
International Journal of Computer Applications (0975 – 8887)

Volume 53– No.9, September 2012

1

Efficient Approach for Compression in Data Warehouse

Meenakshi Sharma

Assistant Professor
Haryana College of technology and Management,

Kaithal, India

Sonia Dora
Student

Haryana College of technology and Management,
Kaithal, India

ABSTRACT

Data compression has become most requisite and necessary

part of data warehousing as it helps in saving disk space and

improves query performance as well. Different compression

techniques exist at different levels and each type of

compression is either best from query processing point of

view or compression ratio. This paper focuses on lossless

compression for relational databases at attribute level.

Efficient compression techniques allow transferring more data

on a given bandwidth. The proposed technique in this paper is

used at attribute level by compressing three types of attribute

(string, integer and date type) and the most interesting feature

is that it automatically identifies the type of attribute.

General Terms

Attribute Level Compression, Data type of attribute

Keywords
Attribute compression, primary key, and compression ratio

1. INTRODUCTION
As the size of databases is growing at a higher rate and due to

this, the transaction overhead is also increased. Therefore, it

becomes almost mandatory to manage this data in order to

provide a framework for the purpose of use. This leads to

development of data warehouses in which data is organized in

a proper and well managed way. The data warehouse can be

considered as a collection of data as well as a decision support

system. The advantage of storing the data in a data warehouse

is that once written data is committed it can neither be

overwritten nor deleted. Thus, it relieves us from the daily

transaction overhead[9]. It is very advantageous to store the

data in a compressed form in data warehouse to save the disk

storage space. The main reasons behind storing the data in

compressed form are: - 1) Scarce of space on disk as it helps

in saving disk storage. 2) A significant fall in query execution

time as the data stored in data warehouse is used only for

read-only purposes. 3) Improvement in flexibility and help in

removing the redundancy in data.

There are four type of compression levels at which

compression can be performed[7]- File level compression,

Page level compression, Record level compression, Attribute

level compression. All these types of compression level have

both advantages and disadvantages. Both File level

compression and Page level compression have a high

compression ratio but from query processing perspective they

are not so good to use. The main problem in these two types is

that at the time of decompression the whole relation/page has

to be decompressed. Thus, a lot of information is

decompressed un-necessarily. On the other hand, Record level

compression and Attribute level compression are much better

from query processing point of view but does not have a good

compression ratio in comparison to the first two types[7].

We propose the technology for compression at attribute level.

All the existing techniques emphasize on compression of

either numerical attributes or text attributes and all these

techniques demand the details of type of attribute. We propose

to define an intelligent compression scheme to be applied on

Relational Database Management System (RDBMS) that

automatically identifies the type of attribute and performs the

compression technique accordingly. Thus, there is no need to

provide with the details of type of attribute. Compression for

three data types (string, integer and date time) are done in a

relation. Moreover, string type attribute is compressed in two

ways: with index (if required) and without indexing.

2. CLASSIFICATION OF

COMPRESSION TECHNIQUES
There are many compression techniques available. Their

classification can be depicted as below in figure no. 1:-

Figure no. 1:- Classification of compression techniques

Non-adaptive coding requires two passes: one pass to

compute probabilities (or frequencies) and determine the

mapping and a second pass to encode. All the adaptive

methods are one-pass methods; only one scan of the message

is required.

3. RELATED WORK

3.1 Page Level Compression

3.1.1 Compressing numeric attributes [3]
A page may have both numeric and non-numeric attributes.

To compress numeric attributes a technique was developed in

which a column containing integers were scanned to find out

the lowest and highest integer value. Thus, all the values lying

in between these two values are assigned the bits starting from

0. For example: - if a column on a page has 20 as minimum

value and 24 as maximum then a range is defined. This range

will be consisting of only 5 values and we can specify a given

value in this range by using only 3 bits i.e. 20 as 000, 21 as

001, 22 as 010, 23 as 011 and 24 as 100. This minima and

maxima provide a frame of reference in which all the values

lie.

Compression
techniques

Lossless
compression

Adaptive (eg-
adaptive huffman

coding, LZ77)

Non adaptive(eg-
static huffamn

coding)

Lossy compression
Scalar and vector

Quantaization

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.9, September 2012

2

3.1.2 Compressing non-numeric attributes [3]
The same technique could be used for compression of non-

numeric attributes which have low cardinality or one can say

which have high redundancy in values of an attribute like

gender, state or country. A high compression ratio can be

achieved in such type of attributes. For example: - Gender

attribute contains only two values for all the records.

Therefore, only two bits are used to define its values 0 for

male and 1 for female. Similarly, state and country are other

attributes which have a very limited range of values

3.2 Attribute Level Compression

The main objective of this technique is to allow the reduction

of the space occupied by dimension tables with high number

of rows, reducing the total space occupied by the data

warehouse and leading to a consequent gains on

performance[8]. It is aimed to compress two different types of

database attributes:-

 Text attributes with low cardinality (known as

categories).

 Attributes of free text: comments or notes (known as

descriptions).

Categories[8] are those textual attributes that have a low

cardinality. For example: city, country, gender, etc.

Compression can be done on these types of attributes using 1

or 2 bytes. Only 1 byte is enough if value of such kind of

attributes are less than 256 , and 2 bytes will be required if

values are upto 65536.

A description is a text attribute that is mainly used for

visualization. For example: description attribute is the

comment attribute, which is frequently found in dimension

tables. This type of attributes has the particularity of having a

low access frequency and it is only necessary to decode it

when the final result is being constructed.

3.2.1 Categories Coding[8]
Categories coding is done through the following steps:

1. The values of the attribute is analyzed and its frequency is

calculated.
2. The table of codes is build based on the frequency: the most

frequent values are encoded with a one byte code; the least

frequent values are coded using a two bytes code. In principle,

two bytes are enough, but a third byte could be used if needed.

3. The codes table and necessary metadata is written to the

database.

4. The attribute is updated, replacing the original values by the

corresponding codes (the compressed values).

3.2.2 Descriptions Coding[8]

It is very similar to the categories coding with the major

difference that in this case the value in the attribute is not

regarded as a single value, but as a set of values (an ASCII

string). Any text compression algorithm can be used to

perform this type of compression.

4. PROPOSED WORK
In this paper, a technique combining the compression

techniques for three different data types (string, integer and

date time) of an attribute is proposed in which there is no need

to provide with the details of attribute type. The proposed

algorithm automatically identifies the suitable code matching

with the given attribute and performs the compression

accordingly. Moreover, string type attribute is compressed in

two ways: with index (if required) and without indexing.

Some previous techniques focus on indexing in which a

dictionary or an index is constructed for storing the codes.

The constructed index itself consumes some space for storage.

In proposed technique the index is constructed only if it is

necessary or if it will help in reduction of space required for

storing data which is calculated by finding out the frequency

of values in a particular field.

4.1 How to compress string type attribute
The first step is to calculate the frequency ratio by acquiring

the information from Meta data. This will help in finding

whether the index is required to be created or not. If the

frequency of a value for a String type attribute approaches to

50 percent of values then the index will be created otherwise

it will be compressed by other way. The most repeating values

will be replaced with an integer and thus these assignment

codes are stored in the index. For example, the fields like state

and country have most repeating values and thus for such kind

of attributes, creating an index is really beneficial for space

savings. For other string type attributes like name, another

technique is applied. It is well known that a character takes 1

byte (8 bits) to store in memory. In the proposed technique,

we have saved 1 bit for each character by applying the bitwise

operators. These bitwise operators (left shift and right shift)

are most efficient to use and takes less time for compression.

Thus, the idea of using bitwise operators for compressing

string type attributes is also helpful from the performance

point of view. Each character is seen as its ASCII code and

then converted into its binary code. After that, binary code of

each character is left shifted by one bit. Now each character is

of 7 bits but it occupies 8 bits in memory. So, the MSB of

next character’s binary code will be shifted to previous

character binary code which is of 7 bits and will become its

LSB. Thus in the same manner, the characters in the given

string can be compressed. At last, it can be concluded that, a

string of 26 characters can be stored in 23 bytes which would

have taken 26 bytes otherwise.

4.2 How to compress Integer type attribute
In a relation, there are also attributes of integer type like ID,

contact number. The compression for the integers can be

performed by defining a range out of the values i.e find the

maximum number (max) and minimum number(min). All the

values lying between max and min are assigned the integer

value starting from 1. For example: - if the ID attribute has

value 2012 as minimum and 3970 as maximum then the range

will contain 1888 (3900-2012) values. These 1888 values are

numbered starting from 1 to 1888. In this way, the integer

type field of a table can be compressed. A lot of space in

memory can be saved using this method.

4.3 How to compress Date type attribute
The date type attribute has three parts: day, month and year.

Number of days in a month lies from 1 to 31. So, the number

of bytes required for storing day is 5. Similarly, the number of

months in a year lies from 1 to 12. So, the number of bytes

required for storing months is 4. For compressing the year

part, we can assume a base year, say 1950. Then subtracting

the given year in data of birth (say 1985) from base year and

then storing the resulting value will occupy less space than the

actual value. Thus, this method of date compression can save

up to 8 bytes.

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.9, September 2012

3

5. Compression/Encoding Algorithm

Table 1: Results of database compression

1. Setup the connection with DBMS.

2. Get table list from database.

3. Repeat for each table in table list

a. CompressionEngine.CompressTable(T)

b. Update the compression statistics

4. [end of for loop]

5. Show the compression statistics

6. Exit

CompressTable(T)

1. Create a file to store compressed table

2. Get table , metadata from database

3. Setup temporary indexes of those field having

maximum repeated values.

4. Get the recordset of table into datareader.

5. Repeat for each record R from datareader

6. Repeat for each field value V from record R

if (datatype of V is “string”)

 if (field is indexed)

 R=getindex(V)

 else

 R=CompressString(V)

else

 if (datatype of V is “int”)

 R=CompressNumber(V)

 else

 if (datatype of V is “Date”)

 R=CompressDate(V)

7. Save R into compressed file

8. [end of if]

9. [end of for]

10. exit

6. RESULTS AND DISCUSSION
The sample database in MS SQL was created for evaluating

the result of compression technique. Several tables can be

created and can be compressed using the proposed technique.

We have created only four tables named products, vendor,

parts and employee. These tables contain string, date, integers

type attributes. Other fields are also included like emailid,

address which are compressed by considering them as string

type. After applying the compression on these tables the

results are shown in table 1.

The above results can be shown with the help of graph which

shows the comparison of tables before compression and after

compression.

Figure 1: Depiction of results

7. CONCLUSION AND FUTURE WORK
At last, it is concluded that an intelligent compression

technique has been proposed that automatically identifies the

type of attribute in a relation and performs the appropriate

compression on it. Compression at attribute-level is done for

three types of data types. This compression technique can be

applied to multi databases. One can see the status of the table

being compressed i.e. which table is currently being

compressed out of many tables. The obtained results show

that an overall compression ratio of 79.09% has been achieved

and gain in performance (saving in space) has increased to

20.91%. In the proposed work, we have considered only three

data types but there are so many other data types like Boolean,

short int, long int etc which can be compressed. Moreover, the

compression of primary key and foreign key is also a main

area for research as it contains all the unique values.

8. REFERENCES
[1] J.Ziv and A. Lempel “A universal algorithm for sequential

data compression” in IEEE transactions in information

theory, vol. 3, no. 3, pp. 337-343(1977)

[2] Amy Turske McNee “The Evolutionary Data Warehouse--

An Object-Oriented Approach” (2008)

[3] Jonathan Goldstein, Raghu Ramakrishnan ,Uri Shaft

“Compressing relations and indexes “in IEEE computer

society Washington,USA (1998)

[4] P. O’Neil and D. Quass. “Improved query performance with

variant indexes,” Proceedings of the ACM SIG\IOD

Conference, Tucson, Arizona, May, 1997.

[5] S. Chaudhuri and U. Dyal, “An overview of Data

warehousing and OLAP Technology”, ACM SIGMOD

record, vol 21, no.1.

[6] W. Kim, ”Modern Database Systems”, ACM Press. New

York, New York, 1995

[7] G. Ray, J. R. Haritsa, and S. Seshadri. Database

compression: A performance enhancement tool. In

International Conference on Management of Data, pages 0,

1995.

[8] Jorge Vieira1, Jorge Bernardino2, Henrique Madeira3

“Efficient compression of text attributes of data warehouse

dimensions” (2005)

[9] Akanksha Baid and Swetha Krishnan” Binary Encoded

Attribute-Pairing Technique for Database Compression”(

2008)

[10] Goetz Graefe and Leonard D. Shapiro” Data Compression

and Database Performance”(1991)

[11] Debra A. Lelewer and Daniel S. Hirschberg”Data

Compression”(1987)

Table

Name

Initial

size

(in

bytes)

Size after

compression

(bytes)

Gain

(%)

Compressi

on

ratio(%)

Product 64 55 14.06 85.94

vendor 445 342 23.14 76.85

Parts 305 254 16.44 83.28

Employe 391 302 22.76 77.24

Total 1205 953 20.9% 79.09%

