
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.11, September 2012

14

Mining Attributes Patterns of Defective Modules for

Object Oriented Software

Bharavi Mishra

Dept. Computer Engineering.
Indian Institute of Technology

(BHU), Varanasi, 221005

K.K. Shukla
Dept. Computer Engineering.
Indian Institute of Technology

(BHU), Varanasi, 221005

ABSTRACT

Defect prediction is the process of predicting the fault prone

module using some pre-mined patterns or rules. Several

statistical and mathematical strategies have been used in

recent past to mine these rules. However, the interpretability

of these rules is the matter of concern. In real development

process an expert is required to demonstrate the working of

mined patterns which prevents the use of these mined patterns

in software development process. Considering these facts, in

this study we tried to find the combination of attribute-value

pair which indicates the bug. These attribute-value pair is

known as defect pattern. For defect pattern mining we used

GUHA (General Unary Hypothesis Automaton) procedure

which is oldest yet very powerful method of pattern mining.

The basic idea of GUHA procedure is to mine the entire

possible and interesting hypothesis supported by the data in

predefined logical form. The experimental results show that

the mined patterns can be used as a rule to identify the

defective module. Moreover, the mined patterns do not suffer

from the interpretability problems.

Keywords

Defect patterns, GUHA, Fault prediction.

1. INTRODUCTION
With the increasing demand of multipurpose software today,

the constraints and complexity involved with the development

of software are rising. The multiple and accurate functionality

that the software are required to meet, pose a high level of

fault proneness within the structure of software model.

Developing software without fault is still a challenging task

for software engineers. Fault prone software incurs a large

cost in terms of both time and effort. One of the ways to

reduce the development cost is the prediction of some

important software quality attributes like reliability,

testability, fault proneness, effort estimation and

maintainability in the preliminary stage of software

development. A software fault prediction is well known and

proven technique to produce high quality software. The

availability of public data repository [1] and public domain

models [2] can ease the task of model generation and test. In

literature several statistical and machine learning techniques

have been applied to develop defect prediction model. Neural

networks have been used [5] in software metrics such as such

as object-oriented metrics to predict the defect proneness of

software module and to evaluate the quality of software

products. The defect proneness of software modules can also

be investigated using the regression technique. Bibi et al.[7]

and Graves et al.[8] applied the regression techniques on the

change history of software products in order to accurately

predict defect proneness of software modules. Salemet et al.

[9] applied the regression on the test cases to estimate the

number of defects that can be detected. The clustering can be

applied on the data specified by experts according to

complexity metrics of software products to cluster the fault

prone modules and not fault prone modules [10]. Menzis et al

[3] carried out a comparative study using Naive Bayes [18],

Oner [16] and J48 [17] classification models on static code

attribute data sets to evaluate the application of these models

in defect prediction.

Although the aforementioned techniques such as NN,

regression and clustering have been used successfully in

software defect prediction ,however, most of them suffers

from Interpretability problem because they work as a black

box and requires experts while applying in software

industries. On the other hand rule based classifiers suffers

from two basic problems First, classification mining is used to

obtain the minimum set of rules. Second, the imbalance data

set needs additional processing, such as under-sampling or

oversampling, when constructing decision trees. Therefore,

we can use other data mining techniques such as association

rule mining technique to find all the rules with a higher level

of support and confidence, and can be utilized to describe the

relationship between attributes of software modules and

defects [15]. The main advantage of using association rule

mining is that the mined patterns set can be used to describe

software defect behaviours. To facilitate the description of

defect behaviours, this study defines defects patterns as a set

of values of attributes that can be used to describe and predict

the occurrence of defects. The defect patterns of products

consisting of set of attribute–value pair which tends to bug.

To determine whether a product contains defects, the

attributes of the products are compared with defect patterns.

GUHA is a method of exploring data analysis. It can be used

as an alternative method for association rule mining. It has

been used successfully in medical diagnosis and financial data

analysis. GUHA mines all the hypothesis of the form A S

from the data set based on associated quantifiers where A and

S are the set of attributes. GUHA uses the bit string method

for exploring the hypothesis. The objective of this paper is to

evaluate the application of GUHA in software defect

prediction. To mine all the defect patterns we apply GUHA

on KC1 data set to mine all the patterns of the form A S

where A is the set of attribute-value pair and S is the class

attribute whose value is buggy.

The rest of the paper is organized as follows. Section 2

presents the overview of bug database. Thereafter, in section 3

Introduction of association rule mining and GUHA procedure

are presented. Experimental set-up is given in section 4.

Result and discussion is presented in section 5. Section 6

concludes the paper and provides the future direction.

2. DATA SET
The datasets used in this study is from PROMISE [1] data

repository. We used KC1 data set for experimental purpose.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.11, September 2012

15

KC1 is the storage management software for receiving and

processing the ground data.KC1 is the object oriented

software written in C++ language. KC1 defect data set

contains the information regarding class level attributes. It has

over all 145 instances with 94 attributes. These attributes are

classified into two groups. First group, group A contains 10

attributes whereas second group, group B has overall 84

attributes. In the present study we used 6 most widely used

object oriented attributes [13] from set A because all the

group B attributes are measured on method level and latter

transformed into the module level attributes. Information

regarding data set and attributes are given in table 1 and table

2.

Table 1: KC1 Data Set

Data

Set

Number of

Instances

Total Number of

Attributes

Attributes

Used

KC1 145 94 6

Table 2: List of Attributes

Abbreviation

Parameter

CBO Coupling between objects

DIT Depth of inheritance tree

LCOM Lack of cohesion

LOC Number of lines

RFC Response for a class

WMC Weight method per class

3. ASSOCIATION RULE MINING
An association rule is a probability based statement of co-

occurrence of certain items. Association rule mining is a

process of discovering the relationships between seemingly

unrelated data in transaction database or other data

repositories. An association rule is commonly represented

using the notation X Y which means the transaction

database containing the item set X tend to contain the item

set Y. Two measurement thresholds support and confidence,

measures the intensity of the generated association rule.

More formally, for a given transaction T={ T1,T2…….Tn),

where each transaction Ti is the set of items, I ={ I1,I2,…..Im).

An association rule is described as A B where A I, B I

and A B = with Support=Sup and Confidence =Con

where Support , and Confidence defined as

Sup=

Con=

An association rule mining task is to find all the association

rules of the form X Y such that the support and confidence

of all the association rules are above the user defined support

and confidence. A traditional association rule mining task

does not have any predefined target. It means that it does not

have any predefined antecedents and consequents. The

traditional association rule mining algorithm, A-priori [11],

proceeds in two steps to generate all the association rules

efficiently:

Step 1. It discovers all the frequent item sets with the support

at least user specified support.

Step 2. In second step, it generates all the association rules

with the confidence at least user

specified confidence.

In association rule mining an item can be represented using

the Boolean representation. It is a category based

representation of the transaction database. In this way a

Boolean data matrix is generated using the whole transaction

database. Each row of data matrix corresponds to one

observed object; each column corresponds to one attribute.

Each attribute has finite number of possible values called

categories. Thus these attributes are called categorial

attributes. In this representation each attribute of transaction

database is transformed into the Boolean data matrix based on

the finite number of possible values contained by that

attribute. Bit string representation [12] is based on cards of

categories. The card of category is a string of bits. For

example if an attribute A has five distinct values {1,2,3,4,5}

under its belt, it is transformed into five different columns of

Boolean data matrix where each value of attribute A is

denoted as A[x] where x is the available category. It also

means that the attribute A is represented by card

A[1]……A[5] for category 1…5.Therefore, each column of

the resultant data matrix M corresponds to one value of

attribute A (Table 3). In Boolean data matrix value “1” in ith

row and A[x]th column indicates that ith instance has A[x]th

attribute value.

This bit string approach facilitated us to mine not only the

association rules based on support and confidence threshold

but also various additional relation of Boolean attribute

including statistical hypothesis. The bit string approach

provides the basics of GUHA procedure. Next we will explain

the GUHA procedure.

Table 3: Bit String Based Transformation of Attribute.

Original

Data

Transformed Data or Cards of

Attribute A

Row A A[1] A[2] A[3] A[4] A[5]

R1 1 1 0 0 0 0

R2 5 0 0 0 0 1

R3 4 0 0 0 1 0

R4 3 0 0 1 0 0

.

.

Rn 2 0 1 0 0 0

3.1 GUHA
GUHA stands for General Unary Hypothesis Automaton [14].

The basic idea of GUHA procedure is to mine or generate all

the possible and interesting hypothesis, in other words all the

association rules, supported by the data in predefined logical

form. The basic GUHA procedure 4FT miner used bit string

approach for association rule generation. The procedure 4FT

miner provides a way for automatic interesting hypothesis

generation and verification. A general form of hypothesis

generated by 4Ft procedure is A ≈ S where the first part A is

called as antecedent, the second part S called succedent and

both are Boolean attributes. To form the whole hypothesis,

antecedent and succedent are bind by a quantifier ≈ called

4FT quantifier. The antecedent and succedent (together called

as cedents, when they need not be distinguished) are actually

Boolean propositions formed on the basis of categories

employing standard Boolean connectives such as

 and negation ~.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.11, September 2012

16

The hypothesis generated by GUHA procedure shows that

most of the generated objects satisfying the antecedent satisfy

the succedent also. Moreover, the number of objects satisfying

the antecedent should be greater than the predefined

threshold. It is stressed that the found results are formulas

true in the data and they are hypothesis from the point of view

of the data. In other words we can say “GUHA offers

everything interesting”[12].

The procedure 4FT miner mines all the hypothesis of the form

A ≈ S where A and S are the set of categorical attributes

which are connected with the Boolean connectives. The

generated association rules are verified using the Boolean data

matrix M. Each pair of (A,S) produces a four-fold table (table

4). The association rule A ≈ S is true in the concerning data

matrix if the condition corresponding to the used quantifier

such as founded implication, is satisfied in the four-fold table

(fft) which is also known as contingency table of cedents in

M [12].

The fft , Table 4, in data matrix is the quadruple (a,b,c,d) of

natural numbers which contains the information of

satisfiability of a particular hypothesis in the data matrix

derived from the quantifier used for generation. These natural

numbers indicates

 a is the number of rows satisfying cedents and can

be expressed as Count(Card(A) Card(S))

 b is the number of rows satisfying A but not S and

can be expressed as Count(Card(A)-a)

 c is the number of rows satisfying S but not A and

can be expressed as Count(Card(S)-a)

 d is the number of rows not satisfying cedents and

can be expressed as n-a-b-c, where n is the number

of instances in the data matrix.

 As discussed earlier, the Card of the Boolean attributes is a

string of bits that is analogous to the card of the category and

is used to count the frequency of the attributes in the data

matrix.

Table 4: 4 FT table

M S ~S

A a b

~A c d

4 FT GUHA procedure has various different types of

quantifiers that can be used to mine association rules which

have different types of relations between cedents. In this study

our basic aim is to mine all the patterns of attributes related

with the buggy class. Therefore, we use basic 4FT quantifier

“founded implication” for defect pattern mining.

Founded Implication is denoted as p, Base . This quantifiers

has two parameters p and Base such that p≤ 1 and Base > 0

with the constraint

 The association rule

A p, Base S shows that at least 100p percent of rows of data

matrix M satisfying A also satisfy S where at least Base rows

of M satisfy both A and S. GUHA procedure for association

rule mining is shown in figure 1.

Input:- Transformed Boolean Data Matrix

Output:- Set of Relevant Association rules

Generate all Relevant Antecedents

For each Antecedent

 If Count(Card(Antecedent)) < Base

 Next Antecedent

 Else

 Generate all Relevant Succedents

 For each Succedent

 Generate Association Rule A_R with

 (Antecedent,

Succedent)

 If A_R is a true association rule

 Add A_R to final rule set.

 Else

 Next Succedent

 Endfor

Endfor

Figure 1: Pseudo code for 4 ft GUHA procedure[12]

4. EXPERIMENTAL SET-UP
The objective of this section is to describe the experimental

set-up used in this study. In this section first the goal of our

study is presented. Thereafter, transformation of data into the

bit string format is described. We used the open source Lisp-

miner [19] machine learning toolkit to conduct this study.

GUHA 4 FT miner is implemented in Lisp-miner toolkit.

4.1. GOAL
The goal of our study is to mine all the attribute based defect

patterns that lead to buggy module or class.

4.2 BIT STRING TRANSFORMATION

OF DATA
There are six independent attributes based on the metric

induced by Object Oriented design [13] and one dependent

attribute class. Each of the attributes need to transformed into

the bit string format before applying the 4 FT procedure of

GUHA. The result of attribute transformation is listed in table

5. Attributes CBO, DIT, LCOM, RFC, class and WMC are

transformed using “each value one category transformation”.

It means that each distinct value of the attribute is treated as a

single category. In attribute LOC there are approximately 144

distinct values so after transformation it poses 144 categories.

Therefore, we used interval transformation for attribute LOC.

The transformed Boolean data set has 195 categorical

attributes and 144 instances.

4.3 PARAMETER TUNING
The tunable parameters in the 4 FT miner procedure include

base, FUI (founded implication), coefficient type and number

and coefficient length of literals. We used coefficient type

“subset” and the coefficient length minimum 1 and maximum

2 for experiments. We have tried several combinations of base

and FUI value for experiments. However, base 5% and FUI

0.80 yielded the best result so we used these parameter

settings for further experiments.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.11, September 2012

17

Table 6. List of Generated Hypothesis

Se.

No.

Antecedent a b c d Confidence Support

1 CBO(9, 15)&DIT(1) 8 0 51 85 1 0.06

2 CBO(9, 15) & DIT(1, 4) 9 0 50 85 1 0.06

3 CBO(9, 15) & DIT(1, 5) 8 0 51 85 1 0.06

4 DIT(1) & LOC(<157;163), <163;191)) 8 0 51 85 1 0.06

5 DIT(1) & LOC(<157;163), <384;528)) 9 0 50 85 1 0.0625

6 DIT(1) & LOC(<157;163), <771;2883>) 8 0 51 85 1 0.06

7 DIT(1, 2) & LOC(<157;163), <771;2883>) 10 0 49 85 1 0.069

8 DIT(1, 2) & LOCM(83, 90) 8 0 51 85 1 0.06

9 DIT(1, 4) & LOC(<157;163), <163;191)) 9 0 50 85 1 0.065

10 DIT(1, 4) & LOC(<157;163), <384;528)) 9 0 50 85 1 0.065

11 DIT(1, 3) & LOC(<157;163), <384;528)) 9 0 50 85 1 0.065

12 DIT(1, 3) & LOC(<157;163), <771;2883>) 8 0 51 85 1 0.06

13 DIT(1, 5) & LOC(<157;1638 <163;191)) 8 0 51 85 1 0.055

14 DIT(1, 5) & LOC(<157;163), <384;528)) 9 0 50 85 1 0.065

15 DIT(1, 5) & LOC(<157;163), <771;2883>) 8 0 51 85 1 0.055

16 LOCM(82, 90) 8 0 51 85 1 0.055

17 LOCM(90, 97) 8 0 51 85 1 0.055

18 DIT(1, 2) & LOC(<157;163), <384;528)) 13 1 46 84 0.92 0.090

19 LOC(<157;163), <384;528)) 13 1 46 84 0.92 0.090

20 DIT(1, 2) & LOC(<157;163), <254;290)) 11 1 48 84 0.91 0.076

21 DIT(1, 2) & LOC(<157;163), <528;771)) 11 1 48 84 0.91 0.076

22 CBO(9, 13) & DIT(1, 2) 10 1 49 84 0.9090 0.069

23 CBO(9, 15) & DIT(1, 2) 10 1 49 84 0.9090 0.069

24 CBO(9, 16) & DIT(1, 2) 10 1 49 84 0.9090 0.069

25 DIT(1, 3) & LOC(<157;163), <290;335)) 10 1 49 84 0.9090 0.069

26 CBO(9, 11) & DIT(1, 2) 9 1 50 84 0.90 0.0625

27 CBO(9, 11) & DIT(1, 2) 9 1 50 84 0.90 0.0625

28 DIT(1) & LOC(<157;163), <254;290)) 9 1 50 84 0.90 0.0625

29 DIT(1, 2) & LOC(<157;163), <290;335)) 9 1 50 84 0.90 0.0625

30 DIT(1, 2) & LOC(<384;528), <771;2883>) 9 1 50 84 0.90 0.0625

31 DIT(1, 3) & LOC(<157;163), <254;290)) 9 1 50 84 0.90 0.0625

32 CBO(15, 16) 9 1 50 84 0.90 0.0625

33 LOCM(83, 90) 9 1 50 84 0.90 0.0625

Table: 5 Attribute Categorization.

Attribute Transformation Type Number of

categories

CBO Each Value One Category

Transformation

25

DIT Each Value One Category

Transformation

5

LCOM Each Value One Category

Transformation

41

Class Each Value One Category

Transformation

2

RFC Each Value One Category

Transformation

63

WMC Each Value One Category

Transformation

39

LOC Interval Transformation 20

5. RESULT AND DISCUSSION
The results of our experiments are shown in table 6. Each row

of the table contains the generated hypothesis, their respective

values of a, b, c, d (discussed earlier) with support and

confidence of hypothesis. Total of 143 hypothesises are

generated using 4 FT miner, however, we listed only

hypothesises which have confidence threshold more than

0.90. As mentioned in earlier discussion, only the LOC

attribute has been categorized using the interval categorization

all the other attributes are categorized using each value one

category transformation therefore, the first hypothesis can be

explained as “ The class which have CBO value either 9 or 15

with DIT value 1 is a buggy class with confidence value 1”.

Other rules can be explained using the same manner.

Threshold confidence indicates the misidentification (or

misclassification) rate associated with the concerning

hypothesis. The generated hypothesises also reveal some more

interesting information related with KC1 bug database.

Attributes CBO, DIT, LCOM, and LOC are more likely

related with the bug. In this study our main objective is to find

the attributes patterns which are related with the bug.

Therefore, the table 5 contains only hypothesises or rules

related with the buggy class. In summary, using the GUHA

procedure it possible to identify which attribute or group of

attributes with their corresponding values tends to bug. This

information may help the developers to detect the bug prone

modules in early stage of development. Unlike traditional

black box models, these hypothesises are easy to understand

thus can be used in software industries in integrated manner.

5.1 USING THE DEFECT PATTERNS
Once, a software comes with the fault the customer

satisfaction can be diminished and so the reputation of the

software company. Therefore, a main use of the generated

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.11, September 2012

18

defect patterns is to reduce testing costs and increase the

quality, by distributing the testing efforts to only fault-prone

classes, since to test each and every module is infeasible. The

patterns generated by GUHA procedure are very simple and

intuitive. This helps the developers to establish hypothetical

Section 3 and subsection 3.1), use no additional space above

the subsection head. relationships between object oriented

metrics and fault prone classes which ease the task of class

selection for testing. In such strategy, a programmer is mainly

interested in the correct detection of faulty classes. Observing

the results, we can conclude that CBO value > 9 and higher

value of LCOM are related to the presence of a fault in the

class. CBO value > 9 associated with different value of DIT

are related with the buggy modules., In other rules, The

classes with LOC value > 163 associated with different value

of DIT are more bug prone. There is no rule related to the

metric WMC and RFC with higher confidence, therefore not

reported in the list. The patterns presented here indicate the

classes with higher likelihood of being faulty; therefore the

classes with these features need more attention during testing.

On the other hand, we can also use these patterns after the

design phase and during the coding phase of software

development in integrated manner. We can build a spin-lock

type system which consists of these patterns in the form of IF

THAN ELSE rules and attribute measurement modules. This

system continuously measures the value of different attributes

and warns the programmer if the module cross the danger

threshold of attribute value.

6. CONCLUSION AND FUTURE

DIRECTION
This paper empirically evaluates the application of GUHA in

software defect prediction. On base of experimental results

we concludes that GUHA is the suitable tool for discovering

unrevealed information or patterns from the bug database

which is not possible using traditional black box models. It

generates more understandable and precise results which can

help in real development process to produce quality software.

In addition, in the view of on KC1 database, experimental

results also reveal that attributes CBO, DIT, LCOM, and LOC

are more likely related with bug. Attribute-value pair

combination, listed in table 6, can be used to identify the

buggy class.

In future we plan to extend our study on more bug datasets. In

this study our main objective is to find the patterns for buggy

class in future we plan to find the attributes patterns for bug

proneness. GUHA procedure generates very large number of

patterns which are very tricky to handle. Therefore, we also

plan to use some rule subset selection techniques to find more

precise and suitable patterns or rules.

7. REFERENCES
[1]. Promise. http://promisedata.org/repository/.

[2]. Weka. http: //www.cs.waikato.ac.nz /.

[3]. Menzies, T., Dekhtyar, A., Distefano, J., and Greenwald,

J. 2007. Problems with Precision: A Response to

Comments on Data Mining Static Code Attributes to

Learn Defect Predictors. IEEE Trans. Software Eng., vol.

33, no. 9,pp. 637-640, Sept.

[4]. Zhong, S., Khoshgoftaar, T.M., Seliya, N. 2002.

Analyzing software measurement data with clustering

techniques, IEEE Intelligent System 19 20–27.

[5]. Thwin, M.M., Quah, T.S. 2005. Application of neural

networks for software quality prediction using object-

oriented metrics, The Journal of Systems and Software

76 147–156.

[6]. Khoshgoftaar, T.M., Lanning, D.L. 1995. A neural

network approach for early detection of program

modules having high risk in the maintenance phase,

Journal of Systems and Software 29 (1) 85–91.

[7]. Bibi, S., Tsoumakas, G., Stamelos, I., Vlahavas, I. 2008.

Regression via classification applied on software defect

estimation, Expert Systems with Applications 34 2091–

2101.

[8]. Graves, T., Karr, J.A., Marron, H.S. 2000. Predicting

fault incidence using software change history, IEEE

Transactions on Software Engineering 26 (7) 653– 661.

[9]. Salem, A.M., Rekabb, K., Whittakerc, J.A. 2004.

Prediction of software failures through logistic

regression, Information and Software Technology 46

519–523.

[10]. Hand, D., Mannila, H., Smyth, P. 2001. Principles of

Data Mining, MIT Press, Cambridge, MA.

[11]. Agrawal, R., Srikant, R. 1994. Fast algorithm for mining

association rules, Proceeding of the 20th VLDB

conference, Morgan Kaufmann, Santiago, Chile, pp.

487– 499.

[12]. Hajek, P., Holeˇna, M., Raucha, J., 2010. The GUHA

method and its meaning for data miningJournal of

Computer and System Sciences 76 34–48

[13]. Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite

for object oriented design. IEEE Transaction on Software

Engineering 20 (6), 476–493.

[14]. Hajek, P., Havel, I., Chytil, M. 1996. The GUHA

method of automatic hypotheses determination,

Computing .

[15]. Huntley, C.L. 2003. Organizational learning in open-

source software projects: an analysis of debugging data,

IEEE Transactions on Engineering Management 50 (4)

485–493.

[16]. R. Holte, R. 1993“Very simple classification rules

perform well on most commonly used datasets,”

Machine Learning, vol. 11, p. 63.

[17]. Quinlan, R. 1992. C4.5: Programs for Machine Learning.

Morgan Kaufman.

[18]. Witten I. H., and Frank, E., 2005. Data mining. 2nd

edition. Los Altos, US: Morgan Kaufmann.

[19]. Lispminer:http://lispminer.vse.cz/

