
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.11, September 2012

24

A Simulated Enhancement of Fisher-Yates Algorithm for
Shuffling in Virtual Card Games using

Domain-Specific Data Structures

Ade-Ibijola, Abejide Olu
Department of Computer Science,

Federal University of Technology, Akure, Nigeria.

ABSTRACT

Generally stated Algorithms are often preferred because of

their wider horizon of applications owing to their freedom from

any underlying language specification – they are not tied to any

language and are easily implemented by anybody on any

machine. This advantage becomes a hitch in applications where

optimal implementation is of paramount concern – such as in

games, as the developer’s chosen language might suggest a

better implementation that alters the algorithm using predefined

data structures and/or sometimes, libraries of the preferred

language. In this paper, a reconsideration of the Fisher-Yates

Shuffle Algorithm was carried out using the “Generic List”

data structure of the .Net library, an enhanced version of the

Algorithm was drawn that targets a .Net implementation, a

graphical simulation was developed using a “built-from-

scratch” deck of Virtual Cards for the game of Whot! and a

satisfactory permutation was achieved.

Keywords: Fisher-Yates Shuffle (FYS), Random

Permutation, Domain-Specific Data Structures, Simulated

Enhancement.

1. INTRODUCTION

Shuffling is a method employed to randomize a deck of playing

cards to ensure an element of chance in card games. Literature

has established that the computers are capable of generating an

“ideal shuffle”, a bias-free random permutation of cards.

The Fisher-Yates shuffle (uncovered by Donald Knuth) is a

trivial (seamless implementation) and pretty quick (with a

complexity of O(n) on an n-card deck) algorithm for

performing this [10]. However, a number of sub-standard

algorithms are being widely used. A pretty trivial method is to

assign random numbers to item in the deck, and then carry out

sorting in the order of their respective random numbers. Even

though this method has generated an acceptably random

permutation, it is most suitable when none of the random

numbers generated are repetitive.

However, there are crude ways of eliminating replicated

random numbers. One major way is to adjust one of the

repeated values randomly up or down by a little deviation, or

tweak the probability of replication to a lower decimal by

choosing an adequately wide range of random numbers. This

method, if using an efficient sorting algorithm, will amount to

an O(n log n) average and worst-case algorithm. Other

frequently used algorithms have attempted to mimic manual

shuffling with unacceptable performances: the permutations

produced were highly predictable and they are slow.

FYS is regarded by many as an unbiased and optimal method

for generating a truly random permutation of a finite set [10].

The idea of the Algorithm is relatively simple and similar to

drawing-out numbered balls from a basket without replacement

or blindly picking playing cards from a deck. Doing this

computationally is the problem addressed by this Algorithm.

An illustrative description of the FYS algorithm was given in

[5]. Several implementations and variations of FYS exist. The

original FYS was proposed in 1938 and reviewed in 1948 [5]

with a modern version presented in [6]. A very similar but

complete variant of the algorithm was published by Wilson in

2004 named the “Santtolo’s Algorithm” [11]. In validating the

FYS, a statistical analysis of the algorithm using frequency

analysis was presented in [3] and conclusions from the analysis

favoured the speed of this algorithm.

Irrespective of the unbiased nature of FYS, research reveals

that there are often potential sources of bias such as:

implementation errors, modulo bias and pseudorandom number

generators not well-seeded [8]. This paper implements FYS in

a new style, using the Generic List Object data structure on

.Net Framework and adapts the algorithm to shuffle the deck of

cards in the game of Whot! with an interactive computer

simulation. Whot! is a card game whose description and rules

of play is presented in [1].

The remaining of this paper is organized as follows: section 2

states the problem, section 3 reviews related work, section 4

briefly describes the original FYS with a flowchart, section 5

presents the enhanced version using the Generic List object that

is specific to .Net framework, section 6 presents the results

from the pseudo-permutation and screenshots from the

simulation, and section 7 presents a concise conclusion and a

peep into future work, succeeded with a list of references.

2. THE PROBLEM

The FYS is an established algorithm, tested and trusted, and as

such, this work does not attempt to modify it in any way;

instead, the challenge here is to implement FYS with the

Generic List data structure (a luxury offered by the .Net

Framework). The Generic List object data structure offers a

higher abstraction compared to a mere Array. The

implementation carried out and described in this work was

adapted to the game of Whot!, hereby completing a first stage

in the development of a virtual game of whot!

3. RELATED WORK

It is amazing how widely applied shuffling algorithms are;

several variations of different algorithms and millions of

implementations to match. To start with, Chen in 2012 used a

model based on Cards-Shuffling to predict Urban Development

in [9], implying that the kind of randomness generated in the

http://en.wikipedia.org/wiki/Big_O_notation

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.11, September 2012

25

process also finds applications in the society. Chen presented a

schematic diagram of symmetry breaking and reconstruction of

network of cities, having cards shuffling as a major component

of his design as shown in Figure 1.

Fig. 1: Shuffling in Modeling of Urban Prediction

(Adapted from [9])

Similarly, several implementations of different shuffling

algorithms exist. An algorithm for shuffling an array was

described in [4]. A naïve algorithm for shuffling was presented

in [8] that randomizes by swapping positions of cards in a deck.

This algorithm is shown in “Algorithm 1” below:

Algorithm 1: Naïve shuffle (Adapted from [8])

for (int i = 0; i < cards.Length; i++)

{

 int n = rand.Next(cards.Length);

 Swap(ref cards[i], ref cards[n]);

}

The method depicted by Algorithm 1 performs the following

two steps:

(a). Iterates through each card in the deck.

(b). Swaps the current card’s position with another

randomly chosen card.

The advantages of this algorithm are: simplicity,

straightforwardness, ease of implementation (having few lines

of code), and seemingly correct output. However, this was

regarded by the author himself as a naïve algorithm, stating that

it is suboptimal and consumes a large amount of resources

(time, space, and memory access).

However, more complex versions of Algorithm 1 exist as

variations of FYS. Furthermore, the question of “How many

times should a deck of card be shuffled before randomness can

be achieved?” was answered with proven illustrations in [2].

4. THE ORIGINAL FYS

The original FYS was presented in 1938 by Fisher and Yates

[5] in the pages of their text “Statistical tables for biological,

agricultural and medical research”. This original version was

implemented manually, using pencil and paper, with a pre-

determined table of random numbers to create an element of

chance. A flowchart describing the steps of the original FYS is

shown in Figure 2.

Fig. 2: Flowchart illustrating the steps of Original FYS

Given that the random numbers used in this method are

unbiased, the process will definitely generate truly random

permutations. Fisher and Yates also devised a way of obtaining

random numbers to be used by the algorithm using predefined

tables of random numbers [5].

5. ENHANCED FYS USING GENERIC

LISTS

 In this section we present a custom variation of FYS, written

in Visual Basic.Net and targeted for the game of Whot! The

pieces in the deck of the game of Whot! are characterized by

both shapes and numbers which may be translated into a

“Class” in VB.Net; therefore we present a code fragment that

defines a VB Class (in Algorithm 2) as follows:

Algorithm 2: Cards Class in Vb.Net

Public Class cards

 'attriutes of the cards class ----

 Public symbol As String

'circle, carpet, cross

'triangle, star & king

 Public number As Integer 'from 1to14

 'methods here -----

End Class

The attributes of the class in “Algorithm 2” are symbol and

number, while the possible values of any instance of the class

“cards” is a 2-turple defined as:

[Symbol, Number]

where:

Symbol =

{circle,carpet,cross,triangle,star,king}

Number = {1..14}

We proceed to express our enhanced FYS algorithm using the

Generic Lists of the class of “Cards” in “Algorithm 2” as

follows:

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.11, September 2012

26

Algorithm 3: Enhanced FYS with Generic Lists

Function shuffle_cards(ByVal cards As

Generic.List(Of cards)) As

Generic.List(Of cards)

 Dim rtn_cards As New Generic.List(Of

cards)

 Dim n As Integer = cards.Count

 Dim rnd As New System.Random

 Dim pos As Integer = 1

 Do

 pos = rnd.Next(1, n + 1)

 rtn_cards.Add(cards(pos - 1))

 cards.RemoveAt(pos - 1)

 n -= 1

 Loop Until n <= 0

 Return rtn_cards

End Function

In Algorithm 3, we have used the “Cards” Class defined in

Algorithm 2 as the Type of items contained in the Generic

Lists. Hence, every item on the Generic List inherits the

attributes of the “Card” Class, which are “Symbols and

Numbers” as shown in Algorithm 2. Furthermore, we have

used the methods of the Generic Lists such as Add() and

RemoteAt() to “push to” and “pop from” the List. The

complexity of Algorithm 3 is same has that of FYS, O(n) which

is acceptable.

6. RESULTS & DISCUSSION

The Enhanced FYS applied to the game of Whot! (having 54

cards) in this paper produces exactly 54! (fifty-four factorial)

possible orderings of the cards in a 54-card deck. This is a large

number that is about:

230,843,697,339,241,379,243,718,839,060,267,085

,502,544,784,965,628,964,557,765,331,531,071,48

8.

Approximately, possible orderings.

The size of this number makes it almost impossible for two

different permutations to be the same. However, it is possible

to make some exact predictions based on probability, especially

when a deck is not well randomized. This allows some degree

of cheating in the game world.

6.1 Sample Permutations

Table 1 shows the permutations obtained from a deck of 20

cards and by mere inspection, we were able to sufficiently

ascertain its randomness.

Table 1: 10 Permutations of a deck of 20 cards

 P E R M U T A T I O N S

 1 2 3 4 5 6 7 8 9 10

C
A
R
D

P
O
S
I
T
I
O
N
S

1 11 13 3 19 12 18 9 11 6 16

2 3 6 13 7 7 9 19 2 20 17

3 18 8 12 3 19 2 7 12 14 4

4 12 7 17 1 13 4 20 14 19 6

5 15 12 7 5 18 20 18 7 8 7

6 5 17 11 17 5 14 8 19 15 2

7 10 14 18 11 20 6 6 4 2 9

8 4 18 6 15 14 1 10 9 16 19

9 8 1 19 9 11 12 1 10 5 13

10 6 19 14 12 2 15 13 13 4 8

11 14 16 8 18 9 19 4 17 11 20

12 7 15 15 6 15 5 5 5 17 5

13 16 10 5 8 3 17 14 20 7 11

14 13 11 10 13 6 3 12 3 12 15

15 19 9 16 16 8 10 16 18 9 14

16 9 3 9 14 4 11 11 15 18 18

17 17 2 4 20 10 7 15 8 10 12

18 1 4 1 10 1 16 3 1 3 1

19 20 20 2 2 17 13 2 16 1 10

20 2 5 20 4 16 8 17 6 13 3

6.2 Graphical Simulation

As earlier stated, we have adapted the Enhanced FYS to the

game of Whot! as shown in Algorithm 3. However, since this

implementation is a move towards developing the game itself,

we deemed a graphical simulation necessary at this stage.

Figure 3 shows 6 permutations of 10 out of 54 different cards

of the Whot! game.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.11, September 2012

27

Fig. 3: Simulator Showing Six Distinct Permutations of Whot! cards

7. CONCLUSIONS & FUTURE WORK
In this work, we have considered the original FYS, enhanced it

with a .Net data structure (Generic Lists), implemented it in a

windows application using proprietary designs of virtual cards

and obtained a satisfactory permutation, same complexity and

speed. The enhanced algorithm described in this paper may be

adopted by any interested individual to shuffle a deck of cards

(or any array of finite items) on the described platform (.Net

framework) or any other language library that has a similar

object Data Structure with similar attributes and methods.

This work is, however, considered by the author as a first step

towards building a virtual card game of Whot! and a prettier

challenge envisioned and pinned-down for further investigation

is how we may design a cognitive mental model for the Card

Game robot (non-player character) that uses Dynamic

Difficulty Balancing (DDB) to provide some reasonable level

of challenge for a player across the playing-complexity curve.

REFERENCES
[1]. McLeod John (2007). Whot! Retrieved from

http://www.pagat.com/com/whot.html#variations August,

2012.

[2]. Mann Brad (1993). How many Times Should you Shuffle

a Deck of Cards? Dartmouth College Chance Project

http://www.dartmouth.edu/~chance/teaching_aids/Mann.p

df

[3]. Mvngu (2011). Statistical Analysis of the Fisher-Yates

Shuffle.http://mvngu.wordpress.com/2011/05/08/statistical

-analysis-of-the-fisher-yates-shuffle/

[4]. Irde (2012). Shuffling an Array. Tutorial 2, inside Data

Structures and Algorithms.

http://www.lrde.epita.fr/~adl/ens/iitj/eso211/tut2.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.11, September 2012

28

[5]. Fisher, R.A., Yates, F. (1948) [1938]. Statistical tables for

biological, agricultural and medical research (3rd ed.).

London: Oliver & Boyd. pp. 26–

27. OCLC 14222135. (note: 6th edition, ISBN 0-02-

844720-4, is available on the web, but gives a different

shuffling algorithm by C. R. Rao)

[6]. Durstenfeld, Richard (1964). "Algorithm 235: Random

permutation". Communications of the ACM 7 (7):

420. doi:10.1145/364520.364540.

[7]. Black, Paul E. (2005). "Fisher–Yates shuffle". Dictionary

of Algorithms and Data Structures. National Institute of

Standards and Technology.

[8]. Atwood Jeff (2007). Danger of Naivete.

http://www.codinghorror.com/blog/2007/12/the-danger-

of-naivete.html

[9]. Chen Yanguang (2012). Zipf’s Law, Hierarchical

Structure, and Cards-Shuffling Model for Urban

Development. Hindawi Publishing Corporation. Discrete

Dynamics in Nature and Society, Volume 2012, Article ID

480196, 21 pages.

[10]. Wiki (2012). Shuffling and Fisher-Yates Shuffle.

Wikipedia Online Encyclopedia.

[11]. Wilson, M. C. (2004). "Overview of Sattolo's

Algorithm"INRIA Research Report. 5542. Algorithms

Seminar 2002–2004. Summary by Éric Fusy. pp. 105–108.

ISSN 0249-6399.

.

http://en.wikipedia.org/wiki/Digital_object_identifier

