
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.10, September 2012

41

Algorithm for Linear Number Partitioning into Maximum

Number of Subsets

Hussain Md. Mehedul Islam
Department of Computer Science & Engineering,

Chittagong University of Engineering & Technology
Chittagong-4349, Bangladesh

Mohammad Obaidur Rahman
Department of Computer Science & Engineering,

Chittagong University of Engineering & Technology
Chittagong-4349, Bangladesh

ABSTRACT

The number partitioning problem is to decide whether a given

multiset of integers can be partitioned into two "halves" of

given cardinalities such that the discrepancy, the absolute value

of the difference of their sums is minimized. While Partitioning

problem is known to be NP-complete, only few studies have

investigated on its variations. Number partitioning problem has

a wide range of practical application, like: multiprocessor

scheduling, minimization of VLSI circuit size and delay, also

used in public key cryptography, message verification,

computer password, voting manipulation and bin packing.

While lots of investigation have been made for two-way

partitioning, only a few for multi-way partitioning, while most

of them are not feasible for real time environment. We

introduce an improved multi-way partitioning algorithm which

is feasible for real time environment. It returns maximum

number of subset that can be made based on the order of the

numbers as they appear. Maximum number of subset helps us

to preempt any process & serve higher priority process with

extremely low overhead cost in multiprocessor process

scheduling.

Keywords

Anytime algorithm, Greedy heuristic, Linear partitioning, NP-

completeness, Partitioning problem.

1. INTRODUCTION

The Number partitioning problem (Npp) is a NP-Complete

problem where the complexity class NP-complete (abbreviated

NP-C or NPC) is a class of decision problems.

A decision problem L is NP-complete if it is in the set of NP

problems and also in the set of NP-hard problems so that any

NP problem can be converted into L by a transformation of the

inputs in polynomial time. NP-complete problems are often

addressed by using approximation algorithms.

Number Partitioning problem can be defined easily by: Given a

list of positive integers & find a

partition, i.e. a subset S such that the

discrepancy

Si

i

Si

i aaSE)(

,

is minimized. In the constrained partition problem, the

cardinality difference between S and its complement

nSSnSm 2)(,

must obey certain constraints. The most common case is the

balanced partitioning problem with the constraint |m| ≤ 1.

Fig 1: Euler diagram for P, NP, NP-Complete, and NP-

Hard set of problems.

For example, given the integers {8, 7, 6, 5, 4} if we divide

them into the subsets {8, 7} and {6, 5, 4}, the sum of the

numbers in each subset is 15. This is optimal and known as

perfect partition.

Although the partition problem is NP-complete, there is a

pseudo-polynomial time dynamic programming solution and a

number of heuristics that solve the problem in many instances,

either optimally or approximately. For this reason, it has been

called “The Easiest Hard Problem” [1].

Now we here by focus on optimal solutions for finding the

maximum number of subsets can be made based on the order of

the numbers.

It reminds me one of the cherished customs of childhood which

needs to choose up sides for a ball game. Where two chief

bullies of the neighbourhood would appoint themselves

captains of the opposite teams and then they would take turns

picking other players. On each round, a captain would choose

the most capable (or, toward the end, the least inept) player

from the pool of remaining players, until everyone present had

been assigned to one side or the other. The aim of this ritual

was to produce two evenly matched teams and along the way,

to remind each of us of our precise ranking in the

neighbourhood pecking order. It usually worked & simply it’s

one of the heuristic solutions for number partitioning problem.

There lies a paradox: If computer scientists find the partitioning

problem so intractable, how can children over the world solve it

every day? Are the kids much smarter?

On the other hand, the success of playground algorithms for

partitioning might be a clue that the task is not always as hard

as that forbidding term "NP-complete" tends to suggest. As a

 (2)

 (1)

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.10, September 2012

42

matter of fact, finding a hard instance of this famously hard

problem can be a hard problem—unless you know where to

look. Number partitioning problem is getting importance in

both theoretically & practically. It is one of Garey and

Johnson’s six basic NP-complete problems that lie at the heart

of the theory of NP-completeness [2].

It has a wide range of practical application, like:

multiprocessor scheduling, minimization of VLSI circuit size

and delay [3], also used in public key cryptography. In fact

Number partitioning problem is a problem that actually deals

with numbers. In multi-processor scheduling [2] given a set of

jobs, each with an associated completion time, and two or more

identical processors, assigns each job to a processor to complete

all the jobs as soon as possible. Another application of number

partitioning is voting manipulation [4].

There are three natural objective functions for number

partitioning: 1) minimizing the largest subset sum, 2)

maximizing the smallest subset sum, and 3) minimizing the

difference between the largest and smallest subset sums. For

two-way partitioning, all these objective functions are

equivalent, but for multi-way partitioning, no two of them are

equivalent [5]. We choose to minimize the largest subset sum &

maximizing the number of subsets, which corresponds to

minimizing the total time in a scheduling application.

Maximum number of subset helps us to pre-empt any process &

serve higher priority process with extremely low overhead cost.

Minimizing the largest subset sum also allows our number

partitioning algorithms to be directly applied to bin packing.

Our number-partitioning algorithms keep track of the least

subset sum which is the key part of our algorithm. Once we get

the least subset sum, we will get the total number of subset &

each subset sum, as we are dealing with linear perfect

partitioning.

2. ALGORITHMS AND COMPLEXITY

In view of the NP-hardness of the Npp it is wise to abandon the

idea of an exact solution and to ask for an approximate but fast

heuristic algorithm. Try a small example. Here are 10

numbers—selected at random from the range between 1 and 10:

2 10 3 8 5 7 9 5 3 2

In this instance, there is 23 ways to divvy up the numbers into

two groups with exactly equal sum i.e. perfect partition. Almost

any reasonable method will converge on one of these perfect

solutions. This is the answer i stumbled onto first:

(2 5 3 10 7) (2 5 3 9 8)

Both subsets sum to 27.

As a matter of fact, among all sets of 10 integers between 1 and

10, more than 99 percent have at least one perfect partition. To

be precise, of the 10 billion such sets, 9,989,770,790 can be

perfectly partitioned [1].

Maybe larger sets are more challenging?

2.1 Greedy heuristic

A variation on the two - bullies algorithm does just fine. In this

approach place the largest number in one of the two subsets.

Then continue to place the largest number of the remaining

numbers in the subset with the smaller total sum, this continues

until all numbers are assigned. The idea behind this greedy

heuristics is to keep the discrepancy smaller with every

decision. The worst that could happen is that the two subsets

are perfectly balanced just before the last number has to be

assigned. This is the motivation for assigning the numbers in

decreasing order. The time complexity of the greedy algorithm

is given by the time complexity to sort N numbers, i.e. it is

)log(NNO . Applied to the set {8, 7, 6, 5, 4} the greedy

heuristics misses the perfect solution and yields a partition {8,

5, 4} {7, 6} with discrepancy 4.

2.2 Complete greedy algorithm

Complete Greedy Algorithm (CGA) [6] is an extended version

of greedy heuristic. In complete greedy algorithm, sorting the

numbers in decreasing order and searching a tree, where each

level corresponds to a different number and each branch assigns

that number to a different subset. To avoid duplication of any

solution that only differs by a permutation of the subset; a

number is never assigned to more than one empty subset. We

keep track of the largest subset sum in the current best solution,

and if the assignment of a number to a subset causes its sum to

equal or exceed the current bound, that assignment is pruned. If

a perfect partition is found or one in which the largest subset

sum equals the largest number, the search returns it

immediately. Without a perfect partition, the asymptotic time

complexity of CGA is only slightly better than [7], but it

has very low overhead per assignment.

2.3 Dynamic programming technique

The problem can be solved using dynamic programming when

the size of the set and the size of the sum of the integers in the

set are not too big to render the storage requirements infeasible.

This NP-hard instance can be solved by split & merge for about

40 numbers only.

But what if we have n = 500 numbers? Obviously, split &

merge does not work anymore. We need some extra

information if want to have any hope of solving this in

reasonable time. Suppose that we do have some information-

we know that the sum of all the numbers is at most N=10000.

This little information makes it possible to solve it in)(nNO

time [8].

In the spirit of dynamic programming, we will create a Boolean

array T of size N+1. After the algorithm has finished, T[x] will

be true if and only if there is a subset of the numbers that has

sum x. Once we have that, we can simply return T[N/2]. If it is

true, then there is a subset that adds up to half the total sum.

To build this array, we set every entry to false to start with.

Then we set T[0] to true – we can always build 0 by taking an

empty set. If we have no numbers in C, then we are done!

Otherwise, we pick the first number, C[0]. We can either throw

it away or take it into our subset. This means that the new T[]

should have T[0] and T[C[0]] set to true. We continue by taking

the next element of C.

One important thing is, what if the T[N/2] is not true, we need

the closest solution where difference between two set is

minimized. For this we need to loop back from N/2 to 0, at first

where we get the T[] is true, that is our solution.

If the input size is exponential or the total summation is very

high then this solution also may not be feasible.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.10, September 2012

43

Table 1. Dynamic Solution Pseudo Code

 bool T[maximum_Sum];

//compute the Total sum

n C.size();

Sum 0;

for i=0 to n

 Sum+=C[i];

//initialize the table

T[0]=true;

for i=1 to N

 T[i] false;

//Process each number

for i=0 to n

 for j = N - C[i] to 0

 if(T[j])

 T[j+C[i]] true;

 return T[N/2];

There is another dynamic programming solution for balanced

number partitioning problem for a range (0~k) of integers,

which cost [9]. This is not even feasible for large number

of datasets or multi-ways partitioning (not 2 ways).

2.4 Karmarkar-karp heuristic

The Karmarkar-Karp [10] (KK) heuristic is a polynomial time

approximation algorithm for Npp. It applies to any number of

subsets, but is simplest for two-way partitioning. It sorts the

numbers in decreasing order, and then replaces the two largest

numbers in the sorted order by their difference. This is

equivalent to separating them in different subsets. This is

repeated until only one number is left, which is the difference

between the final two subset sums. Adding the difference to the

sum of all the numbers, then dividing by two, yields the larger

subset sum.

The time complexity of KK heuristic is))log((nnO , the space

complexity is)(nO .

This differencing heuristic performs better than the greedy one,

but is still bad for instances where the numbers are exponential

in the size of the set.

2.5 Korf’s complete anytime algorithm

The KK heuristic is the best known heuristic for two-way

partitioning problem. KK heuristic is extended to a complete

anytime algorithm [11] that finds better & better solution the

longer it is allowed to run, until is finds & proves the optimal

solution.

While the KK heuristic separates the two largest numbers in

different subsets, the only other option is to assign them to the

same subset, by replacing them by their sum. Korf complete

anytime algorithm searches a binary tree where the left branch

of a node replaces the two largest numbers by their difference

and the right branch replaces them by their sum. If the largest

number equals or exceeds the sum of the remaining numbers,

they are all placed in a separate subset. The first solution found

is the KK solution, but anytime algorithm eventually finds and

verifies an optimal solution.

These results in a binary tree, where each node replace the two

largest remaining numbers, x1 ≥ x2, the left branch replaces

them by their difference, while the right branch replaces them

by their sum.

x1, x2, x3….

Iterating both operations)1(n times generates a tree with

)12(n terminal nodes.

Korf’s complete Karmarkar-Karp (CKK) algorithm searches

this tree depth-first and from left to right. CKK first returns the

largest differencing method (LDM) solution, then continues to

find better solutions as time allows.

Fig 2: Tree generated by complete Karmarkar-Karp

differencing on the list 8, 7, 6, 5, 4

2.6 New approach for linear partitioning into

maximum subsets

The above all method works for finding two subsets when two

subset sums are nearly equal as possible.

But there are many cases where you may need to find the

maximum number of subsets possible using minimizing the

subset sum.

Now we present our new algorithm which we call Linear

Partitioning into Maximum Subsets (LPMS) which meet the

above requirement as well, using one criterion - linearity.

Though we use the idea of linear perfect partitioning so the key

part is to identify what will be the minimum sum of the subset,

once we get the least sum, we just need to iterate through the

multiset to subdivide it using this minimum sum to get all other

subsets.

Table 2: Function-Partitioning Multiset

Partitioning_Multiset (Multiset[])

size Multiset.length;

for i = 1 to size

 Total_Sum Total_Sum + Multiset[i];

 Minimum_sumLeastSum(Multiset[],Total_Sum);

 PrintPartition(Minimum_sum,Multiset[]);

Endfor

The above function finds the total sum of the numbers using a

linear loop which cost , where n is the number of integers.

Then it call another function named Least Sum which helps to

find the minimum sum & finally based on this minimum sum

each of the subset will be print out by Print Partition function.

(3)

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.10, September 2012

44

Table 3: Function-Least Sum

LeastSum (Multiset[], Total_Sum)

size Multiset.length;

i=0;TempA=0;

while (i<size && (TempA+Multiset[i])<=Total_Sum/2)

do

 TempA TempA + Multiset[i];

 if(Total_Sum MOD TempA == 0)

 if(Check_Remaining_Sum(TempA,i+1,size)==true)

 return TempA;

 Endif

Endif

Endwhile

Return Total_Sum;

Least sum is the key function which serves as the main

ingredient of our algorithm. Here we simply sum up to TempA

by each of the number from the multiset until we found it as a

factor of Total sum. When TempA+ Multiset[i] value is more

than half of the total sum then we terminate the loop because at

this stage, it is sure that the multiset can’t be partitioned any

more. During looping if we find TempA is a factor of total sum

than we pass the control to another function named Check

Remaining.

Table 4: Function-Check Remaing

Check_Remaining_Sum(TempA,Start,size)

TempB=0;

for i=Start to size

TempB TempB+Multiset[i];

 if(TempB > TempA)

 Return 0;

 else if(TempB = TempA)

 TempB=0;

 Endif

Endfor

if (TempB!=0)

 Return 0;

Endif

Return 1;

The Check Remaining function checks whether the remaining

elements of the multiset can form a number of subsets each of

having sum TempA. If all the elements can’t form subsets that it

goes back to Least sum function to continue sum up to TempA.

Otherwise it return with value true to indicate that TempA is our

desired minimum sum.

The basic criteria of structured programming that there should

be just one entrance & one exit. But our flowchart does not

follow it, why? There are some situations where structured

programming may need more running time or extra memory in

that such cases unstructured programming is favourable to

reduce running time or to save wastage of memory.

when we got our final minimum sum then we does not need to

go for another iteration that’s why we exit here immediately,

which ultimately declare it as an unstructured model of

programming but fortunately it reduce our running time.

Fig 3: Flowchart of LPMS for finding minimum sum

The space complexity of our algorithm is and time

complexity for best case is , we declare the best case data

set as when we get first factor in least sum function is the final

desired minimum sum. Where n is the number of elements.

Theoretically the worst case complexity of our algorithm is

 . Theoretically at each stage we can get a factor in Least

Sum function and it pass the control to Check Remaining to

check whether the remaining element can form subsets, where

it iterate the whole array. So final complexity is , which

is even better than dynamic programming technique.

But In practical without the out best case it is not possible to get

a factor at each stage, so Least sum will not pass control to

Check remaining)(nO times & being TempATempB Check

Remaining will not iterate)(nO times for each call.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.10, September 2012

45

3. EXPERIMENTAL RESULT

Table 5: Comparative Complexity Analysis

Algorithm Type of Partitioning Best Case

Complexity

Worst Case

Complexity

Space

Complexity

Can Have

Discrepancy

Greedy heuristic

2-ways)log(nnO)log(nnO)(nO

Yes

Multi (k) ways)(nO Yes

Complete greedy

algorithm

Multi-ways Yes

Dynamic

programming

technique

2-ways)(nNO

[For Range

(0~k) of integers

]

)(nNO

[For Range

(0~k) of integers

]

)(NO Yes

Karmarkar

karp

heuristic

2-ways))log((nnO))log((nnO Yes

Korf’s complete

anytime algorithm

2-ways Finds better & better solution the longer it

is allowed to run
 Depends on

running time

LPMS Multi-ways)(nO)(nO No

The above table shows a comparative complexity analysis of

various partitioning algorithms with our algorithm (LPMS).

LPMS shows much better performance regarding running time

& space complexity comparing with other algorithms & it does

not produce any discrepancy among the created subsets. The

Greedy heuristic and complete greedy algorithm has multi-ways

version for partitioning problem but both algorithm complexity

is much higher to partition a multiset into k subsets. Greedy

heuristic takes and Complete Greedy takes for

partitioning into k subsets and these algorithms has no such best

case where it can take less time than its measured complexity.

Complete greedy algorithm use tree data structure, so its space

complexity is much higher than Greedy heuristic. Space

complexity for Complete greedy is & greedy

heuristic is . Comparing with these two multi-ways

partitioning algorithm, our algorithm (LPMS) is much better

considering both time & space complexity. LPMS time & space

complexity is much less than these greedy heuristic & complete

greedy algorithms. In some cases LPMS is much better than

other 2-ways partitioning algorithms. Our algorithm complexity

is much better than dynamic solution technique, where DP

solution time & space complexity is higher than LPMS.

Karmarkar karp heuristic and Korf’s complete anytime

algorithm both has 2 ways version whose space complexity is

much higher.

So, LPMS is a revolution within the area of partitioning

problem algorithm. Where this multi-ways LPMS is better than

other multi-ways and in some cases better than others 2-ways

algorithms.

We have tested our algorithm on different type of data sets.

Following chart based on the run time performance calculation

for different types of dataset.

Fig 4: Performance Graph using various data set

It shows far better performance than another multi-way

partitioning algorithm (an extended version of Greedy

algorithm) which cost for partitioning into k subsets

[8]. So LPMS can be an alternative to extended version of

Greedy. For example, scheduling n process into K processor

with cost is not very practical, for any higher priority

process this will need long waiting time to response him. Where

in LPMS processes can be pre-empted very first & response

time is less as each subset sum is small & was allocated to a

single processor. So CPU utilization will be higher. Using

asymmetric microprocessor scheduling along with LMPS and

other scheduling algorithm overall performance can be much

higher than the current multi-processor scheduling algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.10, September 2012

46

4. CONCLUSIONS
Numerous numbers of researches has been done on two ways

number partitioning problem, while very few are on multi-ways

partitioning but most of them are not feasible in the real time

environment due to their higher complexity. Our algorithm

solves this acquaintance with its less complexity than any other

algorithm which especially helps for prioritized task scheduling

in multi-processor systems, Graph partitioning, VLSI circuit

partitioning etc. The challenge involved in using of our Liner

partitioning model to solve practical problems stems from the

large-scale nature of the model (even though the complexity

order of size is of relatively low degree). We believe this

challenge may be effectively met however, if the special

structure of the model (as developed in this paper) can be

exploited judiciously enough, using for example, large-scale

optimisation techniques.

Though there is nothing perfect in this world, we are looking

for more advance procedures to make this algorithm perfect for

other specific applications in the near future, where LPMS

solves as a key for any other specific task related to partitioning

problem.

The partitioning algorithm proposed here can be used for

Breaking Knapsack Cryptosystems as existing partitioning

algorithms are used in case. LPMS can also be used to make

strong Computer password as many systems still use

partitioning algorithm to create system password. Message

verification is one of the main applications of number

partitioning algorithms; LPMS can be used to make it difficult

for the intruder to infer the message without verification. LPMS

make Bin packing problem more attractable to researcher.

Along with procedural improvement, we want to simulate our

algorithm for these applications in a simulated environment.

We hope this can help us for vast improvement of all

partitioning related algorithm to solve our acquaintance.

5. REFERENCES
[1] S. Mertens, “The Easiest Hard Problem: Number

Partitionin,”A.G. Percus, G. Istrate and C. Moore, eds.,

Computational Complexity and Statistical Physics (Oxford

University Press, New York, 2006), p. 125-139.

[2] Michael R. Garey and David S. Johnson. Computers and

Intractability. A Guide to the Theory of NP-Completeness.

W.H. Freeman, New York, 1997.

[3] E. Coman and G. S. Lueker, “Probabilistic Analysis of

Packing and Partitioning Algorithms,”(John Wiley &

Sons, New York, 1991).

[4] Walsh, “Where are the really hard manipulation problems?

The phase transition in manipulating the veto rule,” IJCAI-

09, p. 324–329.

[5] Richard E. Korf, “Objective functions for multi-way

number partitioning,” Symposium on Combinatorial

Search (SOCS-10), ATLANTA, GA-2010.

[6] Richard E. Korf, “A complete anytime algorithm for

number partitioning,” Artificial Intelligence, paper 106(2),

p. 181–203, 1998.

[7] Richard Korf, “A Hybrid Recursive Multi-Way Number

Partitioning Algorithm” on Twenty-Second International

Joint Conference on Artificial Intelligence, IJCAI, Spain,

July 16-22, 2011.

[8] The Wikipedia Website. [Online]. Available:

http://en.wikipedia.org/wiki/Partition_problem

[9] The Department of Computing Science - Umeå University

website [online]. Available:

http://www8.cs.umu.se/kurser/TDBAfl/VT06/algorithms/

BOOK/BOOK2/NODE45.HTM

[10] Karmarkar and Karp, “The differencing method of set

partitioning,” Technical Report UCB/CSD 82/113,

Computer Science Division, University of California,

Berkeley, 1982.

[11] S. Mertens, “A complete anytime algorithm for balanced

number partitioning,” arXiv.org/abs/cs.DS/9903011.

