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ABSTRACT 

The number partitioning problem is to decide whether a given 

multiset of integers can be partitioned into two "halves" of 

given cardinalities such that the discrepancy, the absolute value 

of the difference of their sums is minimized. While Partitioning 

problem is known to be NP-complete, only few studies have 

investigated on its variations. Number partitioning problem has 

a wide range of practical application, like: multiprocessor 

scheduling, minimization of VLSI circuit size and delay, also 

used in public key cryptography, message verification, 

computer password, voting manipulation and bin packing. 

While lots of investigation have been made for two-way 

partitioning, only a few for multi-way partitioning, while most 

of them are not feasible for real time environment. We 

introduce an improved multi-way partitioning algorithm which 

is feasible for real time environment. It returns maximum 

number of subset that can be made based on the order of the 

numbers as they appear. Maximum number of subset helps us 

to preempt any process & serve higher priority process with 

extremely low overhead cost in multiprocessor process 

scheduling. 

Keywords 
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completeness, Partitioning problem. 

1. INTRODUCTION 

The Number partitioning problem (Npp) is a NP-Complete 

problem where the complexity class NP-complete (abbreviated 

NP-C or NPC) is a class of decision problems. 

A decision problem L is NP-complete if it is in the set of NP 

problems and also in the set of NP-hard problems so that any 

NP problem can be converted into L by a transformation of the 

inputs in polynomial time. NP-complete problems are often 

addressed by using approximation algorithms. 

Number Partitioning problem can be defined easily by: Given a 

list                                          of positive integers & find a 

partition, i.e. a subset S                 such that the 

discrepancy  
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is minimized. In the constrained partition problem, the 

cardinality difference between S and its complement 

nSSnSm  2)( ,  

must obey certain constraints. The most common case is the 

balanced partitioning problem with the constraint |m| ≤ 1. 

 

Fig 1: Euler diagram for P, NP, NP-Complete, and NP-

Hard set of problems. 

For example, given the integers   {8, 7, 6, 5, 4} if we divide 

them into the subsets {8, 7} and {6, 5, 4}, the sum of the 

numbers in each subset is 15. This is optimal and known as 

perfect partition. 

Although the partition problem is NP-complete, there is a 

pseudo-polynomial time dynamic programming solution and a 

number of heuristics that solve the problem in many instances, 

either optimally or approximately. For this reason, it has been 

called “The Easiest Hard Problem” [1]. 

Now we here by focus on optimal solutions for finding the 

maximum number of subsets can be made based on the order of 

the numbers. 

It reminds me one of the cherished customs of childhood which 

needs to choose up sides for a ball game. Where two chief 

bullies of the neighbourhood would appoint themselves 

captains of the opposite teams and then they would take turns 

picking other players. On each round, a captain would choose 

the most capable (or, toward the end, the least inept) player 

from the pool of remaining players, until everyone present had 

been assigned to one side or the other. The aim of this ritual 

was to produce two evenly matched teams and along the way, 

to remind each of us of our precise ranking in the 

neighbourhood pecking order. It usually worked & simply it’s 

one of the heuristic solutions for number partitioning problem. 

There lies a paradox: If computer scientists find the partitioning 

problem so intractable, how can children over the world solve it 

every day? Are the kids much smarter? 

On the other hand, the success of playground algorithms for 

partitioning might be a clue that the task is not always as hard 

as that forbidding term "NP-complete" tends to suggest. As a 
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matter of fact, finding a hard instance of this famously hard 

problem can be a hard problem—unless you know where to 

look. Number partitioning problem is getting importance in 

both theoretically & practically. It is one of Garey and 

Johnson’s six basic NP-complete problems that lie at the heart 

of the theory of NP-completeness [2]. 

It has a wide range of practical application, like:  

multiprocessor scheduling, minimization of VLSI circuit size 

and delay [3], also used in public key cryptography. In fact 

Number partitioning problem is a problem that actually deals 

with numbers. In multi-processor scheduling [2] given a set of 

jobs, each with an associated completion time, and two or more 

identical processors, assigns each job to a processor to complete 

all the jobs as soon as possible. Another application of number 

partitioning is voting manipulation [4]. 

There are three natural objective functions for number 

partitioning: 1) minimizing the largest subset sum, 2) 

maximizing the smallest subset sum, and 3) minimizing the 

difference between the largest and smallest subset sums. For 

two-way partitioning, all these objective functions are 

equivalent, but for multi-way partitioning, no two of them are 

equivalent [5]. We choose to minimize the largest subset sum & 

maximizing the number of subsets, which corresponds to 

minimizing the total time in a scheduling application. 

Maximum number of subset helps us to pre-empt any process & 

serve higher priority process with extremely low overhead cost. 

Minimizing the largest subset sum also allows our number 

partitioning algorithms to be directly applied to bin packing. 

Our number-partitioning algorithms keep track of the least 

subset sum which is the key part of our algorithm. Once we get 

the least subset sum, we will get the total number of subset & 

each subset sum, as we are dealing with linear perfect 

partitioning. 

2. ALGORITHMS AND COMPLEXITY 

In view of the NP-hardness of the Npp it is wise to abandon the 

idea of an exact solution and to ask for an approximate but fast 

heuristic algorithm. Try a small example. Here are 10 

numbers—selected at random from the range between 1 and 10: 

2 10 3 8 5 7 9 5 3 2 

In this instance, there is 23 ways to divvy up the numbers into 

two groups with exactly equal sum i.e. perfect partition. Almost 

any reasonable method will converge on one of these perfect 

solutions. This is the answer i stumbled onto first: 

(2 5 3 10 7) (2 5 3 9 8) 

Both subsets sum to 27. 

As a matter of fact, among all sets of 10 integers between 1 and 

10, more than 99 percent have at least one perfect partition. To 

be precise, of the 10 billion such sets, 9,989,770,790 can be 

perfectly partitioned [1]. 

Maybe larger sets are more challenging?   

2.1 Greedy heuristic 

A variation on the two - bullies algorithm does just fine. In this 

approach place the largest number in one of the two subsets. 

Then continue to place the largest number of the remaining 

numbers in the subset with the smaller total sum, this continues 

until all numbers are assigned. The idea behind this greedy 

heuristics is to keep the discrepancy smaller with every 

decision. The worst that could happen is that the two subsets 

are perfectly balanced just before the last number has to be 

assigned. This is the motivation for assigning the numbers in 

decreasing order. The time complexity of the greedy algorithm 

is given by the time complexity to sort N numbers, i.e. it is

)log( NNO . Applied to the set {8, 7, 6, 5, 4} the greedy 

heuristics misses the perfect solution and yields a partition {8, 

5, 4} {7, 6} with discrepancy 4. 

2.2 Complete greedy algorithm 

Complete Greedy Algorithm (CGA) [6] is an extended version 

of greedy heuristic. In complete greedy algorithm, sorting the 

numbers in decreasing order and searching a tree, where each 

level corresponds to a different number and each branch assigns 

that number to a different subset. To avoid duplication of any 

solution that only differs by a permutation of the subset; a 

number is never assigned to more than one empty subset. We 

keep track of the largest subset sum in the current best solution, 

and if the assignment of a number to a subset causes its sum to 

equal or exceed the current bound, that assignment is pruned. If 

a perfect partition is found or one in which the largest subset 

sum equals the largest number, the search returns it 

immediately. Without a perfect partition, the asymptotic time 

complexity of CGA is only slightly better than       [7], but it 

has very low overhead per assignment. 

2.3 Dynamic programming technique 

The problem can be solved using dynamic programming when 

the size of the set and the size of the sum of the integers in the 

set are not too big to render the storage requirements infeasible. 

This NP-hard instance can be solved by split & merge for about 

40 numbers only. 

But what if we have n = 500 numbers? Obviously, split & 

merge does not work anymore. We need some extra 

information if want to have any hope of solving this in 

reasonable time. Suppose that we do have some information- 

we know that the sum of all the numbers is at most N=10000. 

This little information makes it possible to solve it in )(nNO  

time [8]. 

In the spirit of dynamic programming, we will create a Boolean 

array T of size N+1. After the algorithm has finished, T[x] will 

be true if and only if there is a subset of the numbers that has 

sum x. Once we have that, we can simply return T[N/2]. If it is 

true, then there is a subset that adds up to half the total sum. 

To build this array, we set every entry to false to start with. 

Then we set T[0] to true – we can always build 0 by taking an 

empty set. If we have no numbers in C, then we are done! 

Otherwise, we pick the first number, C[0]. We can either throw 

it away or take it into our subset. This means that the new T[] 

should have T[0] and T[C[0]] set to true. We continue by taking 

the next element of C. 

One important thing is, what if the T[N/2] is not true, we need 

the closest solution where difference between two set is 

minimized. For this we need to loop back from N/2 to 0, at first 

where we get the T[] is true, that is our solution. 

If the input size is exponential or the total summation is very 

high then this solution also may not be feasible. 
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Table 1.  Dynamic Solution Pseudo Code 

    bool T[maximum_Sum]; 

//compute the Total sum  

n  C.size(); 

Sum 0; 

for i=0 to n 

 Sum+=C[i]; 

//initialize the table 

T[0]=true; 

for i=1 to N 

 T[i]  false; 

//Process each number 

for i=0 to n 

 for j = N - C[i] to 0 

 if(T[j]) 

 T[j+C[i]]  true; 

    return T[N/2]; 

 

There is another dynamic programming solution for balanced 

number partitioning problem for a range (0~k) of integers, 

which cost       [9]. This is not even feasible for large number 

of datasets or multi-ways partitioning (not 2 ways). 

2.4 Karmarkar-karp heuristic 

The Karmarkar-Karp [10] (KK) heuristic is a polynomial time 

approximation algorithm for Npp. It applies to any number of 

subsets, but is simplest for two-way partitioning. It sorts the 

numbers in decreasing order, and then replaces the two largest 

numbers in the sorted order by their difference. This is 

equivalent to separating them in different subsets. This is 

repeated until only one number is left, which is the difference 

between the final two subset sums. Adding the difference to the 

sum of all the numbers, then dividing by two, yields the larger 

subset sum. 

The time complexity of KK heuristic is ))log(( nnO , the space 

complexity is )(nO . 

This differencing heuristic performs better than the greedy one, 

but is still bad for instances where the numbers are exponential 

in the size of the set. 

2.5 Korf’s complete anytime algorithm 

The KK heuristic is the best known heuristic for two-way 

partitioning problem. KK heuristic is extended to a complete 

anytime algorithm [11] that finds better & better solution the 

longer it is allowed to run, until is finds & proves the optimal 

solution. 

While the KK heuristic separates the two largest numbers in 

different subsets, the only other option is to assign them to the 

same subset, by replacing them by their sum. Korf complete 

anytime algorithm searches a binary tree where the left branch 

of a node replaces the two largest numbers by their difference 

and the right branch replaces them by their sum. If the largest 

number equals or exceeds the sum of the remaining numbers, 

they are all placed in a separate subset. The first solution found 

is the KK solution, but anytime algorithm eventually finds and 

verifies an optimal solution. 

These results in a binary tree, where each node replace  the two 

largest remaining numbers, x1 ≥ x2, the left branch replaces 

them by their difference, while the right branch replaces them 

by their sum. 

 

x1, x2, x3….               
                                          
                                      

 
 

Iterating both operations )1( n  times generates a tree with 

)12( n  terminal nodes.  

Korf’s complete Karmarkar-Karp (CKK) algorithm searches 

this tree depth-first and from left to right. CKK first returns the 

largest differencing method (LDM) solution, then continues to 

find better solutions as time allows. 

 

 
 

Fig 2: Tree generated by complete Karmarkar-Karp 

differencing on the list 8, 7, 6, 5, 4  

 

2.6 New approach for linear partitioning into 

maximum subsets 

The above all method works for finding two subsets when two 

subset sums are nearly equal as possible. 

But there are many cases where you may need to find the 

maximum number of subsets possible using minimizing the 

subset sum.  

Now we present our new algorithm which we call Linear 

Partitioning into Maximum Subsets (LPMS) which meet the 

above requirement as well, using one criterion - linearity. 

Though we use the idea of linear perfect partitioning so the key 

part is to identify what will be the minimum sum of the subset, 

once we get the least sum, we just need to iterate through the 

multiset to subdivide it using this minimum sum to get all other 

subsets. 

Table 2: Function-Partitioning Multiset 

 

Partitioning_Multiset (Multiset[]) 

size  Multiset.length; 

for i = 1 to size 

      Total_Sum  Total_Sum + Multiset[i]; 

 Minimum_sumLeastSum(Multiset[],Total_Sum); 

 PrintPartition(Minimum_sum,Multiset[]); 

Endfor 
 

 

The above function finds the total sum of the numbers using a 

linear loop which cost     , where n is the number of integers. 

Then it call another function named Least Sum which helps to 

find the minimum sum & finally based on this minimum sum 

each of the subset will be print out by Print Partition function. 

 

 

 

(3) 
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Table 3: Function-Least Sum 

 

LeastSum (Multiset[], Total_Sum) 

size Multiset.length; 

i=0;TempA=0; 

while (i<size && (TempA+Multiset[i])<=Total_Sum/2) 

do  

    TempA  TempA + Multiset[i]; 

     if(Total_Sum MOD TempA == 0) 

         if(Check_Remaining_Sum(TempA,i+1,size)==true) 

           return TempA; 

         Endif 

Endif 

Endwhile 

Return Total_Sum; 
 

 

Least sum is the key function which serves as the main 

ingredient of our algorithm. Here we simply sum up to TempA 

by each of the number from the multiset until we found it as a 

factor of Total sum. When TempA+ Multiset[i] value is more 

than half of the total sum then we terminate the loop because at 

this stage, it is sure that the multiset can’t be partitioned any 

more. During looping if we find TempA is a factor of total sum 

than we pass the control to another function named Check 

Remaining. 
 

Table 4: Function-Check Remaing 

Check_Remaining_Sum(TempA,Start,size) 

TempB=0; 

for i=Start to size 

TempB TempB+Multiset[i]; 

        if(TempB > TempA) 

  Return 0; 

        else if(TempB = TempA) 

  TempB=0; 

        Endif 

Endfor 

 

if (TempB!=0) 

 Return 0; 

Endif 

Return 1; 
 

 

The Check Remaining function checks whether the remaining 

elements of the multiset can form a number of subsets each of 

having sum TempA. If all the elements can’t form subsets that it 

goes back to Least sum function to continue sum up to TempA. 

Otherwise it return with value true to indicate that TempA is our 

desired minimum sum. 

The basic criteria of structured programming that there should 

be just one entrance & one exit. But our flowchart does not 

follow it, why? There are some situations where structured 

programming may need more running time or extra memory in 

that such cases unstructured programming is favourable to 

reduce running time or to save wastage of memory. 

when we got our final minimum sum then we does not need to 

go for another iteration that’s why we exit here immediately, 

which ultimately declare it as an unstructured model of 

programming but fortunately it reduce our running time. 

 

 

Fig 3: Flowchart of LPMS for finding minimum sum 

The space complexity of our algorithm is      and time 

complexity for best case is     , we declare the best case data 

set as when we get first factor in least sum function is the final 

desired minimum sum. Where n is the number of elements. 

Theoretically the worst case complexity of our algorithm is 

     . Theoretically at each stage we can get a factor in Least 

Sum function and it pass the control to Check Remaining to 

check whether the remaining element can form subsets, where 

it iterate the whole array. So final complexity is      , which 

is even better than dynamic programming technique. 

 

But In practical without the out best case it is not possible to get 

a factor at each stage, so Least sum will not pass control to 

Check remaining )(nO times & being TempATempB   Check 

Remaining will not iterate )(nO times for each call. 
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3. EXPERIMENTAL RESULT

 
Table 5: Comparative Complexity Analysis 

 

Algorithm Type of Partitioning Best Case 

Complexity 

Worst Case 

Complexity 

Space 

Complexity 

Can Have 

Discrepancy 

Greedy heuristic 

 

2-ways )log( nnO  )log( nnO  )(nO
 

Yes 

Multi (k) ways                 )(nO  Yes 

Complete greedy 

algorithm 

 

Multi-ways                     Yes 

Dynamic 

programming 

technique 

2-ways )(nNO
 

[For Range 

(0~k) of integers 

     ] 

)(nNO
 

[For Range 

(0~k) of integers 

     ] 

)(NO  Yes 

Karmarkar 

karp 

heuristic 

2-ways ))log(( nnO  ))log(( nnO          Yes 

Korf’s complete 

anytime algorithm 

2-ways Finds better & better solution the longer it 

is allowed to run 
        Depends on 

running time 

LPMS Multi-ways )(nO        )(nO  No 

 

The above table shows a comparative complexity analysis of 

various partitioning algorithms with our algorithm (LPMS). 

LPMS shows much better performance regarding running time 

& space complexity comparing with other algorithms & it does 

not produce any discrepancy among the created subsets. The 

Greedy heuristic and complete greedy algorithm has multi-ways 

version for partitioning problem but both algorithm complexity 

is much higher to partition a multiset into k subsets. Greedy 

heuristic takes          and Complete Greedy takes       for 

partitioning into k subsets and these algorithms has no such best 

case where it can take less time than its measured complexity. 

Complete greedy algorithm use tree data structure, so its space 

complexity is much higher than Greedy heuristic. Space 

complexity for Complete greedy is         & greedy 

heuristic is     . Comparing with these two multi-ways 

partitioning algorithm, our algorithm (LPMS) is much better 

considering both time & space complexity. LPMS time & space 

complexity is much less than these greedy heuristic & complete 

greedy algorithms. In some cases LPMS is much better than 

other 2-ways partitioning algorithms. Our algorithm complexity 

is much better than dynamic solution technique, where DP 

solution time & space complexity is higher than LPMS.  

Karmarkar karp heuristic and Korf’s complete anytime 

algorithm both has 2 ways version whose space complexity is 

much higher. 

So, LPMS is a revolution within the area of partitioning 

problem algorithm. Where this multi-ways LPMS is better than 

other multi-ways and in some cases better than others 2-ways 

algorithms. 

We have tested our algorithm on different type of data sets. 

Following chart based on the run time performance calculation 

for different types of dataset. 

 
 
 

 

 
 

 

 

 

 

 
 

Fig 4: Performance Graph using various data set 

 

It shows far better performance than another multi-way 

partitioning algorithm (an extended version of Greedy 

algorithm) which cost         for partitioning into k subsets 

[8]. So LPMS can be an alternative to extended version of 

Greedy. For example, scheduling n process into K processor 

with cost          is not very practical, for any higher priority 

process this will need long waiting time to response him. Where 

in LPMS processes can be pre-empted very first & response 

time is less as each subset sum is small & was allocated to a 

single processor. So CPU utilization will be higher. Using 

asymmetric microprocessor scheduling along with LMPS and 

other scheduling algorithm overall performance can be much 

higher than the current multi-processor scheduling algorithms. 
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4. CONCLUSIONS 
Numerous numbers of researches has been done on two ways 

number partitioning problem, while very few are on multi-ways 

partitioning but most of them are not feasible in the real time 

environment due to their higher complexity. Our algorithm 

solves this acquaintance with its less complexity than any other 

algorithm which especially helps for prioritized task scheduling 

in multi-processor systems, Graph partitioning, VLSI circuit 

partitioning etc. The challenge involved in using of our Liner 

partitioning model to solve practical problems stems from the 

large-scale nature of the model (even though the complexity 

order of size is of relatively low degree). We believe this 

challenge may be effectively met however, if the special 

structure of the model (as developed in this paper) can be 

exploited judiciously enough, using for example, large-scale 

optimisation techniques. 

Though there is nothing perfect in this world, we are looking 

for more advance procedures to make this algorithm perfect for 

other specific applications in the near future, where LPMS 

solves as a key for any other specific task related to partitioning 

problem. 

The partitioning algorithm proposed here can be used for 

Breaking Knapsack Cryptosystems as existing partitioning 

algorithms are used in case. LPMS can also be used to make 

strong Computer password as many systems still use 

partitioning algorithm to create system password. Message 

verification is one of the main applications of number 

partitioning algorithms; LPMS can be used to make it difficult 

for the intruder to infer the message without verification. LPMS 

make Bin packing problem more attractable to researcher. 

Along with procedural improvement, we want to simulate our 

algorithm for these applications in a simulated environment. 

We hope this can help us for vast improvement of all 

partitioning related algorithm to solve our acquaintance. 
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