiability (k-

SAT) or simply satisfiability (SAT), when each clause

contains exactly k = 3 literals. A literal is either a variable or

the negation of a variable (the negation of an expression can

be reduced to negated variables by De Morgan’s laws. For

example, x1 is a positive literal and not(X2) is a negative

literal. A clause is a disjunction of literals, e.g. .

Here is an example, where ¬ indicates negation.

E has two clauses (denoted by parentheses), four variables

(x1, x2, x3, x4), and k=3 (three literals per clause). To solve this

instance of the decision problem we must determine whether

there is a truth value (true or false) that we can assign to each

of the variables (x1 through x4) such that the entire expression

is true. In this instance, there is such an assignment (x1 =

true, x2 = true, x3=true, x4=true), so the answer to this instance

is yes. This is one of many possible assignments, for instance,

any set of assignments including x1 = true being sufficient. If

there were no such assignment(s), the answer would be no.

5. THE PROPOSED ALGORITHM
The proposed algorithm treats each instance on the cloud as a

membrane; membrane division is implemented by sending

two messages to two other new instances from the pool of

instances on the cloud. The sender instance (virtual

membrane) is automatically deallocated (dissolved). P

systems have the ability to solve NP-complete problems by

creating and working on exponential search space in

polynomial or linear time. The same idea is implemented here

where we substitute membranes by virtual ones, namely cloud

instances. From P systems, all development rules exist in

membranes are executed in parallel, thus parallelism is totally

maintained as all instances are working independently on the

same time.

The cloud based P system algorithm makes use of the two

rules (a) and (e) explained in section 2. We also add a new

rule implemented in the proposed algorithm where a

membrane with its contents is vanished. The vanishing rule

could be expressed in P systems language as follows:

 { }

A flow chart of the cloud based P system algorithm is

depicted in figure 2.

Here is a simple example that illustrates how the algorithm is

working. Consider the following 3-SAT problem:

(x1 x2 ¬x3) (x5 x6 ¬x7) (¬x4 ¬x8 ¬x9)

The structure of the solution can be represented as an array, in

our example the array is of length 9 binary digits as depicted

in figure 3, each digit can have two possible values, namely 0

or 1, for false and true respectively.

The root instance contains an algorithm and a data structure.

The solution array started empty and is initialized gradually.

The exponential search space is created in linear time. Each

solution resides in an independent node (instance) together

with an algorithm that modifies the solution and checks if the

solution is valid or not (figure 2).

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.13, September 2012

29

Fig 2: An illustration of the cloud based P system algorithm

0 0 1 1 0 0 1 0 1

Fig 3: An example of a solution consists of 9 digits

Cerate Cell1
with sol1.

Begin execution of
Cell1

Assign to new
thread/instance

Solution data structure

Complete
solution

Dissolve/deallocate

Yes

NO

Invalid
incomplete

solution

Yes

NO

Valid
solution

Yes

NO

Publish good
solution

Create sol. 1 with left most bit =0

Create sol. 2 with left most bit =1

Dissolve/deallocate

Cerate Cell2
with sol2.

Begin execution
of Cell2

Assign to new
thread/instance

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.13, September 2012

30

Fig 4: Illustration of solution development using the cloud based algorithm

The initial array size equals to the number of literals (literal is

a variable or negation of variable), in our example the array

size equals to 9 digits. There is an algorithm in the root

instance which is equivalent to the set of rules in P systems. In

level zero, as illustrated in figure 4, the algorithm creates two

copies of the solution array then assigns zero (false) to the left

most digit of the first copy and assigns one (true) to the left

most digit of copy two. The assignment scheme is illustrated

in figure 4. The root node in level zero is dissolved after

division. Dissolution in our context means that the root

instance is deallocated, e.g. the root instance becomes free and

can be reassigned a new task. The same procedure is done

with the two nodes in level one. The solution array can be

checked for correctness, e.g., if the first clause is false then

the result of all clauses is false, that is, short circuit evaluation

can be used for performance enhancement. Only good

solution will survive. In last level, we may have many

solutions that constitute a pool of solutions that vary in their

goodness. The question now is how we can get solutions in

the last level. Each of these instances in the last level can

write its solution in a shared accessed data server. An expert

may choose among these solutions according to the underline

problem that the SAT problem models. The instances could be

lined up on queue to write their solutions. The number of

nodes in the last level may be too much. The second question

is how we can get in control of these solutions. A proposed

solution is to attach a timer to every instance. The timer is

activated only if the solution has two conditions; the solution

array is both complete and valid. After a certain amount of

time, the instance is automatically expired and dissolved. It

should be taken into consideration that there is a proportional

forward relation between the expiration time and the number

of solutions written to the data server.

0

00 0 1 1 1 1 0

0 0 1 …..

Incomplete
invalid
solution

Dissolvedeallocate

0 0 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1

Complete
valid
solution

Publish

Incomplete
invalid
solution

Dissolvedeallocate

Level

9 digits

1

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.13, September 2012

31

A simulation is implemented using multithreading, i.e.,

instead of separate instances on a cloud, we used threads. We

solved SAT problem of size 11 literals, i.e., the generated

search space equals 211 solutions. The simulation assumes the

worst case execution, that is to say all solutions survived to

the last level of search space. The problem is solved in linear

time rather than exponential one.

The algorithm deallocates instances with invalid incomplete

solutions from the search space. But how can we filter

solution and discard low goodness solutions? A heuristic

function could be embedded in root node and consequently in

all copied instances. This heuristic function is activated to

work only when reaching the state that the solution array is

valid and completed. The heuristic function deallocates

instances with valid completed solution, yet with low

goodness. The question now is: What do we mean by

goodness? Goodness is a problem dependent term, for

example, if the SAT problem models circuit design, then good

solution may mean the solution that has a small number of

ones.

This heuristic function will enhance the entire performance of

the algorithm, namelyin the last level of the tree, only good

valid completed solutions will wait in a queue to write their

solutions, and an expert can select which one of them that will

be more suitable. An illustration of a cloud instance contents

is depicted in figure 5.

Fig 5: An illustration of an instance node, each node

contains 4 objects: A solution data structure, a processing

algorithm – that is responsible for node division and

dissolution-, a Heuristic Filter (HF) for deallocation of low

goodness completed solution, and finally, Timer (T) for

automatic deallocation of all instances after

predetermined amount of time.

6. CONCLUSIONS
P systems are a very interesting research area. P systems

algorithms can solve NP-complete problems in practical

amounts of time rather than exponential one. Till this

moment, researchers have no idea about the exact tools to

create a P system computer. The cloud based P system

algorithm tries to develop an approximate implementation of

p systems. The most important property of P systems is the

massive parallelism, the exponential division of cells in linear

or polynomial time and the independence between nodes. A P

system generates all the search space like a brute force attack,

i.e., generates an exponential one. This needs massive

amounts of resources. After discovery of cloud computing, the

resources are no longer an issue. The cloud based P system

algorithm uses cloud resources and P systems computation

model. The algorithm is applied on one of the most important

NP-complete problems, i.e., the SAT problem. The proposed

algorithm could be implemented to many other NP problems

using the fact that every NP problem could be reduced to any

NP-complete one.

7. REFERENCES
[1] Paun, G. 2006 Applications of membrane computing,

Springer-Verlag, Berlin.

[2] Calude, C. and Paun, G. 2000 Computing with Cells and

Atoms: An Introduction to Quantum, DNA and

Membrane Computing, Romanian Academy, Bucharest,

Romania.

[3] Petreska, B., Teuscher, C. 2004 A Hardware Membrane

System. In Martin-Vide, C., Mauri, G., Paun, Gh.,

Rozenberg, G., Salomaa, A., eds. Membrane Computing.

International Workshop, WMC2003, Tarragona, Spain,

Revised Papers. Lecture Notes in Computer Science,

2933, Springer, Berlin.

[4] Ciobanu, G., Paraschiv, D. 2002 Membrane Software. A

P System Simulator, Fundamenta Informaticae, Vol. 49,

No. 1-3 ,pp. 61-66.

[5] Syropoulos, A., Mamatas, E., Allilomes, P., Sotiriades,

K. 2003 A distributed simulation of P systems,

Proceedings of the Workshop onMembrane Computing,

pp. 455-460.

[6] Decastro, L. N. 2006 Fundamentals of Natural

Computing: Basic Concepts, Algorithms, and

Applications, CRC Press.

[7] Paun, G. 1998 Computing with membranes, Turku

Center for Computer Science –TUCS No. 208.

[8] Paun, G. 2002 Computing with membranes: An

introduction, Berlin: Springer.

[9] Paun, G. 2002 Membrane Computing: An Introduction,

Springer.

[10] Cloud Computing, Academic Room. Retrieved 2012-8-8.

[11] Miller, M. 2008 Cloud Computing: Web-Based

Applications That Change the Way You Work and

Collaborate Online, Que.

[12] Cormen, T., Leiserson, C., Rivest, R. and Stein, C. 2009

Introduction to Algorithms, MIT Press.

[13] Engelbrecht, A.P. 2007 Computational Intelligence: An

Introduction, Second Edition, John Wiley and Sons.

[14] Sakallah A. and Simon, L. 2011 Theory and Application

of Satisfiability Testing, springer.

HF

Solution DS.

Processing

Algorithm

T

