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ABSTRACT 

Defect prediction is the process of predicting the fault prone 

module using some pre-mined patterns or rules. Several 

statistical and mathematical strategies have been used in 

recent past to mine these rules. However, the interpretability 

of these rules is the matter of concern. In real development 

process an expert is required to demonstrate the working of 

mined patterns which prevents the use of these mined patterns 

in software development process. Considering these facts, in 

this study we tried to find the combination of attribute-value 

pair which indicates the bug. These attribute-value pair is 

known as defect pattern. For defect pattern mining we used 

GUHA (General Unary Hypothesis Automaton) procedure 

which is oldest yet very powerful method of pattern mining. 

The basic idea of GUHA procedure is to mine the entire 

possible and interesting hypothesis supported by the data in 

predefined logical form.  The experimental results show that 

the mined patterns can be used as a rule to identify the 

defective module. Moreover, the mined patterns do not suffer 

from the interpretability problems.  
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1. INTRODUCTION 
With the increasing demand of multipurpose software today, 

the constraints and complexity involved with the development 

of software are rising. The multiple and accurate functionality 

that the software are required to meet, pose a high level of 

fault proneness within the structure of software model. 

Developing software without fault is still a challenging task 

for software engineers. Fault prone software incurs a large 

cost in terms of both time and effort. One of the ways to 

reduce the development cost is the prediction of some 

important software quality attributes like reliability, 

testability, fault proneness, effort estimation and 

maintainability in the preliminary stage of software 

development. A software fault prediction is well known and 

proven technique to produce high quality software. The 

availability of public data repository [1] and public domain 

models [2] can ease the task of model generation and test. In 

literature several statistical and machine learning techniques 

have been applied to develop defect prediction model. Neural 

networks have been used [5] in software metrics such as such 

as object-oriented metrics to predict the defect proneness of 

software module  and to evaluate the quality of software 

products. The defect proneness of software modules can also 

be investigated using the regression technique. Bibi et al.[7] 

and Graves et al.[8] applied the regression techniques on the 

change history of software products in order to accurately 

predict defect proneness of software modules. Salemet et al. 

[9] applied the regression on the test cases to estimate the 

number of defects that can be detected. The clustering can be 

applied on the data specified by experts according to 

complexity metrics of software products to cluster the fault 

prone modules and not fault prone modules [10]. Menzis et al 

[3] carried out a comparative study using Naive Bayes [18], 

Oner [16] and J48 [17] classification models on static code 

attribute data sets to evaluate the application of these models  

in defect prediction. 

Although the aforementioned techniques such as NN, 

regression and clustering have been used successfully in 

software defect prediction ,however, most of them suffers 

from Interpretability problem because they work as a black 

box and requires experts while applying in software 

industries.  On the other hand rule based classifiers suffers 

from two basic problems First, classification mining is used to 

obtain the minimum set of rules. Second, the imbalance data 

set needs additional processing, such as under-sampling or 

oversampling, when constructing decision trees. Therefore, 

we can use other data mining techniques such as association 

rule mining technique to find all the rules with a higher level 

of support and confidence, and can be utilized to describe the 

relationship between attributes of software modules and 

defects [15]. The main advantage of using association rule 

mining is that the mined patterns set can be used to describe 

software defect behaviours. To facilitate the description of 

defect behaviours, this study defines defects patterns as a set 

of values of attributes that can be used to describe and predict 

the occurrence of defects. The defect patterns of products 

consisting of set of attribute–value pair which tends to bug. 

To determine whether a product contains defects, the 

attributes of the products are compared with defect patterns. 

GUHA is a method of exploring data analysis. It can be used 

as an alternative method for association rule mining. It has 

been used successfully in medical diagnosis and financial data 

analysis.  GUHA mines all the hypothesis of the form A S 

from the data set based on associated quantifiers where A and 

S are the set of attributes. GUHA uses the bit string method 

for exploring the hypothesis.  The objective of this paper is to 

evaluate the application of GUHA in software defect 

prediction.  To mine all the defect patterns we apply GUHA 

on KC1 data set to mine all the patterns of the form A S 

where A is the set of attribute-value pair and S is the class 

attribute whose value is buggy.  

The rest of the paper is organized as follows. Section 2 

presents the overview of bug database. Thereafter, in section 3 

Introduction of association rule mining and GUHA procedure 

are presented. Experimental set-up is given in section 4. 

Result and discussion is presented in section 5. Section 6 

concludes the paper and provides the future direction. 

2. DATA SET 
The datasets used in this study is from PROMISE [1] data 

repository. We used KC1 data set for experimental purpose.  
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KC1 is the storage management software for receiving and 

processing the ground data.KC1 is the object oriented 

software written in C++ language. KC1 defect data set 

contains the information regarding class level attributes. It has 

over all 145 instances with 94 attributes. These attributes are 

classified into two groups. First group, group A contains 10 

attributes whereas second group, group B has overall 84 

attributes. In the present study we used 6 most widely used 

object oriented attributes [13] from set A because all the 

group B attributes are measured on method level and latter 

transformed into the module level attributes. Information 

regarding data set and attributes are given in table 1 and table 

2. 

 

Table 1: KC1 Data Set 

 

Data 

Set 

Number of 

Instances 

Total Number of 

Attributes 

Attributes 

Used 

KC1 145 94 6 

 

Table 2: List of Attributes 

 
Abbreviation 

 

Parameter 

 

CBO Coupling between objects 

DIT Depth of inheritance tree 

LCOM Lack of cohesion 

LOC Number of lines 

RFC Response for a class 

WMC Weight method per class 

  

 

3. ASSOCIATION RULE MINING  
An association rule is a probability based statement of co-

occurrence of certain items. Association rule mining is a 

process of discovering the relationships between seemingly 

unrelated data in transaction database or other data 

repositories.  An association rule is commonly represented 

using the notation   X Y  which means the transaction 

database  containing the item set  X  tend to contain the item 

set Y. Two measurement thresholds support and confidence, 

measures the intensity of the generated association rule.  

More formally,  for a given transaction T={ T1,T2…….Tn), 

where each transaction  Ti is the set of items, I ={ I1,I2,…..Im). 

An association rule is described as A B where A   I, B    I 

and A B =    with Support=Sup and Confidence =Con 

where Support , and Confidence  defined as 

 

Sup= 
     

   
 

 

Con=
     

   
 

An association rule mining task is to find all the association 

rules of the form X Y such that the support and confidence 

of all the association rules are above the user defined support 

and confidence. A traditional association rule mining task 

does not have any predefined target. It means that it does not 

have any predefined antecedents and consequents. The 

traditional association rule mining algorithm, A-priori [11], 

proceeds in two steps to generate all the association rules 

efficiently: 

 

Step 1.  It discovers all the frequent item sets with the support 

at least user specified support. 

Step 2.  In second step, it generates all the association rules 

with the confidence at least user  

specified confidence. 

 

In association rule mining an item can be represented using 

the Boolean representation. It is a category based 

representation of the transaction database. In this way a 

Boolean data matrix is generated using the whole transaction 

database. Each row of data matrix corresponds to one 

observed object; each column corresponds to one attribute. 

Each attribute has finite number of possible values called 

categories. Thus these attributes are called categorial 

attributes.  In this representation each attribute of transaction 

database is transformed into the Boolean data matrix based on 

the finite number of possible values contained by that 

attribute. Bit string representation [12] is based on cards of 

categories. The card of category is a string of bits. For 

example if an attribute A has five distinct values {1,2,3,4,5}  

under its belt, it is transformed into five different  columns of 

Boolean data matrix where each value of attribute A is 

denoted as A[x] where x is the available category. It also 

means that the attribute A is represented by card 

A[1]……A[5] for category 1…5.Therefore, each column of 

the resultant data matrix M corresponds to one value of 

attribute A (Table 3). In Boolean data matrix value “1” in ith 

row and A[x]th column indicates that ith instance has A[x]th 

attribute value.  

 

This bit string approach facilitated us to mine not only the 

association rules based on support and confidence threshold 

but also various additional relation of Boolean attribute 

including statistical hypothesis. The bit string approach 

provides the basics of GUHA procedure. Next we will explain 

the GUHA procedure. 

 

Table 3:  Bit String Based Transformation of Attribute. 

 

Original 

Data 

Transformed Data or Cards of 

Attribute A 

Row A A[1] A[2] A[3] A[4] A[5] 

R1 1 1 0 0 0 0 

R2 5 0 0 0 0 1 

R3 4 0 0 0 1 0 

R4 3 0 0 1 0 0 

. . . . . . . 

. . . . . . . 

Rn 2 0 1 0 0 0 

 

3.1 GUHA 
GUHA stands for General Unary Hypothesis Automaton [14]. 

The basic idea of GUHA procedure is to mine or generate all 

the possible and interesting hypothesis, in other words all the 

association rules, supported by the data in predefined logical 

form.  The basic GUHA procedure 4FT miner used bit string 

approach for association rule generation. The procedure 4FT 

miner provides a way for automatic interesting hypothesis 

generation and verification.  A general form of hypothesis 

generated by 4Ft procedure is A ≈ S where the first part A is 

called as antecedent, the second part S called succedent and 

both are Boolean attributes. To form the whole hypothesis, 

antecedent and succedent are bind by a quantifier ≈ called 

4FT quantifier. The antecedent and succedent (together called 

as cedents, when they need not be distinguished) are actually 

Boolean propositions formed on the basis of categories 

employing standard Boolean connectives such as 

                            and negation ~.  
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The hypothesis generated by GUHA procedure shows that 

most of the generated objects satisfying the antecedent satisfy 

the succedent also. Moreover, the number of objects satisfying 

the antecedent should be greater than the predefined 

threshold.  It is stressed that the found results are formulas 

true in the data and they are hypothesis from the point of view 

of the data. In other words we can say  “GUHA offers 

everything interesting”[12]. 

 

The procedure 4FT miner mines all the hypothesis of the form 

A ≈ S where A and S are the set of categorical attributes 

which are connected with the Boolean connectives. The 

generated association rules are verified using the Boolean data 

matrix M. Each pair of (A,S) produces a four-fold table (table 

4). The association rule A ≈ S is true in the concerning data 

matrix if the condition corresponding to the used quantifier 

such as founded implication, is satisfied in the four-fold table  

(fft) which is also known as  contingency table of cedents in 

M [12]. 

 

The fft , Table 4,  in data matrix is the quadruple (a,b,c,d) of 

natural numbers which contains the information of 

satisfiability of a particular hypothesis in the data matrix 

derived from the quantifier used for generation. These natural 

numbers indicates 

 

 a is the number of rows satisfying cedents and can 

be expressed as Count(Card(A)   Card(S)) 

 b is the number of rows satisfying A but not S and 

can be expressed as Count(Card(A)-a) 

 c is  the number of rows satisfying S but not A and 

can be expressed as Count( Card(S)-a) 

 d is the number of rows not satisfying cedents and 

can be expressed as n-a-b-c, where n is the number 

of instances in the data matrix. 

 

 As discussed earlier, the Card of the Boolean attributes is a 

string of bits that is analogous to the card of the category and 

is used to count the frequency of the attributes in the data 

matrix. 

Table 4: 4 FT table 

 

 

M S ~S 

A a b 

~A c d 

 

4 FT GUHA procedure has various different types of 

quantifiers that can be used to mine association rules which 

have different types of relations between cedents. In this study 

our basic aim is to mine all the patterns of attributes related 

with the buggy class. Therefore, we use basic 4FT quantifier 

“founded implication” for defect pattern mining. 

 

Founded Implication is denoted as   p, Base  . This quantifiers 

has two parameters p and Base such that p≤ 1 and Base > 0 

with the constraint  
 

   
            The association rule 

A   p, Base  S shows that at least 100p percent of rows of data 

matrix M satisfying A also satisfy S where  at least Base rows 

of M satisfy both A and S. GUHA procedure for association 

rule mining is shown in  figure 1. 

 
Input:- Transformed Boolean Data Matrix 

Output:- Set of Relevant Association rules 

 

Generate all Relevant Antecedents 

For each Antecedent 

    If Count(Card(Antecedent)) < Base 

       Next Antecedent 

    Else 

       Generate all Relevant Succedents  

      For each Succedent 

           Generate Association Rule A_R with  

                       (Antecedent,    

Succedent)      

          If A_R is a true association rule 

             Add A_R to final rule set. 

          Else  

             Next Succedent 

      Endfor 

Endfor 

 

Figure 1: Pseudo code for 4 ft  GUHA procedure[12] 

 

4. EXPERIMENTAL SET-UP 
The objective of this section is to describe the experimental 

set-up used in this study. In this section first the goal of our 

study is presented. Thereafter, transformation of data into the 

bit string format is described. We used the open source Lisp-

miner [19] machine learning toolkit to conduct this study. 

GUHA 4 FT miner is implemented in Lisp-miner toolkit. 

 

4.1. GOAL 
The goal of our study is to mine all the attribute based defect 

patterns that lead to buggy module or class. 

 

4.2 BIT STRING TRANSFORMATION 

OF DATA 
There are six independent attributes based on the metric 

induced by Object Oriented design [13] and one dependent 

attribute class. Each of the attributes need to transformed into 

the bit string format before applying the 4 FT procedure of 

GUHA. The result of attribute transformation is listed in table 

5. Attributes CBO, DIT, LCOM, RFC, class and WMC are 

transformed using “each value one category transformation”. 

It means that each distinct value of the attribute is treated as a 

single category. In attribute LOC there are approximately 144 

distinct values so after transformation it poses 144 categories. 

Therefore, we used interval transformation for attribute LOC. 

The transformed Boolean data set has 195 categorical 

attributes and 144 instances. 

4.3 PARAMETER TUNING 
The tunable parameters in the 4 FT miner procedure include 

base, FUI (founded implication), coefficient type and number 

and coefficient length of literals. We used coefficient type 

“subset” and the coefficient length minimum 1 and maximum 

2 for experiments. We have tried several combinations of base 

and FUI value for experiments. However, base 5% and FUI 

0.80 yielded the best result so we used these parameter 

settings for further experiments.  
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Table 6. List of Generated Hypothesis 

Se. 

No. 

Antecedent a b c d Confidence Support 

1 CBO(9, 15)&DIT(1) 8 0 51 85 1 0.06 

2 CBO(9, 15) & DIT(1, 4) 9 0 50 85 1 0.06 

3 CBO(9, 15) & DIT(1, 5) 8 0 51 85 1 0.06 

4 DIT(1) & LOC(<157;163), <163;191)) 8 0 51 85 1 0.06 

5 DIT(1) & LOC(<157;163), <384;528)) 9 0 50 85 1 0.0625 

6 DIT(1) & LOC(<157;163), <771;2883>) 8 0 51 85 1 0.06 

7 DIT(1, 2) & LOC(<157;163), <771;2883>) 10 0 49 85 1 0.069 

8 DIT(1, 2) & LOCM(83, 90) 8 0 51 85 1 0.06 

9 DIT(1, 4) & LOC(<157;163), <163;191)) 9 0 50 85 1 0.065 

10 DIT(1, 4) & LOC(<157;163), <384;528)) 9 0 50 85 1 0.065 

11 DIT(1, 3) & LOC(<157;163), <384;528)) 9 0 50 85 1 0.065 

12 DIT(1, 3) & LOC(<157;163), <771;2883>) 8 0 51 85 1 0.06 

13 DIT(1, 5) & LOC(<157;1638 <163;191)) 8 0 51 85 1 0.055 

14 DIT(1, 5) & LOC(<157;163), <384;528)) 9 0 50 85 1 0.065 

15 DIT(1, 5) & LOC(<157;163), <771;2883>) 8 0 51 85 1 0.055 

16 LOCM(82, 90) 8 0 51 85 1 0.055 

17 LOCM(90, 97) 8 0 51 85 1 0.055 

18 DIT(1, 2) & LOC(<157;163), <384;528)) 13 1 46 84 0.92 0.090 

19 LOC(<157;163), <384;528)) 13 1 46 84 0.92 0.090 

20 DIT(1, 2) & LOC(<157;163), <254;290)) 11 1 48 84 0.91 0.076 

21 DIT(1, 2) & LOC(<157;163), <528;771)) 11 1 48 84 0.91 0.076 

22 CBO(9, 13) & DIT(1, 2) 10 1 49 84 0.9090 0.069 

23 CBO(9, 15) & DIT(1, 2) 10 1 49 84 0.9090 0.069 

24 CBO(9, 16) & DIT(1, 2) 10 1 49 84 0.9090 0.069 

25 DIT(1, 3) & LOC(<157;163), <290;335)) 10 1 49 84 0.9090 0.069 

26 CBO(9, 11) & DIT(1, 2) 9 1 50 84 0.90 0.0625 

27 CBO(9, 11) & DIT(1, 2) 9 1 50 84 0.90 0.0625 

28 DIT(1) & LOC(<157;163), <254;290)) 9 1 50 84 0.90 0.0625 

29 DIT(1, 2) & LOC(<157;163), <290;335)) 9 1 50 84 0.90 0.0625 

30 DIT(1, 2) & LOC(<384;528), <771;2883>) 9 1 50 84 0.90 0.0625 

31 DIT(1, 3) & LOC(<157;163), <254;290)) 9 1 50 84 0.90 0.0625 

32 CBO(15, 16) 9 1 50 84 0.90 0.0625 

33 LOCM(83, 90) 9 1 50 84 0.90 0.0625 

 

Table: 5 Attribute Categorization. 

Attribute Transformation Type Number of 

categories 

CBO Each Value One Category 

Transformation 

25 

DIT Each Value One Category 

Transformation 

5 

LCOM Each Value One Category 

Transformation 

41 

Class Each Value One Category 

Transformation 

2 

RFC Each Value One Category 

Transformation 

63 

WMC Each Value One Category 

Transformation 

39 

LOC Interval Transformation 20 

 

5. RESULT AND DISCUSSION 
The results of our experiments are shown in table 6. Each row 

of the table contains the generated hypothesis, their respective 

values of a, b, c, d (discussed earlier) with support and 

confidence of hypothesis. Total of 143 hypothesises are 

generated using 4 FT miner, however, we listed only 

hypothesises which have confidence threshold more than 

0.90. As mentioned in earlier discussion, only the LOC 

attribute has been categorized using the interval categorization 

all the other attributes are categorized using each value one 

category transformation therefore, the first hypothesis can be 

explained as “ The class which have CBO value either 9 or 15 

with  DIT  value 1 is a buggy class with confidence value 1”. 

Other rules can be explained using the same manner. 

Threshold confidence indicates the misidentification (or 

misclassification) rate associated with the concerning 

hypothesis. The generated hypothesises also reveal some more 

interesting information related with KC1 bug database. 

Attributes CBO, DIT, LCOM, and LOC are more likely 

related with the bug. In this study our main objective is to find 

the attributes patterns which are related with the bug. 

Therefore, the table 5 contains only hypothesises or rules 

related with the buggy class.  In summary, using the GUHA 

procedure it possible to identify which attribute or group of 

attributes with their corresponding values tends to bug. This 

information may help the developers to detect the bug prone 

modules in early stage of development. Unlike traditional 

black box models, these hypothesises are easy to understand 

thus can be used in software industries in integrated manner. 

 

5.1 USING THE DEFECT PATTERNS 
Once, a software comes with the fault the customer 

satisfaction can be diminished and so the reputation of the 

software company. Therefore, a main use of the generated 
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defect patterns is to reduce testing costs and increase the 

quality, by distributing the testing efforts to only fault-prone 

classes, since to test each and every module is infeasible. The 

patterns generated by GUHA procedure are very simple and 

intuitive. This helps the developers to establish hypothetical 

Section 3 and subsection 3.1), use no additional space above 

the subsection head. relationships between object oriented 

metrics and fault prone classes which ease the task of class 

selection for testing.  In such strategy, a programmer is mainly 

interested in the correct detection of faulty classes. Observing 

the results, we can conclude that CBO value > 9 and higher 

value of LCOM are related to the presence of a fault in the 

class. CBO value > 9 associated with different value of DIT 

are related with the buggy modules., In other rules,  The 

classes with LOC value > 163 associated with different value 

of DIT are more bug prone. There is no rule related to the 

metric WMC and RFC with higher confidence, therefore not 

reported in the list. The patterns presented here indicate the 

classes with higher likelihood of being faulty; therefore the 

classes with these features need more attention during testing. 

On the other hand, we can also use these patterns after the 

design phase and during the coding phase of software 

development in integrated manner. We can build a spin-lock 

type system which consists of these patterns in the form of IF 

THAN ELSE rules and attribute measurement modules. This 

system continuously measures the value of different attributes 

and warns the programmer if the module cross the danger 

threshold of attribute value. 

 

6. CONCLUSION AND FUTURE 

DIRECTION 
This paper empirically evaluates the application of GUHA in 

software defect prediction.  On base of experimental results 

we concludes that GUHA is the suitable tool for discovering 

unrevealed information or patterns from the bug database 

which is not possible using traditional black box models. It 

generates more understandable and precise results which can 

help in real development process to produce quality software. 

In addition, in the view of on KC1 database, experimental 

results also reveal that attributes CBO, DIT, LCOM, and LOC 

are more likely related with bug. Attribute-value pair 

combination, listed in table 6, can be used to identify the 

buggy class. 

 

In future we plan to extend our study on more bug datasets. In 

this study our main objective is to find the patterns for buggy 

class in future we plan to find the attributes patterns for bug 

proneness. GUHA procedure generates very large number of 

patterns which are very tricky to handle. Therefore, we also 

plan to use some rule subset selection techniques to find more 

precise and suitable patterns or rules.  
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