
International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

46

A Responsive Multi Agent System (MAS) Framework for

Optimizing Distributed Network

Manish Sharma
Assistant Professor

IT Graphic Era University
Dehradun, Uttarkhand, India

ABSTRACT

Multi Agent System introduces an approach that monitoring

and response out into the network in support of better

scalability and decision building. We depend more and more

on computer networks, yet the expansion of networks and

their heterogeneous composition make ensuring network

reliability a scary task. Using self-directed MAS, the system

detects and responds to network degrading events, even those

not previously experiential, and even when parts of the

network have failed. This paper describes system architecture

and gives a case of how this system might achieve.

General Terms

MAS (Multi agent System), Artificial Intelligence,

Prometheus, Subsumption architecture[9].

1. INTRODUCTION
Multi Agent Systems [1][2]([Shoham and Leyton-Brown

2008]) are more and more important and active area of inter-

disciplinary research on the border of computer science,

artificial intelligence, and game theory, as they model a wide

variety of phenomena in these fields, including open and

interactive systems, distributed computations, security

protocols, knowledge and information exchange, etc. Not

surprisingly, a number of logical recognized systems have

been proposed for specification, verification, and analysis

about Multi Agent Systems (MAS).

These recognized systems, broadly speaking, fall into two

types: those for analysis about knowledge of agents and those

for analysis about abilities of agents

2. MOTIVATIONAL SCENARIOS
The task of maintaining network health is compounded by the

difficulty of exactly diagnosing problems once symptoms are

observed. There is no exact correspondence between network

problems and their underlying causes. Faults, attacks and

mistreatment may manifest themselves in a variety of ways,

and observable symptoms may have a number of possible

causes. Problems may be irregular and difficult to consistently

reproduce. Relatively minor faults can persist unnoticed,

exacerbating and masking the causes of larger events that

might occur.

As these issues point toward, computer networks are

equivalent to other complex systems, such as automobile

engines and industrialized processes, requiring automatic

analysis and control in order to remain practical and

dependable. In this proposal we present a work in

improvement, the Multi-Agent System for Network Resource

Reliability.

3. PAPER OBJECTIVE AND

APPROACH
This system is planned specifically to address the following

needs of currently available approaches [8]:

3.1 Scalability
Cooperating agents each monitor a part of the network and

share information as needed, dropping unneeded messages

and eliminating the processing and data transfer bottleneck of

a centralized system.

3.2 Interoperability
Agents themselves are platform-independent and offer a

consistent interface to the administrator. Platform and device

specific modules allow an agent executing in one environment

to monitor or act upon network elements of different types

and having proprietary management interfaces.

3.3 Integration of security and

management
MAS agents recognize any number of network-degrading

events and are able to respond to faults and miss

configurations as well as intrusions and attacks. While MAS

is not itself an IDS, agents can reason about the output of an

IDS (or several different IDS systems) for improved diagnosis

and response.

4. SUBSUMPTION ARCHITECTURE
Subsumption architecture [9] is a reactive automaton

architecture closely associated with behavior-based robotics.

[9] Subsumption has been generally dominant in autonomous

robotics and in another place in real-time AI [9].

Sensors -> Perception -> Modeling -> Planning -> Task

recognition-> Perform

The architecture describes an architectural pattern for the

decision making of a single agent. The architecture is

organized as a series of parallel working layers each layer is

responsible for a specific behavior of the agent. The priority

of layers (behavior) increases from bottom to top. Higher

layers are able to inhibit lower layers, giving priority to more

important behavior. Fig 1 shows Subsumption layered

architecture.

Subsumption architecture has used for simple MAS that has to

collect packets and deliver them at a destination. MAS must

avoid obstacles in the environment. A layer in the architecture

directly connects perception to action by means of a finite

state machine augmented with timing elements. Each layer

http://en.wikipedia.org/wiki/Behavior-based_robotics
http://en.wikipedia.org/wiki/Subsumption_architecture#cite_note-Brooks1986a-0
http://en.wikipedia.org/wiki/Autonomous_robotics
http://en.wikipedia.org/wiki/Autonomous_robotics
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Artificial_intelligence

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

47

collects its own sensor data that is written in registers. The

arrival of specific data, or the expiration of a timer, can trigger

a change of state in the interior finite state machine and

possibly produce output commands to actuators. Reserve

mechanisms resolve conflicts between actuator commands

from different layers. The Subsumption architecture pattern

allows the design of very efficient agents. However,

Subsumption architectures are hard to build for complex

agents that have to operate in complex environments. The

MAS pattern has successfully been used in many practical

MAS.

Popular frameworks such as Jade [10] and Jack [11] have a

relative narrow view on middleware support for agent-based

systems and basically provide infrastructure for

communication or a broker infrastructure. Common

middleware services such as security, persistency, and

transactions are often considered minimally in multi-agent

system development.

Fig 1: Architecture for a simple Agent

5. MULTI AGENT SYSTEM
Multi-agent systems (MAS)[1][2][5][9] have been deployed

in several domains such as concurrent engineering, knowledge

management, communications, air traffic control/flow, space

exploration, or e-commerce. They can be used to intelligently

assist users in specialized or generic tasks. Specialized tasks

include, among others, network management. Generic tasks

include handling information (e.g. retrieving, filtering,

synthesizing), making decisions (decision support systems) or

capturing lessons learned by a project team.

5.1 The characteristics of MAS [13] [7]
5.1.1 Each agent has incomplete information or capabilities

for solving the problem and, thus, has a limited viewpoint [7]

5.1.2 There is no system global control

5.1.3 Data are decentralized

Based on the work of Durfee and Lesser, Jennings et al. and

Sycara define a MAS “as a loosely coupled network of

problem solvers that interact to solve problems that are

beyond the individual capabilities or knowledge of each

problem solver.”[13] The problem solver mentioned in the

definition is an agent. Sycara K. also describes the abilities

presented by multi-agent systems that make them an

interesting research subject.

The Prometheus methodology used to implement the

Subsumption architecture [9].

6. OVERVIEW OF THE PROMETHEUS
The Prometheus methodology [3] defines a detailed process

for specifying, designing, implementing and

testing/debugging agent-oriented software systems. In

addition to detailed processes (and many practical tips), it

defines a range of artifacts that are produced along the way.

Some of these artifacts are kept, and some are only used as

‘stepping stones’. Some of the artifacts are graphical while

others are structured text (i.e. forms).

For example, actions and percepts are captured in the system

specification phase; the detailed design phase results in plans,

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

48

events and beliefs; and the entities used in the various

overview diagrams correspond directly to the concepts.

Note that all of the artifacts are structured. This is important in

order to be able to provide tool support for the methodology.

The Prometheus methodology consists of three phases,

depicted in Fig 2.

6.1.1 The system specification phase focuses on identifying

the goals and basic functionalities of the system, along with

inputs (percepts) and outputs (actions).

6.1.2 The architectural design phase uses the outputs from

the previous phase to determine which agent types the system

will contain and how they will interact.

6.1.3 The detailed design phase looks at the internals of each

agent and how it will accomplish its tasks within the overall

system.

6.1.4 A fourth phase is implementation, which is omitted

from Figure because its details depend on the implementation

platform chosen.

The above description of these phases is intended to give a

rough feel for the overall structure of the methodology, so that

when reading the paper, where Prometheus is described in

detail, you have some idea of how the details fit into the

bigger picture.

The Phases of the Prometheus methodology

A
rc

h
ite

ct
u

ra
l d

e
si

g
n

D
e

ta
ilr

d
 d

e
si

g
n

S
ys

te
m

sp
e

ci
fic

a
tio

n Scenarios

System goals

Initial functionality

description

Actions, percepts

Interaction

diagrams

Protocols

Agent

acquaintance

Data

coupling

Message Shared

data

Agent

descriptors

Process
Agent

Overview
Capability

Capability

overview
Event

descriptors

Data

descriptions

Plan

descriptors

System

Overview

Fig 2: The phases of the Prometheus methodology [3]

The above description of these phases is intended to give a

rough feel for the overall structure of the methodology, so that

when reading the paper, where Prometheus is described in

detail, you have some idea of how the details fit into the

bigger picture.

6.2 Methodology for Optimization
Prometheus differs significantly from object-oriented

methodologies include the following:

6.2.1 The provision of a process for determining the types of

agents in the system.

6.2.2 Treating messages as components in their own right,

not just as labels on arcs. This allows a message (or an event)

to be handled by multiple plans, which is crucial to achieving

flexibility and robustness.

6.2.3 Distinguishing percepts and actions from messages,

and looking explicitly at percept processing. Agents are

situated in an environment, and it is important to define the

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

49

interface between agents and their environment. Percept

processing is often important for agents that are situated in the

real world and take their percepts from noisy devices such as

video cameras.

6.2.4 Distinguishing passive components (data, beliefs) from

active components (agents, capabilities, plans): with object-

oriented modeling, everything is modeled as (passive) objects.

Virtual

Environment

Selective

Perception
Roles & Situated

Commitiments

Situated

Agent

Protocol Based

Communation

Supports

Supports

Uses

Uses

Is engaged in

Is Situated in

Fig: 3 Situated Multi-Agent System Patterns

Fig 3 shows a general overview of the pattern for situated

multi-agent systems with the most important associations

between the proposed patterns. A situated agent is an

autonomous problem-solving body in the system. An agent

encapsulates its state and controls its behavior. The

responsibility of an agent is to achieve its design objectives,

i.e., to realize the application-specific goals it is assigned.

Agents are able to adapt their behavior according to the

changing conditions in the environment. A situated agent is a

helpful entity. The overall application goals result from

interaction among agents, rather than from complicated

capabilities of individual agents. Agents are situated in a

virtual environment. The virtual environment maintains a

virtualization of the relevant parts of the world and serves as a

coordination medium for the agents, i.e., the virtual

environment mediates both the interactions among agents and

the access to resources.

7. CONCLUSION

In this paper we have described MAS, a framework for

optimized distributed network based on the Subsumption

architecture, and shown how it is optimized for scalability,

Interoperability, Integration of security and management with

the help of Promethues mythology for designing and

implementations. The simplicity of this design has allowed us

to create several identical MAS for different issues in network

management.

8. ACKNOWLEDGMENTS
This research work is carried out with valuable support by

Graphic Era University, Dehradun, Uttarakhand, India.

9. REFERENCES
[1] Len Bass “Architecture-Based Design of Multi-Agent

Systems” Springer 2010 , ISBN 978-3-642-01063-7

[2] Michael Wooldridge (University of Liverpool) “An

Introduction to MultiAgent Systems, 2nd Edition” 2009,

Wiley Paperback ISBN 978-0-470-51946-2

[3] Lin Padgham & Michael Winikoff RMIT University,

Melbourne, Australia Developing “Intelligent Agent

Systems A practical guide” Wiley ISBN 0-470-86120-7

(HB)

[4] Mehdi Dastani, Koen V. Hindriks, John-Jules Charles

Meyer(1st Edition., 2010, XVII,) “Specification and

Verification of Multi-agent Systems” ISBN 978-1-4419-

6983-5

[5] Santhana Chaimontree, Katie Atkinson, Frans Coenen

(2011). A framework for Multi-Agent Based Clustering.

Published online 1 December2011 Springer Autonomous

Agents and Multi-Agent Systems Volume 24/2011.

ISSN: 1573-7454

[6] Gilson Yukio Sato, Hilton José Silva de Azevedo, Jean-

Paul A. Barthès(2011). Agent and multi-agent

applications to support distributed communities of

practice: a short review. Published online 05 April 2011

Springer Autonomous Agents and Multi-Agent Systems

Volume 24/2011. ISSN: 1573-7454

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

50

[7] K. P. Sycara. Resolving goal conflicts via negotiation. In

Proceedings of the Seventh National Conference on

Artificial Intelligence (AAAI-88), St. Paul, MN, 1988.

[8] V.K. Verma, R.C. Joshi, B. Xie, D.P. Agrawal,

“Combating the bloated state problem in mobile agents

based network monitoring applications”, Computer

Networks 52 (17), pp. 3218-3228, December 2008.

[9] Brooks, R. (1986). "A robust layered control system for a

mobile robot". Robotics and Automation, IEEE Journal

of [legacy, pre-1988] 2 (1): 14–23.

DOI:10.1109/JRA.1986.1087032.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=108

7032. Retrieved 2008-04-14.

[10] D. Greenwood, G. Caire, F. Bellifemine, Developing

Multiagent Systems with Jade. Agent Technology (Wiley

2007)

[11] M. Wood, S. DeLoach, in An Overview of the

Multiagent Systems Engineering Methodology. Agent-

Oriented Software Engineering I. Lecture Notes in

Computer Science, vol. 1957 (Springer, Heidelberg,

2000)

[12] S. Russell and P. Norvig. Artificial Intelligence: A

Modern Approach. Prentice-Hall, 1995.

[13] Katia P. Sycara Multiagent System (AAAI-1995)

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1087032
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1087032
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2FJRA.1986.1087032
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1087032
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1087032

