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ABSTRACT 

In this paper, we evaluate three different subcategories of 

image matching algorithms. We consider hierarchical 

matching, wavelet-based localized correlation and 

multiresolution subregioning. The importance of this 

evaluation stems from the fact that these algorithms are all 

somehow based on a multiresolution scheme, but exhibit 

different performances when dealing with featureless image 

pairs, noisy image pairs, or when tuned to different 

parameters, e.g. the number of resolution levels and the size 

of the correlation size. We also consider the use of different 

correlation functions. A data set has been built using random 

dots stereograms, with a full range of disparities and a 

controlled amount of noise. The algorithms performances are 

benchmarked in terms of accuracy and global coherence of the 

disparity maps. 
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1. INTRODUCTION 
Human vision provides information regarding surrounding 

objects and allows taking actions based on the environment. 

Human vision not only provides information on objects 

features, like color and texture, but also to perceive shape of 

objects, their location with respect to each other and to the 

observer, their motion, and so forth. One of the toughest tasks 

in machine vision is the 3D reconstruction of a scene from 

one or several images. We are particularly interested in the 

case of stereo where two or three cameras observe a scene. 

Stereo vision is a fundamental precursor to 3D reconstruction, 

robot navigation, and obstacle avoidance to name a few [2,9]. 

The technique is based on the use of two cameras on a stereo 

rig that observe a scene. The scene projections on the cameras 

are not exactly identical since the cameras do not have the 

same spatial location. This results in horizontal and vertical 

shifts, called disparity that encode objects' depth: a farther 

object will have a small shift while a closer object will 

produce a large shift in the stereo images. The key aspect of 

3D vision is the stereo image matching to produce disparity 

maps (maps that contain spatial shifts for each pixel). 

However, disparity maps do not allow the knowledge of the 

3D structure of the observed scene [10]. For this, one needs to 

know the stereo rig parameters, namely, image size, pixel 

size, focal length, relative orientation of stereo cameras and 

the baseline distance between the cameras. 

By matching the stereo images, we can compute disparities 

(horizontal and vertical image shifts of corresponding visual 

features). Using the disparity maps along with stereo rig 

parameters, it is straightforward to calculate the Euclidean 

structure of the scene. The major problem here is the 

matching of the stereo images to build disparity maps and the 

recovery of accurate stereo rig parameters, namely extrinsic 

and intrinsic camera parameters, that could be determined 

through a calibration procedure. 

Image matching has been an active research topic in the last 

three decades and several authors have proposed approaches 

and algorithms. Most of these approaches are based on 

matching visual features, represented as contours delimiting 

objects, regions describing objects or areas, or points 

representing image pixels and encoding the luminance of the 

objects in the scene. The proposed algorithms in the literature 

use optimization as a resolution method, the gray level 

correlation, correlation of discrete features such as edges and 

regions, wavelet decomposition, hierarchical Burt’s pyramid 

(based on Gaussian or square window) to name a few [13]. 

Some other works suggested that the inference of 3D structure 

and disparity is independent of the existence of such visual 

features, and the disparity is only related to structural 

relationship between stereo images. Among these methods, 

we cite cepstral, phase-based, and phase difference-based 

approaches [4—6]. While these approaches are able to 

produce coherent disparity maps with sub pixel accuracy, they 

do not use visual features as a matching feature, either explicit 

or implicit, except maybe for the phase correlation approach, 

where phase might be considered as an implicit visual feature. 

Moreover, these approaches have been used to successfully 

match random dot stereograms (RDS). Most importantly, 

certain algorithms are noise sensitive by design, while others 

need to be evaluated in presence of controlled noise. 

In this work, we want to benchmark the performances of 

certain visual features-based algorithms [3,7,11]. We examine 

how visual features-based algorithms deal with RDS, since 

RDS exhibit a repetition of random patterns that could 

mislead the matching algorithm. Finally, we want to assess 

the impact of noise on these algorithms as well as algorithms' 

parameters such as the correlation window size and the 

correlation function. We selected three algorithms pertaining 

to different approaches: hierarchical matching [1], 

multiresolution sub-regioning and dynamic programming [8], 

and a wavelet-based localized correlation function matching 

[12]. 

2. MATCHING ALGORITHMS  
The algorithms that will be considered in this study are: 

hierarchical matching (HM), multiresolution subregioning-

based matching (MSM), and wavelet-based localized 

correlation function matching (WLCM). 
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Hierarchical matching (HM) is based on the construction, for 

each image, of a pyramid of images: the top of the pyramid 

corresponds to the lower resolution, while the base of the 

pyramid is higher resolution image corresponding to the 

original image. Without loss of generality, one can use a 

Gaussian window or any other window to form the pyramid. 

Starting from the top of the pyramid, lower resolution images 

are matched. The disparity map obtained is used in the next 

resolution to verify and to predict new matching. This process 

is repeated until the full resolution images at the base of the 

pyramid are matched, hence, obtaining the final disparity 

map. 

The multiresolution subregioning-based matching (MSM) 

consists of trying a range of disparities and using several 

correlation windows. For each disparity, a correlation window 

of a given size is used to compute a correlation function. A 

correlation cube is built for each window size. The width and 

height of the cube are identical to those of the images to be 

matched. The depth axis corresponds to the disparity. Each 

vertical slice of the cube corresponds to correlation scores 

obtained at a given disparity. A horizontal slice of the cube 

shows, for an image line, the correlation scores at different 

disparities. The final disparity map is obtained by finding for 

each image line the smoothest path having the maximum 

correlation scores at each image location. 

The wavelet-based localized correlation function matching 

algorithm (WLCM) decomposes both stereo images using the 

Laplacian of Gaussian wavelet (LoG). A correlation kernel is 

also defined according to the LoG wavelet. The correlation 

kernel takes the image information at all scales to compute the 

correlation score. A simpler description of this algorithm is 

the construction of a vector for each pixel; the vector contains 

the multiscale information computed by the wavelet 

decomposition. The scalar product scores are used as a 

confidence score to validate the matching of two given pixels. 

3. EVALUATION PROTOCOL 

3.1 Noiseless Random Dots Stereograms 
RDS are generated as random dots to describe surfaces. 

Surfaces may be shifted to create disparities. Complex depth 

planes can be constructed while not having any visual 

features. The matching of such RDS is possible by human 

subjects: the observer squints to superimpose both images and 

then focuses at several depths to adjust the correct depth at 

which the hidden structure in the RDS comes up. In the figure 

below, we show how a stereogram is built: the dark square 

represents a surface on a background; the square is positioned 

at different locations in both images (left and right). 

One important byproduct of using random dots stereograms is 

the exact knowledge of the disparity map, also called 

reference disparity map. The reference disparity map is used 

to determine the accuracy and the correctness of the computed 

disparity maps by the algorithms under consideration. 

The RDS used in this study are 256x256 pixels.  The structure 

embedded within the streogram is 64x64 pixels.  Each RDS is 

built by shifting the structure (every pixel making the 

structure) by a constant shift (the disparity). We produced 17 

stereograms representing disparities from 4 to 20 pixels. 

 

Fig 1: Construction of a random dot stereogram. 

 

Fig 2: Left and right hand side images of a stereogram. 

 

3.2 Noisy Random Dots Stereograms 
Similarly, for each disparity, we produced noisy stereograms. 

The noisy stereogram is produced by adding a white Gaussian 

noise to one of the images of the stereo pair. The figure below 

shows a stereogram with the right image corrupted with 

noise—note the photometrical imbalance between the images. 

 

Fig 3: RDS with the right image corrupted with white 

Gaussian noise. 

3.3 Evaluation Criteria 
In order to evaluate the disparity estimation algorithms, we 

consider the absolute error between the computed disparity 

map and the reference disparity map 
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where       is the disparity map size. Finally, the average 

relative error, that is given by 
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4. EXPERIMENTAL RESULTS 
The experimentations consist of evaluating the above 

mentioned criteria, and particularly  

1. the average absolute error; 

2. the average relative error;  

3. the percentage of correct matches (error less than 

one pixel. 

We consider both noisy and noiseless RDS in the 

experimentations. We also consider RDS with disparities 

varying from four to 16 pixels. The correlation window size 

have been varied from 3x3 to 15x15. The correlation 

functions that have been considered are the sum of absolute 

differences (SAD), the sum of squared differences (SSD), and 

the normalized cross-correlation (NCC). 

Figures 4, 5, and 6 show the average relative error when SAD, 

SSD, and NCC are used. For plot presented in this part, the 

following concepts are used.  It clearly visible that the error is 

significant when a small window is used in presence of large 

disparities, which confirms the common knowledge in the 

field. Otherwise, there is a minimum in the error surface when 

the window size corresponds to the preponderant disparity in 

the stereo pair. Finally, the multiresolution subregioning 

matching algorithm (MSM) produces a smoother error surface 

indicating a stability with respect to the fluctuations of the 

window size and the disparity. 

Figures 7 and 8 show the average absolute error for SAD and 

NCC correlation functions. The absolute error varies linearly 

with respect to the disparity. However, it does not vary with 

respect to the window size. Almost no differences are reported 

between SAD and NCC absolute errors, although NCC 

provides better results than SSD in terms of relative error; 

similarly, SSD provides better results than SAD in terms of 

relative errors.  

Figure 9 shows the percentage of correct matches for different 

algorithms using different correlation functions. Generally 

speaking, the trend is the same: the percentage of correct 

matches degrades when small window sizes are used in 

presence of large disparities. Otherwise, the percentage of 

correct matches varies little or not at all. Window sizes around 

13x13 proved successful in retrieving the correct disparity and 

the maximum percentage of correct matches is nearly 89%. 

The results are shown for stereo pairs with 20% of the image 

pixels corrupted with noise.  

Finally, it is noted that MSM algorithm gives better results 

when used with the normalized cross-correlation, whereas, the 

HM and WLCM algorithms produce their best estimates with 

and SSD. 

 

 

 

 

 

 

Fig 4: Average relative error SAD.  

 

 

 

Fig 5: Average relative error SSD. 
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Fig 6: Average Relative error NCC. 

 

Fig 7: Average absolute error SAD. 

 

Fig 8: Average absolute error NCC. 

 

Fig 9: Percentage of correct matching. 
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5. CONCLUSION 
In this paper, we evaluated the performance of some stereo 

matching algorithms. An experimental protocol for producing 

and comparing their performances has been put in place. The 

evaluation protocol allowed us to characterize the behavior of 

each algorithm: accuracy, robustness to noise, robustness to 

algorithm parameters. We used a data set for noiseless and 

noisy RDS, with disparities varying from four up to 16 pixels. 

This study shed more light on the understanding of some of 

most important matching techniques. 

Although, in this work, we considered stereograms 

contaminated with noise, extension of this work might 

consider other degradations such as scale change, difference 

in contrast, and camera imbalance effects. This will help 

better benchmarking the performances of stereo matching 

algorithms in the lack of visual features. 
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