
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.10, September 2012

26

A Study of Different Parallel Implementations of Single

Source Shortest Path Algorithms

Dhirendra Pratap Singh

Department of Computer Science and Engineering
Maulana Azad National Institute of Technology,

Bhopal India

Nilay Khare
Department of Computer Science and Engineering

Maulana Azad National Institute of Technology,
Bhopal India

ABSTRACT

We present a study of parallel implementations of single

source shortest path (SSSP) algorithms. In the last three

decades number of parallel SSSP algorithms have been

developed and implemented on the different type of machines.

We have divided some of these implementations into two

groups, first are those where parallelization is achieved in the

internal operations of sequential SSSP algorithm and second

are where an actual graph is divided into sub-graphs, and

serial SSSP algorithm executes parallel on separate processing

units for each sub-graph. These parallel implementations have

used PRAM, CRAY super-computer, dynamically

reconfigurable processor and Graphics processing unit as

platform to run them.

Keywords

Parallel shortest path algorithm, Parallel algorithm, Graph

algorithm, Dijkstra’s algorithm.

1. INTRODUCTION
Single source shortest path problem is a classical optimization

problem in graph theory, which is applicable in the wide

range of applications like VLSI design, network routing,

commodity flow, Advance traveler information system. Data

of these applications can be represented as a graph having a

collection of nodes and links between these nodes (i.e. edges)

with some attributes related to them. In shortest path problem

we try to find out a path between two nodes of a weighted

graph such that sum of the weights of its constituent edges is

minimum. The single-source shortest path problem computes

shortest paths from single source node to all other nodes of

the graph.

First, we introduce the basics of undirected weighted graph

and some notations, which are used to define the shortest path

algorithms. Graph is represented as an ordered pair G = (V, E)

comprising a set V of nodes and a set E of edges which are

2-elemet subsets of V. Let n= |V| the number of nodes, m= |E|

the number of edges and c a function assigning a non-negative

weight to each edge of G. Weight of an edge (v, w) ƐE is

presented by l(v, w). Let s is the source node then the

objective of SSSP is to find the weight of a minimum-weight

path from s to all other node v ƐV of the graph, which is

denoted as d(v) for a node v. During the execution of shortest

path algorithms, a node is called settled if its node weight is

d(v). Most of the serial shortest path algorithms maintain

tentative distance for each node [1]. Let δ(v) represents the

tentative distance of node v, its value is always ∞ or the

weight of some path from s to v. Graph algorithm’s optimize

the tentative distances by edge relaxation. Relaxing an edge

(v, w) Ɛ E means set δ (w) to a minimum of δ (w) and

δ (w) + l(v, w).

We present the implementations of parallel SSSP algorithms

under two sets. First set is having those algorithms where

parallelization is achieved in internal operations of serial

SSSP algorithm. Based on the approach used to update the

tentative distance shortest path algorithms are divided into

two types, label setting and label correcting. The label-setting

algorithm assigns a permanent distance label to a node and

relaxes the outgoing edges of that node, until all nodes not get

their minimum weight. Under label setting we will talk about

parallelization of Dijkstra’s and Thorup’s algorithms. Label

correcting algorithms relax the edges of unsettled nodes and

edges can be relaxed multiple times until the final step of the

algorithm, under this we talk about parallel Bellman-Ford and

parallelization in Δ-stepping algorithm. Second set is having

those parallel SSSP algorithms where the actual graph is

divided into sub-graphs, and parallelization is achieved by

executing the serial SSSP program for each sub-graph on

different processing unit. Under this we will talk about two

implementations, first is graph portioning and iterative weight

correcting method and second parallel SSSP on the multilevel

graph.

2. PARALLELIZATION IN INTERNAL

OPERATIONS OF SERIAL SSSP

ALGORITHMS
Basic SSSP algorithm could be label-setting or label

correcting. The most famous label setting algorithm is

Dijkstra’s SSSP algorithm [2]. It Divides V into three sets

settled, queued and unreached nodes and for each node v ƐV

maintains a tentative distance δ(v) [1]. For settled nodes

δ(v) = d(v), for queued nodes δ(v) < ∞ and for unreached

nodes δ(v) = ∞. If s is the source node, then initially s is

queued, δ(s) = 0 and all other nodes are unreached. In each

iteration, a node v with smallest tentative distance is selected

from the queued nodes and all edges (v, w) ƐE are relaxed

(i.e. δ(w) is set to min{ δ(w) , δ(v) + l(v, w)}) and if w was

unreached put it in queued set. We know that δ(v) = d(v) if

v is selected from the queue.

2.1 Label Setting Algorithms

2.1.1 A Parallelization of Dijkstra’s Shortest Path

Algorithm
In this implementation [1], they have divided the Dijkstra’s

SSSP algorithm into various phases and explain that how we

can perform parallel operation with in a phase. The basic idea

of this method is that in Dijkstra’s algorithm, queue may

contain multiple nodes, which are settled, so simultaneously

remove such nodes from queue and relax their outgoing

edges. However, the problem is to identify them. To identify

such nodes they have given number of criteria’s, like compute

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.10, September 2012

27

a threshold defined via the weights of the outgoing edges. Let

L= min {δ(u) + l(u, z): u is queued and (u, z) ƐE }, and

remove all nodes v from the queue which satisfies δ(v) ≤ L.

They implemented it on CRCW PRAM for random graph and

random edge weight. This implementation maintains of a

global array for tentative distance of all nodes, and every

processing unit is having two sequential priority queues,

which deal with a subset of randomly assigned nodes. One

queue store the tentative distance of it assign nodes and

second stores the addition of tentative distance of node and

minimum edge weight out of its all outgoing edges. Minimum

edge weight for nodes are pre-computed during the

initialization. Second queue of each processor is used to find

nodes, which can be deleted in current phase. This

implementation works similar to Dijkstra’s algorithm. It starts

work with source node, which is randomly assigned to a

processor and its distance values are stored in processor local

queues, and all other processor’s queues will be empty. While

any queue is nonempty algorithm execute a phase consisting

following five steps.

Step1: Find the global minimum L of all elements in all

queues in parallel.

Step2: Each Processing Unit (PU) removes the nodes with

δ(v) ≤ L from local queue. Let R’ denotes the union of all

deleted nodes.

Step3: All PU Co-operate to generate a set Req = P {w,

δ(v)+ l(v, w)}: v Ɛ R’ and (v, w) Ɛ E.

Step4: Randomly distribute the nodes of Req. set between

Processors.

Step5: Each processor checks its assign request (w, x) with

x < δ(w), it update δ(w) to x and insert new nodes in local

queue.

2.1.2 Parallelization of Dijkstra’s Algorithm by

Using the Parallel Priority Queue
Queue operations are one of the most important and time

consuming part of Dijkstra’s algorithm. There are two

different ways by which we can add parallelism into a priority

queue [3, 4]. First method tried to speed up the specific queue

operation that handles a single element using a small number

of processors. Second way is to support the simultaneous

insertion and deletions of smallest elements. They have

represented a parallel priority data structure that supports

internal operations of the algorithm in O(1) time. Using this

data structure, they [4] implemented Dijkstra’s algorithm in

O(n) time on a CREW PRAM. They used the adjacency list

representation of a graph, which is sorted according to edge

weight. In such a list, they have shown how perform the

operations like determining a node of minimum weight

distance and adding any number of new nodes or updating the

distances of a node in constant time. The basic idea of this

data structure is to use a pipeline structure; each processor

takes the output of the processor before it, and does a constant

time merge operation to select an element as its output to the

next processor. Let S is the set of nodes whose shortest path

has been found. They defined a set S’ which is having all

neighbors of the nodes in S excluding node in S.

In this implementation, each node is having a dedicated

processor. Among the processors assigned to nodes in set S,

one will be selected as master processor. They have defined

four operations INIT, EJECT(S), EXTEND and EMPTY(S)

supported by this data structure. INIT initializes the data

structure. EJECT(S) delete a node from set S’ which is having

minimum node weight in set and assign this node and its

weight to master processor. EXTEND to add a node to set S

and assign a fixed weight label to it and processor assigned to

this node become the new master processor. EMPTY(S)

check the emptiness of S’ for master processor. With the help

of these operations, they define the Dijksta’s algorithm as

mentioned below.

Step1: Initialize the priority data structure.

Step2: Run operation EXTEND for source node.

Step3: Run the operation EJECT for current set S.

Step4: Run the operation EXTEND for node selected in

previous step3.

Step5: Run the step3 and 4 while EMPTY(S) is false.

2.1.3 Parallel Implementation of Thorup’s

Algorithm
Unlike the Dijkstra’s algorithm, Thorup’s algorithm does not

visit the nodes in order of increasing distance from the source

node; instead of that it identifies the vertices that can be

visited in any order [5]. To avoid the sorting bottleneck of

Dijkstra’s algorithm, they have used hierarchical bucketing

structure for nodes on which internal operations are performed

in constant time. These algorithm [5, 6] summaries the graph

in a tree data-structure called the Component Hierarchy (CH).

Each CH-node is called component, which represents a

sub-graph of the graph G. Each component is identified by

node v and a level i. Component (v, i) is the sub-graph of G

having node v, the set of nodes reachable from v when

traversing edges with weight < 2i and all edges adjacent to {v}

U S of weight less than 2i. Algorithm use CH to identify the

nodes that can be visited in arbitrary order. Figure1 show a

graph which is divided into three components.

Fig 1: Initialized graph which is divided in three

components V1, V2 and V3

To identify the nodes which can be visited randomly, node set

V is divided into disjoint subsets V1, V2, …, Vk, where all

edges between subsets have weight at least Δ [5]. Let S be the

set of settled nodes and for some i, v Ɛ Vi\S such that

d(v) = min {d(u) | u Ɛ Vi\s} ≤ min { d(u) |u Ɛ V\S} + Δ, then

d(v) = δ(v).

Fig 2: Graph after relaxation of the edges of a settled of

node from component V1

As per the lemma after the relaxation of the edges of a settled

node from component V1 in the next step we have two nodes

one in V1 and second in V2 for which d(v) = δ(v). Let α=

log2Δ. Component Vi buckets its children according to min

{d(u)|u Ɛ Vi\S} >> α. This algorithm maintains a current

bucket for each component and all children in current bucket

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.10, September 2012

28

are the list of children to be visited. Here it visits each

children recursively starting from smallest bucket index and

when it reached a leaf component which represents a node v,

it is called visited and edges starting from v are relaxed. They

used the Cray MAT-2 a massively multithreaded machine to

implement this algorithm. MAT automatically executes the

loop in parallel by reduction method. It can be summarized as

follows:

Step1: Construct the component hierarchy for graph in

parallel.

Step2: Initialize the weights of all nodes and set S.

Step3: Construct the unvisited data structure. Each component

of component hierarchy bucket its child according to min

{d(u)|u Ɛ Vi\S}.

Step4: Visit the component of hierarchy in parallel.

2.1.4 CUDA Solutions for the SSSP Problem
In this solution [7], they have shown the different ways for the

parallel implementation of Dijkstra’s algorithm. They used the

CUDA interface for these implementations and graphics

processing unit (GPU) to run the parallel threads. Basically,

each step of these implementations removes all those queued

nodes, which are having weight equal to current minimum

weight value and relax their outgoing edges in parallel on

threads running for them. In each iteration, they create n

threads one for each node. They have also shown the

parallelization in finding the minimum weight and creating

the list of nodes having minimum node weight. This

implementation can be represented in steps as shown below.

Step1: Parallel initialization of all node weights and flags in

corresponding threads.

Step2: Define a minimum variable.

Step3: relax the edges of those queued nodes whose weight is

equal to value of minimum variable.

Step4: Find new value of minimum variable, which is

minimum weight out of all queued nodes weight.

Step5: select set of nodes whose outgoing edges will be

relaxed in next iteration.

Step6: Repeat Step 3, 4 and 5 while there is a weight update

for any node during step3.

2.2 Label Correcting Algorithms

2.2.1 Δ-Stepping: A Parallelizable Shortest Path

Algorithm
They [8] proposed a parallel version of a label-correcting

algorithm for SSSP finding. This algorithm maintains a list of

eligible nodes with their tentative distances in an array of

buckets B, each of which denotes a distance range of size Δ

the “bucket width”. During any iteration, this algorithm

removes all nodes of the current nonempty bucket and relaxes

their outgoing edges of weight at most Δ, while current bucket

is non-empty. During the relaxation step new nodes are

inserted into bucket. If any node v has been removed from the

current non-empty bucket B[i] without its final distance value,

then in some succeeding step of same iteration, v will surely

be reinserted into B[i]. Edges having weight higher than Δ are

relaxed only after their corresponding starting node is surly

settled. So the edges of weight more than Δ originating from

all nodes that have been removed from B[i] are relaxed once

for all when B[i] finally becomes empty. Parallelism is

obtained by simultaneously removing all nodes of the current

non-empty bucket, relaxing their outgoing edges of weight at

most Δ and finally relaxing edges having weight more than Δ

[8, 9]. This algorithm can be represented in steps as shown

below.

Step1: Divide the edges of graph in two sets heavy edges

(l(e) >Δ) and light edges (l(e) ≤ Δ) e Ɛ E, and initialize all

d(v) = ∞, S = Φ.

Step2: Insert the source node s into bucket and d(s) = 0.

Step3: While the current bucket is non-empty, remove all its

nodes, add them in a set S and relax all light edges adjacent to

these nodes in parallel.

Step3: When the current bucket becomes empty, parallel

relaxation of all heavy edges adjacent to nodes present in S.

Step4: Reset the set S = Φ and Repeat the step3 and 4 while

bucket is not empty.

 The performance of this approach is governed by the choice

of Δ. The choice of Δ offers a trade-off between too many

nodes re-considerations on the one hand and too many bucket

traversals on the other hand.

2.2.2 Parallel Bellman-Ford Algorithm
Bellman-Ford algorithm is a well-known label correcting

algorithm for SSSP [10, 11]. It is primarily used for graphs

with negative edge weights. This algorithm relaxes all edges

of a graph, n − 1 time. The repetitions allow minimum

distances to accurately broadcast throughout the graph, since

in the absence of negative cycles; the shortest path can only

visit each node at most once. An important property of this

algorithm is that during any iteration, we can relax the edges

of a graph in random order, but the result will be same. In

“Implementing parallel shortest path algorithms [12]” they

used this property to implement the parallel version of the

bellman-ford algorithm on CM-5 parallel supercomputer in

two steps. At first step they divided the edge set of graph G in

P (number of processors) different disjoint subsets. Each

processor is assigned a subset of edges, and this assignment

never changes during the execution of the program. In second

step execute a program of modified Bellman-ford’s algorithm

in each processor.

This algorithm is divided into two parts a computation

followed by a communication phase. In each iteration during

the computation phase, each processor relaxes its assigned

edges and updates its local label δ(v). After computation

phase, their program performs a global communication, where

for each node assigned to a processor set their local label δ(v)

equal to the current minimum among all labels of δ(v) on

different processors. After communication phase, each

processor gets the best approximation of its all labels δ(v) that

has been computed until now. After it all processors will start

the next iteration. Parallel implementation can be represented

as mentioned below.

Step1: Initialization all nodes of the graph as δ(s) = 0;  v Ɛ

(V\s), δ(v) = ∞.

Step2: Divide the edge set into p disjoint subsets and assign it

to different processors.

Step3: Relax the edges of each subset assigned to a processor

in parallel.

Step4: Each processor get the global minimum δ(v)  v Ɛ V

for its assigned nodes.

Step5: Repeat the step 3 and 4 n-1 times.

3. GRAPH PARTITIONING BASED

PARALLEL SSSP ALGORITHMS

3.1 Parallel Shortest Path Algorithm Based

on Graph Partitioning and Iterative

Correcting
In this implementation [13], they have represented a parallel

shortest path algorithm based on graph partitioning and

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.10, September 2012

29

iteratively correcting the nodes weight. This algorithm is

divided into two phases, a graph partitioning phase followed

by a weight correcting phase. In first phase, they used k-way

portioning algorithm (k-way METIS) to divide the graph.

Graph is portioned into disjoint sub-graphs, where each

sub-graph has roughly the same number of nodes and the

number of edges crossing sub-graphs is minimal. Phase two

contains two steps; first step is a computation step, after graph

partitioning each sub-graph is assigned to one processor, and

each process find temporary shortest paths in its assigned

sub-graph locally. In the first iteration only one processor

actually compute temporary shortest path in assigned

sub-graph, which is having source node information. Second

step is a communication step where after computing the

shortest path in local sub-graphs the boundary information’s

are exchanged between the adjacent sub-graphs. Now the

number of processes having the information of the source

node is increased. Algorithm continues iterating, and

temporary shortest paths in each process keep correcting and

updating with boundary information exchange. This algorithm

continues until there is no message exchanged between the

adjacent sub-graphs, and we will obtain the final shortest path.

Figure 3 to figure 7 show the different phases of this

implementation.

Fig 3: Source graph Fig 4: Graph Partitioning

Fig 5: locally compute shortest Fig 6: 1st time Exchange

path in first partition of message

3.2 A Hierarchical Shortest Path

Algorithm
In hierarchical shortest path algorithms [14, 15], they have

represented the graph in two different layers. Layer one will

be represented by different disjoint sub-graphs of the graph,

which are produced by partitioning of an actual graph. Layer

two defines a boundary graph which is summarizing the

sub-graphs. Figure 8 represents the boundary graph of

partitioned graph in figure 9.

Fig 8: Boundary graph

Fig 9: Partitioned graph

The hierarchical algorithm is having three steps. The first step

in the finding of shortest path is to compute the boundary

nodes. In second and most important step which we can

execute in parallel is computing the shortest path inside the

sub-graphs and here two different cases are possible. If a

sub-graph contains the source/destination nodes of the

problem, then find the shortest path between

source/destination nodes to boundary nodes in corresponding

sub-graphs. For other, sub-graphs find the shortest path

between boundary nodes. Third step is to create the boundary

graph and update its node weight using all previously

calculated shortest paths inside the sub-graphs. Now finally it

will calculate the shortest path between source and destination

in the boundary graph.

Fig 7: locally compute shortest path in 1st, 2nd

and 3rd partition

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.10, September 2012

30

Table 1. Comparative analysis

4. COMPARATIVE ANALYSIS
In table 1 shows the comparative analysis of implementation

of different parallel SSSP algorithms. Platform represents the

type of machine used for that implementation, complexity or

speedup of these algorithms are shown in compare of their

serial algorithm and type or size of graph any implementation

has used to get the mentioned performance. N denotes the

number of nodes and M represents the number of edges in any

graph.

5. CONCLUSIONS
After going through all these implementations, we found that

label setting algorithms gave procedures by which it

maximize the number of nodes selected from queued node set

in each iteration and relax their outgoing edges parallel. Label

correcting algorithms tried to minimize the number of

relaxation for edges. Graph partitioning algorithms have tried

to divide the graph in such a way so that it can calculate the

maximum part of SSSP in sub-graphs. If we are able to find a

step in serial SSSP algorithm, which can be parallels it always

improve the performance of an algorithm. Partitioning of the

graph data is going to add an extra overhead, but if we are

going to use same graph for different SSSP request, then this

can be avoided. PRAM and Cray supercomputer had provided

good platform but now researchers are using CPU-GPU based

hybrid machine to implement the parallel SSSP algorithms, as

graphics cards are providing high speed and low cost parallel

processing platform.

6. REFERENCES
[1] A. Crauser, K. Mehlhom, U. Meyer and P. Sanders, “A

parallelization of dijkstra’s shortest path algorithm”,

LNCS 1450, pp. 722-731, 1998.

[2] E. W. Dijkstra, "A note on two problems in connexion

with graphs", Numerische Mathematik 1, 269–271, 1959.

[3] G. Brodal, J. Traff and C. D. Zarolingis, “A parallel

priority queue with constant time operations”, Journal of

parallel and distributed computing 49, pp. 4-12, 1998.

[4] G. Brodal, J. Traff and C. D. Zarolingis, “A parallel

priority data structure with applications”, IEEE, pp. 689-

693, 1997.

[5] J. R. Crobak, J. W. Berry, K. Madduri and D A. Bader,

“Advanced shortest paths algorithms on a massively-

multithreaded architecture”, Parallel and Distributed

Processing Symposium, 2007, IEEE, pp.1-8, 2007.

[6] M. Papaefthymiou and J. Rodrigue, “Implementing

parallel shortest-paths algorithms”, DIMACS Series in

Discrete Mathematics and Theoretical Computer

Science, pp. 59-68, 1994.

[7] Pedro J. Martin, Roberto Torres and Antonio gavilanes,

“CUDA Solutions for the SSSP problem”, LNCS 5544,

pp. 904-913, 2009.

[8] U. Meyer and P. Sanders, “Δ-stepping: a parallelizable

shortest path algorithm”, Journal of Algorithms 49, pp.

114-152, 2003.

[9] K. Madduri, D. Bader, J. Berry and J. Croba, “ An

experimental study of a parallel shortest path algorithm

for solving large-scale graph instances”, In workshop on

Algorithm Engineering and Experiments (ALENEX),

New Orleans, LA, January 2007.

[10] R. E. Bellman, "On a routing problem", Quarterly of

Applied Mathematics, 16: 87-90, 1958.

[11] L. R. Ford Jr., and D. R. Fulkerson, “Flows in Network”,

Princeton University Press, 1962.

[12] M. Papaefthymiou and J. Rodrigue, “Implementing

parallel shortest-paths algorithms”, DIMACS Series in

Discrete Mathematics and Theoretical Computer

Science, pp. 59-68, 1994.

[13] Y. Tang, Y. Zhang and H. Chen, “A parallel shortest

path algorithm based on graph-partitioning and iterative

correcting”, IEEE, pp. 155-161, 2008.

[14] A. Fetterer and S. Shekhar, “A performance analysis of

hierarchical shortest path algorithms”, IEEE, pp. 84-93,

1997.

[15] H. Ishikawa, S. Shimizu, Y. Arakawa, N. Yamanaka and

K. Shiba, “New parallel shortest path searching

algorithm based on dynamically reconfigurable processor

DAPDNA-2”, IEEE, pp. 1997 – 2002, 2007.

Algorithm Platform for Parallel

Implementation

Speedup/

Complexity

Graph

Type/Size

A parallelization of Dijkstra’s shortest path Algorithm CRCW PRAM O(n1/3logn)

Directed graph

 Parallelization of Dijkstra’s Algorithm by using the

Parallel Priority Queue

CREW PRAM O(n) Directed graph

 Parallel implementation of Thorup’s algorithm MAT-2, 40 Processors

12 times N= 226

M= 228

CUDA solutions for the SSSP problem

Nvidia GTX280,256 cores 60 times N=220, M is not

define
Δ-stepping: a parallelizable shortest path algorithm MAT-2, 40 Processors

30 times N= 228

 M=4N

Parallel Bellman-Ford Algorithm CM-5, 32 Processors 7.8 times N=215,

M=222

A parallel shortest path algorithm based on graph

partitioning and iterative correcting
IBM Cluster, 16 processors

15 times

N= 100000

M=280000

Hierarchical Shortest Path Algorithm

DAPDNA-2, 376 PE

99.6% less clock

cycles

N=512,M is not

define

