
International Journal of Computer Applications (0975 – 8887)

Volume 53– No.5, September 2012

12

Enhancement and Elimination of Roadblocks in
Automation Testing Tool Selenium RC

Nidhika Uppal
AP, IT DEPARTMENT

GIMET,Amritsar

Vinay Chopra
AP,CSE DEPARTMENT

DAVIET,Jalandhar

ABSTRACT

Selenium is a suite of tools used in testing web applications.

In this paper Firstly we described the selenium RC does not

support model dialog and its effect when modal is opened, the

accessibility to parent window is blocked and similarly

window switching. Secondly how we enhance and to

overcome this limitations we had created some methods. After

updated in selenium server the test execution continue even

after opening of the model dialog and window switching.

When a popup opens another popup, it becomes necessary

that each window should be identified uniquely in order for

selenium to identify them correctly. It needs to move its

handle across windows to perform its operation.

Keywords

Selenium RC(remote control)

1. INTRODUCTION

Selenium suite of tools is used for web application automation

testing across all platforms. Selenium tests can be written in

many programming languages and testing frameworks which

can run on many browsers and operating systems and

automatically validate functionality on a single click.Selenium

IDE is used to create test cases quickly in Firefox and

Selenium Remote Control runs test cases in multiple browsers

and platforms and Selenium Grid is used to run tests on

different servers. Selenium supports many commonly used

programming languages like Java, Ruby, Groovy, Perl,

Python and PHP and can be deployed on Windows, Linux and

Mac platforms[1].Selenium is a framework of tools that

enables development of test automation for web-based

applications, compatible across various browsers. Selenium

has almost all the features required to automate tests for web

based applications and more from usability perspective. Open

source Test Automation tool for web applications, javascript

based.Selenium tests run directly in a browser, just as real

users do.One of Selenium’s key features is support the tests

on multiple browser and operating systems[2].Selenium is a

robust set of tools that supports rapid development of test

automation for web-based applications. Selenium provides a

rich set of testing functions specifically geared to the needs of

testing of a web application. These operations are highly

flexible, allowing many options for locating UI elements and

comparing expected test results against actual application

behaviour .

1.1Selenium-RC:

Selenium Remote Control offers a more flexible and more

complex approach to create run browser tests.With selenium

RC it is possible to run tests inside every javascript

compatible browser using wide range of programming

languages. Your tests issue commands which the client library

sends to the server. The server then 'runs' your actions for you

in the browser and reports the results back to your client.

Using Selenium-RC allows you to write automated tests in

any supported programming language. Tests written in this

way allow you to use standard programming practices to

make them easy to maintain, robust and easy to collaborate on

as a team. Selenium RC is a server, written in Java, that

accepts commands for the browser via HTTP. RC makes it

possible to write automated tests for a web application in any

programming language, which allows for better integration of

Selenium in existing unit test frameworks[3]. To make writing

tests easier, Selenium project currently provides client drivers

for PHP, Python, Ruby, .net, PERL and Java. The Java driver

can also be used with JavaScript. A new instance of selenium

RC server is needed to launch html test case – which means

that the port should be different for each parallel run.

However for Java/PHP test case only one Selenium RC

instance needs to be running continuously[4].

Selenium RC components are:

1.1.1 Selenium Server

Selenium Server receives Selenium commands from your test

program, interprets them, and reports back to your program

the results of running those tests.Selenium-Core is a

JavaScript program, actually a set of JavaScript functions

which interprets and executes Selenese commands using the

browser’s built-in JavaScript interpreter. Selenium Server

receives Selenium commands from test program, interprets

them, and reports back to the program the results of running

those tests.The RC server bundles Selenium Core and

automatically injects it into the browser. This occurs when the

test program opens the browser (using a client library API

function). Selenium-Core is a JavaScript program, actually a

set of JavaScript functions which interprets and executes

Selenese commands using the browser’s built-in JavaScript

interpreter. The Server receives the Selenese commands from

the test program using simple HTTP GET/POST requests.

This means any programming language can be used, that can

send HTTP requests to automate Selenium tests on the

browser[4].

1.1.2 Client Libraries

Client libraries which provide the interface between each

programming language and the Selenium RC Server. The

client libraries provide the programming support that allows

you to run Selenium commands from a program of your own

design. There is a different client library for each supported

language. A Selenium client library provides a programming

interface (API), i.e., a set of functions, which run Selenium

commands from your own program. Within each interface,

there is a programming function that supports each Selenese

command[4].

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.5, September 2012

13

2. PROBLEM FORMULATION WITH

SELENIUM RC
Selenium works on Javascript. It needs to move its handle

across windows to perform its operation. When

showModalDialog is called the javascript gets suspended for

the parent. Selenium whose handle is still pointing the parent

window also gets suspended. As a result all the successive

commands in Selenium script ultimately get suspended and

automation gets blocked. To retain the normal flow of the

selenium the only solution left is to bypass showModalDialog

call with normal ‘window.open’ function call. To pass the

argument from parent to modal we need to save the arguments

in a variable on the parent window. Then we will inject a code

on the modal window that will read this value from the parent

and save it in ‘window.dialogArguments’ variable.If we open

the window as non-modal, the biggest challenge will be to

pass the return value from the modal back to the parent

window. This is because when we open a window using

‘window.open’ commands the javascript do not wait for the

return value and soon comes out of the function without

performing its intended operation after retrieving the return

value from the modal.[2] To overcome this we will call the

instruction (probably a button click) that calls the

showModalDialog function twice. First time when we do a

click it will open the non-modal dialog and comes out of the

function. On the second click it will use the return value that

was saved by the non-modal dialog to perform post-

showModalDialog operations. All the operations to be

performed on the popup window will go in between the first

and the second clicks. Internet Explorer has provided

additional function, showModalDialog, to deal with Modal

type windows. When we open a window using

showModalDialog the java-script execution gets suspended

till the window gets closed.[3] With this feature in place

parent window can set itself under wait state expecting return

value from the popup window. The popup window before

closing itself needs to set its returnValue property, which will

be used by the parent window.The parent window opens up a

modal window and waits for the modal to return some value.

The user enters some text in textbox on the modal window

and clicks the link.

3. IMPLEMENTATION IN BLOCKING

OF SELENIUM RC
A) To handle all modal dialog windows , Currently selenium

RC does not support modal dialogs, add support for modal

dialogs.

For Modal Popup problem: Opening a modal pop up in

Firefox by using window.showModalDialog suspends

execution of test as java script waits for popup to be closed by

user and test being executed by the user stops. To overcome

this problem we need to overrid showModalDialog function to

open an separate window with URL supplied to Modal dialog

page. This is achieved by creating a function to convert call to

showModalDialog into open new window.

1. Updated selenium firefox launchers to do following:

a. Updated Mozilla browser bot to open a

new window every time modal popup is

opened.

b. Page to be opened in modal window will

now be opened in new window.

c. As page is opened in new window the test

execution continues even after opening of

the popup.

B) To enhance browser window switching ,Selenium RC has

limitation in switching windows add functionality to switch

windows properly.

 Window switching API has been updated to implement new

functions to selectwindows by giving sequence number in

which window was opened, or by using selectNewWindow to

open new open window. Window switching API will provide

more functions than just one function provided by selenium,

this will save time and maintenance of scripts with changing

window identifiers like window title, window name or

window id that are used by the selenium in selectWindow

function to identify windows for redirecting test steps. With

the new function need of updating scripts every time new

window properties are changed will not be required and

maintenance efforts will be reduced.

Changes done to achieve switching window:

1. Implemented a new method in selenium that

changes the way of window switching.

2. Created method to check window and select a

window with defined sequence.

3. Created a method for switching to new open

window.

4. Added more flexibility and reduced risk of typing

mistakes while typing long window names.

 Implementation details:

1. Updated selenium server and added functions in

selenium server files to do following:

a. Select a window by sequence in which it

was opened.

b. Switch to new window by using command

“SelectNewWindow”.

c. Updated selenium server files to handle

switching with error handling.

2. Multiple modals : When a popup opens another

popup, it becomes necessary that each window

should be identified uniquely in order for selenium
to identify them correctly.

4. CONCLUSION

In this paper describe the flaws in Selenium RC tools, find

workaround to those and implement them in selenium.

Selenium RC does not support modal dialogs, add support for

modal dialogs after creating some methods the child window

gain focus with parent window. So both windows can

activated simultaneously. In selenium RC also not support

window switching to add that functionality we had created

some methods to remove this limitations so ,that we can run
both windows parallel.

5. REFERENCES
[1] Selenium Documentation release 1.0, 06 Aug, 2010.

[2] Selenium http://en.wikipedia.org/wiki/Selenium

[3] http:// open2test.org

[4] P.Nirmaladevi, “Effective Automating testing with web

application Using Selenium”,International Journal of

Communications and Engineering , 2012

[5] prasanth yalla ,“ framework for testing web application

using selenium testing tool with respect to integration

testing” ”,International Journal of Computer science and

technology , 2011

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.5, September 2012

14

[6] Eun Ha Kim ,Jong Chae Na, and Seok Moon Ryoo , “

Implementing an Effective Test Automation Framework

”,33rd Annual IEEE Computer Software and

Applications Conference ,2009

[7] Ali Mesbah, Arie Van Deursen,“ Invariant-Based

Automatic Testing of Ajax User Interfaces ”, Proceeding

of the 31st ACM/IEEE International Conference on

Software Engineering , 2009

[8] Mark Grechanik, Qing Xie, and Chen Fu, “ Maintaining

and Evolving GUI-Directed Test Scipts ” 31st

International Conference on Software

Engineering(ICSE’09),2009

[9] Zeng Wandan, Jiang Ningkng, Zhou Xubo “ Design and

Implementation of Web Application Automation Testing

Framework ” Ninth International Conference on Hybrid

Intelligent Systems,2009

[10] Leckraj Nagowah and Purmanand Roopnah “ AsT-

ASimple Automated Syetm Testing Tool ” 3rd

International Conference on Computer Science and

Information,2010

