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ABSTRACT 

We present a study of parallel implementations of single 

source shortest path (SSSP) algorithms. In the last three 

decades number of parallel SSSP algorithms have been 

developed and implemented on the different type of machines. 

We have divided some of these implementations into two 

groups, first are those where parallelization is achieved in the 

internal operations of sequential SSSP algorithm and second 

are where an actual graph is divided into sub-graphs, and 

serial SSSP algorithm executes parallel on separate processing 

units for each sub-graph. These parallel implementations have 

used PRAM, CRAY super-computer, dynamically 

reconfigurable processor and Graphics processing unit as 

platform to run them.   
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1. INTRODUCTION 
Single source shortest path problem is a classical optimization 

problem in graph theory, which is applicable in the wide 

range of applications like VLSI design, network routing, 

commodity flow, Advance traveler information system. Data 

of these applications can be represented as a graph having a 

collection of nodes and links between these nodes (i.e. edges) 

with some attributes related to them. In shortest path problem 

we try to find out a path between two nodes of a weighted 

graph such that sum of the weights of its constituent edges is 

minimum. The single-source shortest path problem computes 

shortest paths from single source node to all other nodes of 

the graph. 

First, we introduce the basics of undirected weighted graph 

and some notations, which are used to define the shortest path 

algorithms. Graph is represented as an ordered pair G = (V, E) 

comprising a set V of nodes and a set E of edges which are    

2-elemet subsets of V. Let n= |V| the number of nodes, m= |E| 

the number of edges and c a function assigning a non-negative 

weight to each edge of G. Weight of an edge (v, w) ƐE is 

presented by l(v, w). Let s is the source node then the 

objective of SSSP is to find the weight of a minimum-weight 

path from s to all other node v ƐV of the graph, which is 

denoted as d(v) for a node v. During the execution of shortest 

path algorithms, a node is called settled if its node weight is 

d(v). Most of the serial shortest path algorithms maintain 

tentative distance for each node [1]. Let δ(v) represents the 

tentative distance of node v, its value is always ∞ or the 

weight of some path from s to v. Graph algorithm’s optimize 

the tentative distances by edge relaxation. Relaxing an edge  

(v, w) Ɛ E means set δ (w) to a minimum of δ (w) and             

δ (w)   + l(v, w). 

We present the implementations of parallel SSSP algorithms 

under two sets. First set is having those algorithms where 

parallelization is achieved in internal operations of serial 

SSSP algorithm. Based on the approach used to update the 

tentative distance shortest path algorithms are divided into 

two types, label setting and label correcting. The label-setting 

algorithm assigns a permanent distance label to a node and 

relaxes the outgoing edges of that node, until all nodes not get 

their minimum weight. Under label setting we will talk about 

parallelization of Dijkstra’s and Thorup’s algorithms. Label 

correcting algorithms relax the edges of unsettled nodes and 

edges can be relaxed multiple times until the final step of the 

algorithm, under this we talk about parallel Bellman-Ford and 

parallelization in Δ-stepping algorithm. Second set is having 

those parallel SSSP algorithms where the actual graph is 

divided into sub-graphs, and parallelization is achieved by 

executing the serial SSSP program for each sub-graph on 

different processing unit. Under this we will talk about two 

implementations, first is graph portioning and iterative weight 

correcting method and second parallel SSSP on the multilevel 

graph.  

2. PARALLELIZATION IN INTERNAL 

OPERATIONS OF SERIAL SSSP 

ALGORITHMS 
Basic SSSP algorithm could be label-setting or label 

correcting. The most famous label setting algorithm is 

Dijkstra’s SSSP algorithm [2]. It Divides V into three sets 

settled, queued and unreached nodes and for each node v ƐV 

maintains a tentative distance δ(v) [1]. For settled nodes            

δ(v) = d(v), for queued nodes δ(v) < ∞ and for unreached 

nodes δ(v) = ∞. If s is the source node, then initially s is 

queued, δ(s) = 0 and all other nodes are unreached. In each 

iteration, a node v with smallest tentative distance is selected 

from the queued nodes and all edges (v, w) ƐE are relaxed 

(i.e. δ(w) is set to min{ δ(w) , δ(v) + l(v, w)}) and if w was 

unreached put it in queued set. We know that δ(v) = d(v) if     

v is selected from the queue. 

2.1 Label Setting Algorithms 

2.1.1 A Parallelization of Dijkstra’s Shortest Path 

Algorithm 
In this implementation [1], they have divided the Dijkstra’s 

SSSP algorithm into various phases and explain that how we 

can perform parallel operation with in a phase. The basic idea 

of this method is that in Dijkstra’s algorithm, queue may 

contain multiple nodes, which are settled, so simultaneously 

remove such nodes from queue and relax their outgoing 

edges. However, the problem is to identify them. To identify 

such nodes they have given number of criteria’s, like compute 
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a threshold defined via the weights of the outgoing edges. Let 

L= min {δ(u) + l(u, z): u is queued and (u, z) ƐE }, and 

remove all nodes v from the queue which satisfies δ(v) ≤ L.  

They implemented it on CRCW PRAM for random graph and 

random edge weight. This implementation maintains of a 

global array for tentative distance of all nodes, and every 

processing unit is having two sequential priority queues, 

which deal with a subset of randomly assigned nodes. One 

queue store the tentative distance of it assign nodes and 

second stores the addition of tentative distance of node and 

minimum edge weight out of its all outgoing edges. Minimum 

edge weight for nodes are pre-computed during the 

initialization. Second queue of each processor is used to find 

nodes, which can be deleted in current phase. This 

implementation works similar to Dijkstra’s algorithm. It starts 

work with source node, which is randomly assigned to a 

processor and its distance values are stored in processor local 

queues, and all other processor’s queues will be empty. While 

any queue is nonempty algorithm execute a phase consisting 

following five steps. 

Step1: Find the global minimum L of all elements in all 

queues in parallel. 

Step2: Each Processing Unit (PU) removes the nodes with 

δ(v) ≤ L from local queue. Let R’ denotes the union of all 

deleted nodes. 

Step3: All PU Co-operate to generate a set Req = P {w,      

δ(v)+ l(v, w)}: v Ɛ R’ and (v, w) Ɛ E. 

Step4: Randomly distribute the nodes of Req. set between 

Processors. 

Step5: Each processor checks its assign request (w, x) with     

x < δ(w), it update δ(w) to x and insert new nodes in local 

queue. 

2.1.2 Parallelization of Dijkstra’s Algorithm by 

Using the Parallel Priority Queue 
Queue operations are one of the most important and time 

consuming part of Dijkstra’s algorithm. There are two 

different ways by which we can add parallelism into a priority 

queue [3, 4]. First method tried to speed up the specific queue 

operation that handles a single element using a small number 

of processors. Second way is to support the simultaneous 

insertion and deletions of smallest elements. They have 

represented a parallel priority data structure that supports 

internal operations of the algorithm in O(1) time. Using this 

data structure, they [4] implemented Dijkstra’s algorithm in 

O(n) time on a CREW PRAM. They used the adjacency list 

representation of a graph, which is sorted according to edge 

weight. In such a list, they have shown how perform the 

operations like determining a node of minimum weight 

distance and adding any number of new nodes or updating the 

distances of a node in constant time. The basic idea of this 

data structure is to use a pipeline structure; each processor 

takes the output of the processor before it, and does a constant 

time merge operation to select an element as its output to the 

next processor. Let S is the set of nodes whose shortest path 

has been found. They defined a set S’ which is having all 

neighbors of the nodes in S excluding node in S.  

In this implementation, each node is having a dedicated 

processor. Among the processors assigned to nodes in set S, 

one will be selected as master processor. They have defined 

four operations INIT, EJECT(S), EXTEND and EMPTY(S) 

supported by this data structure. INIT initializes the data 

structure. EJECT(S) delete a node from set S’ which is having 

minimum node weight in set and assign this node and its 

weight to master processor. EXTEND to add a node to set S 

and assign a fixed weight label to it and processor assigned to 

this node become the new master processor. EMPTY(S) 

check the emptiness of S’ for master processor. With the help 

of these operations, they define the Dijksta’s algorithm as 

mentioned below. 

Step1: Initialize the priority data structure. 

Step2: Run operation EXTEND for source node. 

Step3: Run the operation EJECT for current set S. 

Step4: Run the operation EXTEND for node selected in 

previous step3. 

Step5: Run the step3 and 4 while EMPTY(S) is false. 

2.1.3 Parallel Implementation of Thorup’s 

Algorithm 
Unlike the Dijkstra’s algorithm, Thorup’s algorithm does not 

visit the nodes in order of increasing distance from the source 

node; instead of that it identifies the vertices that can be 

visited in any order [5]. To avoid the sorting bottleneck of 

Dijkstra’s algorithm, they have used hierarchical bucketing 

structure for nodes on which internal operations are performed 

in constant time. These algorithm [5, 6] summaries the graph 

in a tree data-structure called the Component Hierarchy (CH). 

Each CH-node is called component, which represents a      

sub-graph of the graph G. Each component is identified by 

node v and a level i. Component (v, i) is the sub-graph of G 

having node v, the set of nodes reachable from v when 

traversing edges with weight < 2i and all edges adjacent to {v} 

U S of weight less than 2i. Algorithm use CH to identify the 

nodes that can be visited in arbitrary order. Figure1 show a 

graph which is divided into three components. 

 

Fig 1: Initialized graph which is divided in three 

components V1, V2 and V3 

To identify the nodes which can be visited randomly, node set 

V is divided into disjoint subsets V1, V2, …, Vk, where all 

edges between subsets have weight at least Δ [5]. Let S be the 

set of settled nodes and for some i, v Ɛ Vi\S such that          

d(v) = min {d(u) | u Ɛ Vi\s} ≤ min { d(u) |u Ɛ V\S} + Δ, then          

d(v) = δ(v). 

 

Fig 2: Graph after relaxation of the edges of a settled of 

node from component V1 

As per the lemma after the relaxation of the edges of a settled 

node from component V1 in the next step we have two nodes 

one in V1 and second in V2 for which d(v) = δ(v). Let α= 

log2Δ. Component Vi buckets its children according to min 

{d(u)|u Ɛ Vi\S} >> α. This algorithm maintains a current 

bucket for each component and all children in current bucket 
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are the list of children to be visited. Here it visits each 

children recursively starting from smallest bucket index and 

when it reached a leaf component which represents a node v, 

it is called visited and edges starting from v are relaxed. They 

used the Cray MAT-2 a massively multithreaded machine to 

implement this algorithm. MAT automatically executes the 

loop in parallel by reduction method. It can be summarized as 

follows: 

Step1: Construct the component hierarchy for graph in 

parallel. 

Step2: Initialize the weights of all nodes and set S. 

Step3: Construct the unvisited data structure. Each component 

of component hierarchy bucket its child according to min 

{d(u)|u Ɛ Vi\S}. 

Step4: Visit the component of hierarchy in parallel. 

2.1.4 CUDA Solutions for the SSSP Problem 
In this solution [7], they have shown the different ways for the 

parallel implementation of Dijkstra’s algorithm. They used the 

CUDA interface for these implementations and graphics 

processing unit (GPU) to run the parallel threads. Basically, 

each step of these implementations removes all those queued 

nodes, which are having weight equal to current minimum 

weight value and relax their outgoing edges in parallel on 

threads running for them. In each iteration, they create n 

threads one for each node. They have also shown the 

parallelization in finding the minimum weight and creating 

the list of nodes having minimum node weight. This 

implementation can be represented in steps as shown below. 

Step1: Parallel initialization of all node weights and flags in 

corresponding threads. 

Step2: Define a minimum variable. 

Step3: relax the edges of those queued nodes whose weight is 

equal to value of minimum variable. 

Step4: Find new value of minimum variable, which is 

minimum weight out of all queued nodes weight. 

Step5: select set of nodes whose outgoing edges will be 

relaxed in next iteration. 

Step6: Repeat Step 3, 4 and 5 while there is a weight update 

for any node during step3. 

2.2 Label Correcting Algorithms 

2.2.1 Δ-Stepping: A Parallelizable Shortest Path 

Algorithm 
They [8] proposed a parallel version of a label-correcting 

algorithm for SSSP finding. This algorithm maintains a list of 

eligible nodes with their tentative distances in an array of 

buckets B, each of which denotes a distance range of size Δ 

the “bucket width”. During any iteration, this algorithm 

removes all nodes of the current nonempty bucket and relaxes 

their outgoing edges of weight at most Δ, while current bucket 

is non-empty. During the relaxation step new nodes are 

inserted into bucket. If any node v has been removed from the 

current non-empty bucket B[i] without its final distance value, 

then in some succeeding step of same iteration, v will surely 

be reinserted into B[i]. Edges having weight higher than Δ are 

relaxed only after their corresponding starting node is surly 

settled. So the edges of weight more than Δ originating from 

all nodes that have been removed from B[i] are relaxed once 

for all when B[i] finally becomes empty. Parallelism is 

obtained by simultaneously removing all nodes of the current 

non-empty bucket, relaxing their outgoing edges of weight at 

most Δ and finally relaxing edges having weight more than Δ 

[8, 9]. This algorithm can be represented in steps as shown 

below. 

Step1: Divide the edges of graph in two sets heavy edges    

(l(e) >Δ) and light edges  (l(e) ≤ Δ) e Ɛ E, and initialize all          

d(v) = ∞, S = Φ. 

Step2: Insert the source node s into bucket and d(s) = 0. 

Step3: While the current bucket is non-empty, remove all its 

nodes, add them in a set S and relax all light edges adjacent to 

these nodes in parallel.   

Step3: When the current bucket becomes empty, parallel 

relaxation of all heavy edges adjacent to nodes present in S. 

Step4: Reset the set S = Φ and Repeat the step3 and 4 while 

bucket is not empty.  

 The performance of this approach is governed by the choice 

of Δ. The choice of Δ offers a trade-off between too many 

nodes re-considerations on the one hand and too many bucket 

traversals on the other hand. 

2.2.2 Parallel Bellman-Ford Algorithm 
Bellman-Ford algorithm is a well-known label correcting 

algorithm for SSSP [10, 11]. It is primarily used for graphs 

with negative edge weights. This algorithm relaxes all edges 

of a graph, n − 1 time. The repetitions allow minimum 

distances to accurately broadcast throughout the graph, since 

in the absence of negative cycles; the shortest path can only 

visit each node at most once. An important property of this 

algorithm is that during any iteration, we can relax the edges 

of a graph in random order, but the result will be same. In 

“Implementing parallel shortest path algorithms [12]” they 

used this property to implement the parallel version of the 

bellman-ford algorithm on CM-5 parallel supercomputer in 

two steps. At first step they divided the edge set of graph G in 

P (number of processors) different disjoint subsets. Each 

processor is assigned a subset of edges, and this assignment 

never changes during the execution of the program. In second 

step execute a program of modified Bellman-ford’s algorithm 

in each processor.  

This algorithm is divided into two parts a computation 

followed by a communication phase. In each iteration during 

the computation phase, each processor relaxes its assigned 

edges and updates its local label δ(v). After computation 

phase, their program performs a global communication, where 

for each node assigned to a processor set their local label δ(v) 

equal to the current minimum among all labels of δ(v) on  

different processors. After communication phase, each 

processor gets the best approximation of its all labels δ(v) that 

has been computed until now. After it all processors will start 

the next iteration. Parallel implementation can be represented 

as mentioned below. 

Step1: Initialization all nodes of the graph as δ(s) = 0;  v Ɛ 

(V\s), δ(v) = ∞. 

Step2: Divide the edge set into p disjoint subsets and assign it 

to different processors. 

Step3: Relax the edges of each subset assigned to a processor 

in parallel. 

Step4: Each processor get the global minimum δ(v)  v Ɛ V 

for its assigned nodes. 

Step5:  Repeat the step 3 and 4 n-1 times. 

 

3. GRAPH PARTITIONING BASED 

PARALLEL SSSP ALGORITHMS 

3.1 Parallel Shortest Path Algorithm Based 

on Graph Partitioning and Iterative 

Correcting 
In this implementation [13], they have represented a parallel 

shortest path algorithm based on graph partitioning and 
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iteratively correcting the nodes weight. This algorithm is 

divided into two phases, a graph partitioning phase followed 

by a weight correcting phase. In first phase, they used k-way 

portioning algorithm (k-way METIS) to divide the graph. 

Graph is portioned into disjoint sub-graphs, where each      

sub-graph has roughly the same number of nodes and the 

number of edges crossing sub-graphs is minimal. Phase two 

contains two steps; first step is a computation step, after graph 

partitioning each sub-graph is assigned to one processor, and 

each process find temporary shortest paths in its assigned   

sub-graph locally. In the first iteration only one processor 

actually compute temporary shortest path in assigned         

sub-graph, which is having source node information. Second 

step is a communication step where after computing the 

shortest path in local sub-graphs the boundary information’s 

are exchanged between the adjacent sub-graphs. Now the 

number of processes having the information of the source 

node is increased. Algorithm continues iterating, and 

temporary shortest paths in each process keep correcting and 

updating with boundary information exchange. This algorithm 

continues until there is no message exchanged between the 

adjacent sub-graphs, and we will obtain the final shortest path. 

Figure 3 to figure 7 show the different phases of this 

implementation. 

   

Fig 3: Source graph               Fig 4: Graph Partitioning 

        

Fig 5: locally compute shortest    Fig 6: 1st time Exchange     

path in first partition                   of message

 

3.2 A Hierarchical Shortest Path 

Algorithm 
In hierarchical shortest path algorithms [14, 15], they have 

represented the graph in two different layers. Layer one will 

be represented by different disjoint sub-graphs of the graph, 

which are produced by partitioning of an actual graph. Layer 

two defines a boundary graph which is summarizing the     

sub-graphs. Figure 8 represents the boundary graph of 

partitioned graph in figure 9.  

 

Fig 8: Boundary graph 

 

Fig 9: Partitioned graph 

The hierarchical algorithm is having three steps. The first step 

in the finding of shortest path is to compute the boundary 

nodes. In second and most important step which we can 

execute in parallel is computing the shortest path inside the 

sub-graphs and here two different cases are possible. If a    

sub-graph contains the source/destination nodes of the 

problem, then find the shortest path between 

source/destination nodes to boundary nodes in corresponding 

sub-graphs. For other, sub-graphs find the shortest path 

between boundary nodes. Third step is to create the boundary 

graph and update its node weight using all previously 

calculated shortest paths inside the sub-graphs. Now finally it 

will calculate the shortest path between source and destination 

in the boundary graph. 

 

 

Fig 7:  locally compute shortest path in 1st, 2nd 

and 3rd partition 
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Table 1. Comparative analysis 

 

4. COMPARATIVE ANALYSIS 
In table 1 shows the comparative analysis of implementation 

of different parallel SSSP algorithms. Platform represents the 

type of machine used for that implementation, complexity or 

speedup of these algorithms are shown in compare of their 

serial algorithm and type or size of graph any implementation 

has used to get the mentioned performance. N denotes the 

number of nodes and M represents the number of edges in any 

graph. 

5. CONCLUSIONS 
After going through all these implementations, we found that 

label setting algorithms gave procedures by which it 

maximize the number of nodes selected from queued node set 

in each iteration and relax their outgoing edges parallel. Label 

correcting algorithms tried to minimize the number of 

relaxation for edges. Graph partitioning algorithms have tried 

to divide the graph in such a way so that it can calculate the 

maximum part of SSSP in sub-graphs. If we are able to find a 

step in serial SSSP algorithm, which can be parallels it always 

improve the performance of an algorithm. Partitioning of the 

graph data is going to add an extra overhead, but if we are 

going to use same graph for different SSSP request, then this 

can be avoided. PRAM and Cray supercomputer had provided 

good platform but now researchers are using CPU-GPU based 

hybrid machine to implement the parallel SSSP algorithms, as 

graphics cards are providing high speed and low cost parallel 

processing platform. 
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Algorithm Platform for Parallel 

Implementation 

Speedup/  

Complexity 

Graph 

Type/Size 

A parallelization of Dijkstra’s shortest path Algorithm CRCW PRAM O(n1/3logn) 

 

Directed graph 

 Parallelization of Dijkstra’s Algorithm by using the 

Parallel Priority Queue 

CREW PRAM O(n) Directed graph 

 Parallel implementation of Thorup’s algorithm MAT-2,  40 Processors 

 

12 times N= 226  

M= 228 

CUDA solutions for the SSSP problem 

 

Nvidia GTX280,256 cores 60 times N=220,  M is not 

define 
Δ-stepping: a parallelizable shortest path algorithm  MAT-2, 40 Processors 

 

30 times N= 228 

 M=4N 

Parallel Bellman-Ford Algorithm CM-5, 32 Processors 7.8 times N=215, 

M=222 

A parallel shortest path algorithm based on graph 

partitioning and iterative correcting  
IBM Cluster, 16 processors 

15 times 

 

N= 100000 

M=280000 

Hierarchical Shortest Path Algorithm 

 

DAPDNA-2, 376 PE 

 

99.6% less clock 

cycles 

N=512,M is not 

define 


