
International Journal of Computer Applications (0975 – 8887)

Volume 53– No.5, September 2012

30

 Position Sort

 Anuj Kumar
Developer

PINGA Solution Pvt. Ltd.
Noida, India

Mamta

Former IT Faculty
Ghaziabad, India

ABSTRACT

Computer science has many important concepts which are used

at a very large scale. It is frequently used by the real life and

system applications. Sorting is one of the most important

concepts in computer science. Through this paper, we are

present a new concept of sorting named “Position Sort” which

improves the sorting algorithm by reducing the swapping

operation, which directly effects and improve the running time

of algorithm. We solve the problem of sorting by various

methods. Some methods are very complex to implement. The

concept of position sort is very efficient and easy to implement.

It increases the efficiency of problem by reducing the swapping

operations. This algorithm uses the basic idea of sorting and

produces the result. It places an element at their right position

by a single swapping only.

Keywords

Complexity, Swapping, Bubble Sort, Running Time.

1. INTRODUCTION

Algorithm is a procedure to solve a specific task. We can say

that an algorithm is an idea that is used for a reasonable

program and general problem. An algorithm is a finite

sequence of explicit instructions and a well-defined

computational procedure that takes some value or set of values

as input and produces some value as a result [1]. A good

algorithm is that which satisfies every range of data set.

Sorting is the fundamental problem of computer science and

used frequently in a large variety of important applications the

sorting algorithm falls into two basic categories – comparison

based and non-comparison based [5]. The comparison-based

sorting algorithm works on the basis of comparing the

elements. It compares one element to another and then place.

The most important algorithms such as quick sort, merge sort,

heap sort, bubble sort, and insertion sort are comparison based

[2, 4]. A non-comparison based algorithm sorts an array

without consideration of pair-wise data elements. Radix sort is

a non-comparison-based algorithm that treats the array

elements as the M number system, and then works. It picks the

element according to one’s digit of numbers and arranges it.

This process is up to the maximum digit of the maximum

element.

We have some very important algorithms, some of which are

very fast but very complex to implement by a user manually.

But some algorithms are not much faster but are very easy to

implement manually. So we can say that the importance of the

algorithm depends upon its requirement. If the user has a short-

size data then he will not want to write the complex code. So

the user not the fast algorithm but he also wants a simple and

easy to use algorithm. In this paper, we are not trying to say

that the fast algorithm is useless. It is very important and also

has its own beauty and importance. Here we are trying to say

that we cannot ignore the importance of easy methods of

sorting. Some sorting algorithms work on less number of

elements, some are suitable for floating point numbers, some

are good for a specific range, some sorting algorithms are used

for huge number of data, and some are used if the list has

repeated values [5, 6].

Generally, we have written the computational complexity in

the form of the Big O-(n) notation. where ‘O’ represents the

complexity of algorithm and ‘n’ shows the total numbers of

elements in the array or list. We have two groups of sorting

algorithms: one is having O-(n2) which include the bubble,

insertion, selection, shell sort and the other having O-(n log n)

which includes the heap, merge, quick sort [7].

When we consider a comparison sorting, we examine the

comparisons between elements and write the comparisons

during iterations in terms of n and the sum of total number of

comparisons [8, 9]. Generally we have two operations in

comparison based sorting: one is “comparison” and the other

is “swapping” - But we consider the comparison as the key

and defined the complexity of sorting at the basis of total

comparisons and ignore the “swapping” operation. Here we

are trying to represent that swapping operation can be affects

to the running time. Theoretically we don't consider the

swapping but practically it affects and increase the CPU work.

Sorting is a very basic concept and important for solving other

problems, for example--, Binary Search. In this paper, we are

introducing a very easy and efficient novel sorting technique

named “Position Sort” which introduced the base method of

sorting. It is the easiest method which works at the correct

position of the element. Position sorting technique finds the

correct position of the element and place over there. After

placing the element, that element will not be involved again in

swapping operation. Position sort places the element at their

correct position after a single swapping. The theoretical time

complexity of position sort is O-(n2) but it has the better

running time than basic sorting algorithm selection and bubble

sort. Position sort is the easiest and most efficient sorting

algorithm for the compact data set. Although this algorithm is

slow for sorting the larger amount of data, yet this algorithm is

easiest, so it is not useless. If an application only needs to sort

smaller amount of data, then it is suitable to use one of the

simple slow sorting algorithms as opposed to a faster.

2. METHODS AND MATERIALS

Position sort shows a basic concept of sorting. This sorting

technique works at the correct position of the elements.

Basically, we have two types of list: one is that every element

is different to other mean total random element in the list, and

another case is that we have repetitive elements in the list or

array. Position sort can solve both the cases. We are discussing

both cases and the “Position” approach which used to perform

sorting.

2.1 Case 1: In the first case, we have distinct elements in

our list. Let us suppose if we have a pivot element and wants to

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.5, September 2012

31

place that at the correct position in the list. In the output list, all

left sided element of pivot element will be smaller than pivot

element. So we find the all lesser elements in the array and

place them after the number of lesser elements

Let us have an array of size 10 and we select the ith indexed

element. Then count all the lesser elements than the pivot

element. Suppose the total number of lesser elements is

“count”: then, we swap the pivot (ith indexed) element with the

[count+i]th indexed element. That position will be the correct

position of that pivot element. After this swapping, that pivot

element will not involve in another swapping operation.

We declare a second array of same size as long as the first array

to keep the record of correct positioning element. We initialize

the second array with 0. When any index gets its fix element,

then the same index of the second array will be updated by 1.

When we select a pivot element, then first we check the same

index of the second array. If we find 1 at that index, it means

that the pivot element is already at its correct position. So we

do not need to traverse the array and move at next element.

The position sort gives the correct and appropriate position to

the pivot element. In the average case, the position sort

performs the sorting by maximum (n-1) swapping only (where

n is the size of the list). In the worst case (reverse order), the

position sort performs the swapping by a maximum of n/2

swapping only. Other existing sorting algorithms take a lot of

swapping to solve the problem. Position sort takes the

minimum number of swapping to solve the problem.

2.2 Case 2: In the second case, we have non-distinct

elements. The procedure will remain same but if the element

which is ready to swap with pivot element is equal to the pivot

element then we will not swap but move on next element and

check if that element is not equal to pivot element then perform

swapping and so on. We are doing this because when two or

more elements are same in the list it means both will come

together and one of them is already at their fix position and

another will fix after first.

When the pivot element will get its correct position:

1.If there is no smaller element than pivot element.

2. When pivot element swap with other element then the new

position will be the correct position.

3. If swapped element is similar to the pivot element that’s

mean is swapped element has already its correct position.
Let us take an example. We have an array named list[10] of

10 random elements and second array of same size named
record[10]. First array will keep the input elements and second
array will initialize by 0 which keeps the record of correct
positioning element. First we select 0th index element (pivot
element) of list array.

Array: record

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0

Array: list

0 1 2 3 4 5 6 7 8 9

12 9 7 13 23 2 17 4 8 21

And we count the total lesser no. element than pivot element

(we have a variable named count. Initially assigned by 0 and

increment that when we find lesser element) .After all

comparisons we have the ‘5’ lesser elements then we will swap

the pivot element with 5th element from itself. It means 12 will

be swap with 2. Now the arrays will become.

Array: record

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 1 0 0 0 0

Array: list

0 1 2 3 4 5 6 7 8 9

2 9 7 13 23 12 17 4 8 21

We have completed the first iteration and place the pivot

element (12) at their correct and fix position and update the 5th

index of array “record” by 1. We place 12 at their appropriate

position by just one swapping. We colored 12 by red color. It’s

just a symbol of fix element. And we colored 5th index of

array “record” by red color and update by 1. It means 5th index

of array “list” has found its fix element.

Now again we selected the 0th index element as pivot element

and repeat the procedure. Our pivot element will be 2 but when

it compares to another elements then we find that no element is

lesser. It means the pivot element is already its appropriate

position. Now we will move at next element.

Array: record

0 1 2 3 4 5 6 7 8 9

1 0 0 0 0 1 0 0 0 0

Array: list

0 1 2 3 4 5 6 7 8 9

2 23 7 13 9 12 17 4 8 21

This procedure will running till all elements gets their

appropriate position.

Let’s see a complete solution in a single glance.

Array: record

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

Array: list

0 1 2 3 4 5 6 7 8 9

12 9 7 13 23 2 17 4 8 21

2 9 7 13 23 12 17 4 8 21

2 9 7 13 23 12 17 4 8 21

2 23 7 13 9 12 17 4 8 21

2 21 7 13 9 12 17 4 8 23

2 8 7 13 9 12 17 4 21 23

2 13 7 8 9 12 17 4 21 23

2 17 7 8 9 12 13 4 21 23

2 4 7 8 9 12 13 17 21 23

2 4 7 8 9 12 13 17 21 23

2 4 7 8 9 12 13 17 21 23

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.5, September 2012

32

3. PSUEDO-CODE OF ALGORITHM

Algorithm Position_sort (list[], record[], n-1)

1. While i = 0 to n-1

2. If record[i] != 1 then

3. count = 0, j = i+1

4. While j < n

5. If list[i] > list[j] then

6. Count++

7. End if

8. J++

9. End while

10. k = 0 // this variable will increase the index if

the pivot element and swapped element is same it

will increase the index till when it does not find the

random element or end of array.

11. If count > 0 then

12. While k to n-1

13. If list[i] != list[i+count+k]

14. Swap the list[i] by list[i+count+k]

15. record[i+count+k] = 1

16. Break;

17. End if

18. Else

19. record[i+count+k]=1

20. k++

21. End else

22. End while //(While k to n-1)

23. Else // (If count > 0)

24. record[i] = 1

25. i++

26. End else

27. End if //(If record[i] != 1)

28. Else // (If record[i] != 1)

29. i++

30. End else

31. End while //Outer While Loop

A question can be raised that why we are using the second

array in this method the answer is “reducing the comparisons

and increasing the efficiency of algorithm”. We are saying that

“Position Sort” gives the correct position to an element in a

single iteration. It means the pivot elements will traverse the

whole array maximum n-1 times. The array “record” saves the

unnecessary comparisons. The name of second array is

“record”. Its name is showing its working mean its name is

saying that it is keeping the record of any operation. Yes this

array is keeping the record of those elements which has got its

correct position. When any element gets its correct position

then we update the same index of array “record” by 1 (initially

all index of array “record” have 0).For example if after

comparing the elements of array the pivot element swaps with

5th element. It means after swapping that pivot element gets its

fix position and it has no need to traverse again the array ever.

Then we update the 5th index of array “record” by 1. Every

pivot element checks the same index of “record” first. If it finds

1 then it will not compare to other elements and the control

move to next element. For example if the 5th indexed element

of array “list” is our pivot element then first it will check the 5th

index of “record” if it finds 1 then the control move at next

element. It means that element is already its fix position and has

no need to traverse the array.

3.1 Execution through Flow Chart

NOTE: in this flow chart we have use A instead of name

“list”, and B instead of “record”.

4. COMPLEXITY AND EFFICIENCY

In the recent past, there has been a growing interest on

enhancements to sorting algorithms that do not have an effect

on their asymptotic complexity but rather tend to improve

performance by enhancing data locality [7][10] [11].

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.5, September 2012

33

Position Sort is a comparison based sorting algorithm. Position

sort is the easiest way of sorting. If we are discussing the term

complexity Then we think what is the purpose of discuss this.

Actually the term complexity describes the efficiency of

algorithm. Mean that how much work has been done by CPU.

Basically we show the complexity in terms of notation. The

most important notation is O (big-Oh) notation. We have 3

most popular notations that is O (big-Oh) notation, Θ (theta)

notation, Ώ (omega) notation.

STATEMENTS COS

T

MAX

EXEC.

TIME

While i = 0 to n-1

C1 n+1

 If record[i] != 1 Then C2 2n-1

 count = 0, C3 n

 j = i+1 C4 n

 While j < n C5 (n).(n)

 If list[i] > list[j] Then C6 (n).(n-1)

 Count++ C7 (n).(n-1)

 J++ C8 (n)(n-1)

 k = 0 C9 n

 If count > 0 Then C10 n

 While k to n-1 C11 n

 If list[i] != list[i+count+k] C12 n

 temp = list[i] C13 n

 list[i]=list[i+count+k] C14 n

 list[i+count+k]=temp C15 n

 record[i+count+k] = 1 C16 n

 break; C17 n

 Else //If list[i] != list[i+count+k] C18 n-1

 record[i+count+k]=1 C19 n-1

 k++ C20 n-1

 Else //If count > 0 C21 .

 record[i] = 1 C22 .

 i++ C23 .

Else // If record[i] != 1 C24 n-1

 i++ C25 n-1

 TABLE: maximum no. of execution in every possible

case

Note: These are the maximum iterations for every possible

situation.

C1(n+1) + C2(2n-1) + C3(n) + C4(n) + C5(n
2) + C6(n).(n-1) +

C7(n).(n-1) + C8(n)(n-1) + C9(n) + C10(n) + C11(n) + C12(n) +

C13(n) + C14(n) + C15(n) + C16(n) + C17(n) + C18(n-1) +

C19(n-1) + C20(n-1) + C21 + C22 + C23

 + C24(n-1) + C25(n-1)

Where = 1 + 2 + 3 + . . . (n-1)

 = ((n-1).n) / 2 = (n2 – n) / 2

T (n) = C1.n + C1 + 2.C2n – C2 + C3.n + C4.n + C5.n
2 + C6.n2 +

C7.n
2 - C7.n + C8.n

2 – C8.n + C9.n + C10.n + C11.n + C12.n +

C13.n + C14.n + C15.n + C16.n + C17.n + C18.n – C18+ C19.n –

C19+ C20.n – C20 + C21.n
2/2 – C21.n/2 + C22.n

2/2 – C22.n /2+

C23.n
2/2 – C23.n/2 + C24.n – C24 + C25.n – C25

T (n) = (C5 + C6 + C7 + C8 + C21/2 + C22/2 + C23/2).n2+ (C1 +

2.C2 + C3 + C4 – C7 - C8 + C9 + C10 + C11 + C12+ C13 + C14 +

C15 + C16 + C17 + C18 + C19 + C20 + C21\2 + C22\2 + C23\22 +

C24 + C25). n - (C2 + C18 + C19 + C20 + C24 + C25- C1).

LET C5 + C6 + C7 + C8 + C21/2 + C22/2 + C23/2 = A,

C1 + 2.C2 + C3 + C4 – C7 - C8 + C9 + C10 + C11 + C12+ C13 +

C14 + C15 + C16 + C17 + C18 + C19 + C20 + C21\2 + C22\2 +

C23\22 + C24 + C25= B,

C2 + C18 + C19 + C20 + C24 + C25- C1= C

SO T (n) = A. n2 + B. n - C

So the asymptotic running time will be:

 T (n) = Ө (n2)

4.1 Best Case:

T (n) = C1 (n+1) + C2 (2-1) + C3 (n) + C4 (n) + C5 (n2) + C6

(n2) – C6 + C8 (n2) – C8+ C10.n – C10+ C21.n – C21 + C22.n –

C22 + C23.n – C23 + C24.n – C24 + C25.n – C25

= n2 (C5 + C6 + C8) + n (C1 + C2 + C3 + C4 + C10 + C21 + C22 +

C23 + C24 + C25) - (C2 + C6 + C8 + C10 + C21 + C22 + C23 + C24

+ C25 – C1)

LET

 C5 + C6 + C8 = A

C1 + C2 + C3 + C4 + C10 + C21 + C22 + C23 + C24 + C25 = B

C2 + C6 + C8 + C10 + C21 + C22 + C23 + C24 + C25 – C1= C

SO T (n) = A. n2 + B. n - C

Thus, here in best-case, which the input array is already sorted.

In the best case the variable “count” will never increase so the

statement no. 10 will never be true. The complexity of

execution time of an algorithm shows the lower bound and it is

asymptotically denoted with Ω. Therefore by ignoring the

constant a, b, c and the lower terms of n, and taking only the

dominant term i.e. n2, then the asymptotic running time of

Position sort will be Ω(n2) and will lie in of set of asymptotic

function i.e. Ө(n2). Hence we can say that the asymptotic

running time of Position Sort will be:

 T (n) = Ө (n
2
)

4.2 Best Case:

T (n) = C1 (n+1) + C2 (3n\2) + C3 (n) + C4 (n) + C5 (n2) + C6

(n2) – C6 +C7 (n
2\4) + C8 (n2) – C8+ C10.n – C10+ C13(n\2) +

C14(n\2) + C15(n\2) + C16(n\2) + C21(n\2) + C22(n\2)+ C23(n\2)

+ C24(n\2) + C25(n\2)

T (n) = n2. (C5 + C6 + C7\4 +C8) + n. (C1 + 3.C2\2 + C3 + C4 +

C10 + C13\2 + C14\2 + C15\2 + C16\2 + C21\2 + C22\2 + C23\2 +

C24\2 + C25\2) - (C6 + C8 + C10 - C1)

LET

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.5, September 2012

34

 C5 + C6 + C7\4 +C8 = A,

 C1 + 3.C2\2 + C3 + C4 + C10 + C13\2 + C14\2 + C15\2 +

C16\2 + C21\2 + C22\2 + C23\2 + C24\2 + C25\2 = B,

C6 + C8 + C10 - C1 = C

T (n) = A. n2 + B. n - C

Thus here in worst-case, which the input array is sorted in

reverse order[1]. The complexity of execution time of an

algorithm shows the upper bound and is asymptotically

denoted with Big-O. Therefore by ignoring the constant a, b, c

and the lower terms of n, and taking only the dominant term

i.e. n2 , then the asymptotic running time of Position sort will

be of the order of O(n2) and will lie in of set of asymptotic

function i.e. Ө(n2). Hence we can say that the asymptotic

running time of Position sort will be:

 T (n) = Ө (n2)

5. COMPARITIVE STUDY

The basic concept of position sort count the lesser elements

and swap with pivot element and this procedure continue till

last element. Position sort says after swapping operation the

pivot element get right position. Now the second array is using

this concept and having the record of placed element. Second

array also keep the record of that element also which has no

lesser element also. With the help of second array we can

prevent the useless comparisons so that the running time will

improve. Mean which element has already placed at correct

position then why should we go to comparison for those

elements.

 This running time has taken at different-2 data sizes..

We concentrate on the worst-case running time that is longest

for any size of input data [1]. Although we can’t find the exact

running time because it may be varies. The running time could

change according to operating system, processors or compiler

also. This running time has been taken by “C free” compiler.

And used the header file “#include<time.h>” and use this

statement runtime= ((t2-t1) / (double) CLOCKS_PER_SEC);

here t1 and t2 is the initial and ending run time respectively.

With the help of this we find the running time in milliseconds.

We are representing the comparative study of running time

between non-recursive comparison based sorting algorithms at

worst case.

 Fig 2 – Running Time of Various Algorithms

We found the no. of swapping on different data sizes. And

found huge differences. As the consult of the worst case, the

Position Sort takes the lesser swapping in comparison to other

sorting algorithms to perform the sorting operation. Position

sort takes the n\2 swapping in the worst case. We show the

comparisons of swapping of Position sort, selection sort and

bubble sort. We don’t consider the insertion sort here because

insertion sort does not swap the elements during the process.

Position sort and other these algorithms have a huge difference

that’s why Position sort take benefit and perform the process

faster.

 Fig 3 – No. of Swapping of Various Algorithms

6. CONCLUSION

We are presenting a unique concept of sorting named as

“Position Sort” this method is easy to use, reduce the swapping

operation and improve the running time. The concept of

Position sort is the easiest and basic concept for performing the

sorting. Position sort use the maximum (n-1) swapping to solve

the problem. It places the element at its correct position by a

single swapping only. We have tried to show the role of

swapping in efficiency of sorting algorithms. Basically we

consider only no. of comparisons as a key. But we should

never forget about swapping also. It helps to increase the

efficiency of algorithm by decreasing the no. of swapping.

In Future we intended to enhance the running time by reducing

the comparisons.

7. REFERENCE

[1]. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein."Introduction to Algorithms" MIT Press,

Cambridge, MA, 3rd edition,

[2]. Frank MC (2004). Data Abstraction and Problem Solving

with C++. US: Pearson Education, Inc .

[3]. Robert S (1998). Algorithms in C. Addison-Wesley

Publishing Company, Inc.

[4]. Box R. and Lacey S., “A Fast Easy Sort,” Computer

Journal of Byte Magazine 1991.

[5]. Knuth E., The Art of Computer Programming Sorting and

Searching, Addison Wesley, 1998.

0 1 2 3 4

New Position Sort

Insertion Sort

Selection Sort

Bubbe sort

TIME IN Milli Sec.

D
A

TA
 S

IZ
E

RUNNING TIME IN Milli Sec

25,000 20,000 15,000 10,000 5,000 1,000

0 200000000 400000000

Position Sort

Selection Sort

Bubble Sort

NO. OF SWAPPINGS

COMPARISONS BETWEEN SWAPPINGS

25000 20000 15000 10000 5000 1000

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.5, September 2012

35

[6]. Flores, I. "Analysis of Internal Computer Sorting". J.ACM

7, 4 (Oct. 1960),

[7]. Soubhik Chakraborty, Mausumi Bose, and Kumar

Sushant, A Research thesis, On Why Parameters of Input

Distributions Need be Taken Into Account For a More

Precise Evaluation of Complexity for Certain Algorithms.

[8]. Lipschutz, “Data Structure with C”schaum Series, Tata

McGraw-Hill Education.

[9]. V.Estivill-Castro and D.Wood."A Survey of Adaptive

Sorting Algorithms", Computing Surveys,

[10]. Williams, J.W.J. "Algorithm 232: Heap sort". Comm.

ACM 7, 6.

[11]. ANDERSSON, A. and NILSSON, S. 1994. "A New

Efficient Radix Sort". In the Proceeding of the 35 Annual

IEEE Symposium on Foundation of Computer Science

(1994).

