
International Journal of Computer Applications (0975 – 8887)

Volume 53– No.4, September 2012

23

Simultaneous Evolution of Architecture and Connection
Weights in Artificial Neural Network

G. V. R. Sagar
Assoc. Professor,

G.P.R. Engg. College.
Kurnool AP, 518007, India.

S. Venkata Chalam, Ph.D
Professor,

CVR Engg. College,
Hyderabad AP, India

ABSTRACT

The important issue for Designing architecture isthe evolution

of Artificial Neural Network (ANN). There is no systematic

method to design a near-optimal architecture for a given

application or task. The pattern classification methods are

used to design the neural network architectures and efforts

towards the automatic design of network topologies,

constructive and destructive algorithms can be used. In the

proposed work the optimization of architectures and

connection weights uses the evolutionary process. A single-

point crossover is applied with selective schemas on the

network space and evolution is introduced in the mutation

stage so that an optimized ANNs are achieved.

Keywords: Artificial neural network, topology mutation,

schema theory

1. INTRODUCTION

Designing architecture is an important issue in the evolution

of ANN. Constructive and destructive algorithms can be used

[1] in design of network architectures. The constructive

algorithm begins with a small network, and hidden nodes,

layers and connections are added to the network dynamically

[2], but in the destructive algorithm starts with large network

and hidden nodes and connections are deleted to construct the

network dynamically [3]. The above two algorithms are called

as incremental and decremental algorithms. Yao [4], has

pointed out that the performance method of equation, MSE,

Learning speed, reduced complexity about architectures are

represented as a search problem in the architecture space.

Each performance level of all these, forms a surface in the

architecture design space. Finding the optimal architecture

design is the highest point on this surface. There are several

surface methods considered by using EAs for finding the best

network topology which gives the better solution rather than

incremental and decremental algorithms. Network topology

characteristics presented by miller [5] refer to the surface of

possible solutions.

2. ENCODING METHODS:

The efficiency of feed-forward network depends on the

topology of the networks size and structures. The EAs have

been used two major ways for searching network topologies

i) Direct encoding.

ii) Indirect encoding.

2.1 Direct Encoding Method:
In this process the direct transformation of genotypes into

phenotypes [8], [9] [17], [18], and the connection topology is

represented by means of a adjacency matrix and many

examples of this method are given in [5], [6], [10]. This

encoding is easy to implement, but it does not scale well. As a

consequence, the training the entire populations by using

Back-Propagation method can be extremely slow.

2.2 Indirect Encoding Method:
The scalability problem in direct method will be overcome by

this method. This method requires a considerable effort for

neural network decoding. But sometimes, the network can be

pre-structured architectures, which makes the search space is

very much smaller. In this method some network parameters

like number of layers, the size of the layers, the bias etc. may

also defined for optimal architectures.The genetic

programming [15], [16] has be changed in order to work with

graph programming has to be changed in order to work with

graph structures, So that ANNs can be developed, this also

allowed the obtaining of simplified network that solve the

problem with a small group of neurons. This system achieves

good results. The drawback of this system has an over fitting

problem

3. SIMULTANEOUS EVOLUTION OF

ARCHITECTURE AND WEIGHTS:
The ANNs structure optimization to tackle the effects of noisy

fitness evolution problem is to consider mapping between

genotypes and phenotypes of each individual [7]. This is

possible by simultaneous evolution of connection weights and

architecture of the network structures. This results the fully

functioning network can be evolved without any intervention

by an expert. The evolutionary genetic operators implemented

in this work consider crossover as the predominant operator

and mutation is defined as the secondary operator, only

responsible for slight qualitative changes in the ANNs

features. Neuro-evolutionary method using augmenting

topologies (NEAT) was presented by Stanley and

Mikkulainen [13], [14].

4. PROPOSED EVOLUTIONARY

ARTIFICIAL NEURAL NETWORKS:
The evolutionary operators, discussed in [17] only

Recombination (Crossover) and topology mutation are

discussed here. In this work for an ANN optimization two

types of activation functions are used to define the fitness

evaluation, one is log sigmoid and other is tangent sigmoid

activation functions.

4.1 ANN Recombination (Crossover):

The evolutionary algorithms to improve the behavior between

parents and off-springs we use two types of crossovers one is

the single-point crossover in which, (single-point crossover)

different cutting points for each of the two parents in the

population and the second one is the vertical crossover, here

merging of the two parents between the topology and weight

matrices of the two parent’s in order to create the off-spring.

The proposed work uses the single point or cutting point

crossover, where cutting points are independently extracted

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.4, September 2012

24

for each parent because the genotype lengths of individuals

are variable. The cutting point is taken only between the one

layer and the next layer (for two hidden layer between second

layers of two network parents). A new evolutionary weight

matrix has created to make connection between two layers at

the cutting points in the parents producing the two off-springs,

so that the population is maintained constant.

4.2 Topology Mutation:

The function of this operator is to introduce the new genetic

information and to keep diversity in the population. The

weight mutation is applied first given in [17], [11], [12].

Based on the concept of evolutionary algorithm, topological

mutations are applied after evolution of weights. This

mutation operator affects the network architecture size. This

means that the number of neurons or nodes in each layer and

number of hidden layers are changed. The mutation process

uses the different activation functions. Based on the activation

functions response, four types of architecture mutations are

used they are insertion of a new hidden node, or a new hidden

layer, elimination of hidden node or hidden layer.

4.3 Pseudo code of Evolutionary

Architecture and connection weights

algorithm:

% initialization of population
1. sz = total weights and architecture;
2. Fori = 1: popsize;
3. pop(i)=sz number of random number;
4. End

% Evaluating optimal connection weights
5. For j=1: popsize/2;
6. pickup two parents randomly through
uniform distribution;
7 cp=weight cross over position defined by
randomly pickup any active node position;

8. To create offspring, exchange all incoming
weights to selectednodes cp between parents;
9. For each offspring;
10 place of mutation, mp = randomly selected
active node;
11. For all incoming weights w to selected
nodemp;
12. w=w+N (0, 1);
13. End
14. End
15. End
16. Optimal Connection weights
17. Use these connections to establish the ANN
in the architecture space

% offspring population creation
(Architecture)
18 An crossover of ANNs using single point
method and assigningthe evolved
connection weights and activation functions.
19. For j=1: popsize/2;
20. pickup two parents randomly through
uniform distribution
21. Train each ANN with decoded
architectures by evolutionary
 learning rule with optimized weights.
22. compute the fitness of each individuals
based on the MSE.

23. Apply the search operator to the parents

and generate the off-springs.
24. To create offspring network exchange all
second layer and output layer nodes
between two parent networks and
assign the evolved weights to establish
connections.
25. End

% Topology Mutation
26.For each offspring network;
27. place of mutation, am = randomly
selected hidden active layer;
28. For all the neurons in the
active layer find the neuron which is
not contributing to the network

efficiently, delete the node and
duplicatethe highest efficientneuron
in the same layer;
29. If layer contains less than
one neuron delete the layer and add

thenew layer randomly with
weight matrix in the same layer
30. End
31. End
32. End
33. Offspring population, off_pop available;
34. npop= [pop; off_pop];
% Define fitness of each solution,
35. Fori=1:2*popsize;
36. wt=npop(i);
37. an=npop(i);
38. applywt to ANN architecture to get error
value;
39. ANNs to get error value;
40. define fitness as fit(i)=1/error;
41. End

% Tournament selection
42. Apply schema theory on Architectures and
selects the schemata based on fitness
43. For r =1:2*popsize;
44. pick P number of Challengers in each
schemata based on the fitness, where P =

10% of popsize;
45. arrange the tournament w.r.t fitness
between schemata and selected P
challengers.;
46. End
47. Arrange score of all solution in ascending
order;
48. sp=pick up the best half score position ;
49. select next generation solution as solution
corresponding to position sp;
50. repeat the process from step 5 until
terminating criteria does not satisfy

51. final solution=solution with maximum
fitness and minimum nodes and
connectionsin last generation.

5. EXPERIMENTAL SETUP:

A new evolutionary system developed for evolving feed-

forward ANNs from architecture space. The evolutionary

process attempts to crossover and mutate weights before

performing any structural or topology crossover and mutation.

The evolutionary process is involved in mutation of weights

and topology. Weight mutation is carried out before structural

or topology mutation. Population size in EA taken as 20 and

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.4, September 2012

25

10 independent trails have given to get the generalize

behavior. Condition of terminating criteria is taken as fixed

iteration and it is equal to 100 for EA. Table 5.1 gives all the

parameters of the algorithm and default setting values are

taken for considered problem.

5.1 Performance of N-Bit Parity (XOR)

classification Problem:

5.1.0 2-Bit parity classification Problem:
For 2-bit parity, all networks in the space has a maximum of

10 nodes including 2 inputs and 1 output node i.e. the size is

[2 3 2 1 2]. This allowed for hidden layer configurations up to

5 nodes to be evolved. The average and best generation over

all runs that found a solution for parity-2 using accuracy

fitness function and the smallest architecture size found. The

optimized network contains one hidden layer of two nodes

with uni-model sigmoid activation function and all possible

optimal connections between nodes. The mean square error

(MSE) with minimum value over 10 trail runs is 1.3265e-18

and the performance of 5 runs are shown in Fig (1) and the

run 3,4, & 5 completed in 50 generations and run1&2

completed in 20 generations.

The average number of hidden nodes over 10 successful trail

runs is 2.1 and the average number of connections is 7.9.

Similarly, for 4-bit parity shown in Fig (2) the average

number of hidden nodes over 10 trail runs is 2.3 and average

number of connections is 14.7 with a minimum MSE is equal

to 2.1219e-026.

Table: 5.1Default parameters.

FIGURE 1 Performance of Evolutionary ANN for 2-bit

parity with initial sizes of [2 3 2 1 2].

FIGURE 2 Performance of Evolutionary ANN for 4-bit

parity with initial size of [4 5 4 1 2].

FIGURE 3 Performance of Evolutionary ANN for

Pima India diabetes with initial size of [9 4 5 1 2].

Symbol Parameter
Default

value

N Population size 20

Seed Previously saved population none

 Probability of inserting a hidden

layer
0.1

 Probability of deleting a hidden

layer
0.05

 Probability of inserting a neuron

in hidden layer
0.05

 Probability of deleting a neuron

hidden layer
0.05

 Probability of crossover 0.1

 Number of network inputs
Prob.

specific

 Number of network outputs
Prob.

specific

K MSE in the range

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.4, September 2012

26

The minimum mean square error value was found in the 5th

trail and is equal to 2.1219e-026 for 2-bit parity and is equal

to 9.2154e-026 for 4-bit parity has given in the Table 5.2.

5.2.0 Performance of Real-Time dataset

classification Problems:
In the real time dataset classification problems, only two

classification problems are considered for result verification

of the proposed algorithm. One is Pima India Diabetes and

second one is the SPECT Heart dataset problems which were

discussedin [8].

5.2.1 Pima India Diabetes:
The Training, Test and number of instance are discussed in

[8]. The first 400 instances were used to process the training

and the remaining 240 instances were used to test. The

evolutionary process initialized with all the networks in the

architecture space with an defend architecture size, example

of size [9 4 5 1 2] i.e. 9 inputs, 4 hidden nodes in 1st hidden

layer, 5 hidden nodes in second hidden layer, one output layer

with one node and last digit 2 represents the number of layers

(but the maximum number of hidden neurons allowed is (2N

+ 1)). After the evolutionary ANN process the optimized

network consists of only 3 hidden nodes in a single hidden

layer with uni-model sigmoid activation function and the

result of the Pima India diabetes for ten trail runs are executed

and the average percentage error values of the training and

test process are summarized in Table 5.2 and 5 trail runs are

shown in Fig (3) except trail 1 remaining all shows minimum

mean square error. The average mean square error is 8.6214e-

03.

5.2.2 SPECT Heart Classification problem:

The first 200 instances were used to process the training and

the remaining 67 instances were used to test. The evolutionary

process initialized all the network space with a defined

structure an example architecture size of [14 4 5 1 2]. After

the evolutionary ANN process the optimized network consists

of only 3 hidden nodes in layer 1 and 2 hidden nodes in layer2

with all nodes contain the uni-model activation function

The results of the heart dataset are as shown in Table 5.2 for

ten trail runs are executed and the average percentage error

values of the training and test process are summarized in

Table 5.2 and 5 trail runs are shown in Fig (4) with an average

mean square error of 7.7264e-003.

FIGURE 4 Performance of Evolutionary ANN for

SPECT Heart dataset with initial size of [14 4 5 1 2].

5.2.3 Comparison to the Literature:

In order to better validate the proposed work in this thesis, a

comparison with a list of some, more recent works presented

in the literature is given in the Table 5.3. All these works has

used the Pima Indian Diabetes and SPECT heart problem as

benchmark. The proposed EA approachcompares well with

respect to the other works, obtaining good consistency and

accuracy.

6. CONCLUSION:

Determination of optimal architecture and weights in ANN in

the phase of learning has obtained by using the concept of

evolutionary genetic algorithm. Proposed method of both

architecture and weights adjustment has shown outperform at

every level for 2-Bit, 4-bit parity compared to the fixed

architecture back-propagation algorithm given in [17],[18]

and in the case of real dataset classification problems an

excellent percentage of accuracy is achieved with minimized

network size.

Trail

No.

2-Bit Parity 4-Bit Parity

MSE([2 3 2 1 2]) MSE([2 2 3 1 2]) MSE([4 5 4 1 2]) MSE([4 4 5 1 2])

1 9.0084e-003 4.6115e-006 3.2548e-006 6.2587e-014

2 2.1219e-026 9.4020e-028 1.3548e-002 7.6584e-005

3 2.0416e-014 9.6960e-032 6.3254e-011 9.4851e-021

4 1.3406e-003 6.0631e-037 5.4856e-019 1.9562e-019

5 2.1219e-026 6.9969e-019 9.2154e-026 1.7541e-003

6 9.0084e-003 4.6115e-006 9.3554e-004 6.4851e-006

7 2.1219e-026 9.4020e-028 2.8754e-014 5.9745e-023

8 2.0416e-014 9.6960e-032 9.2365e-013 4.1254e-016

9 1.3406e-003 6.0631e-037 3.4587e-001 5.4216e-014

10 3.2323e-022 6.9969e-019 8.2657e-016 8.6541e-020

Table 5.2 Performance of ANN shown by GA fordifferent trails

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.4, September 2012

27

+

7. REFERENCES
[1] X.Yao. Evolving artificial neural networks. In Proceeding so on

IEEE,pages 1423–1447, 1999.

[2] X.Yao and Y.Liu. Anew evolutionary system for evolving

artificial neural networks. IEEE Transaction son

NeuralNetworks,8(3):694–713,May1997.

[3] M.C.Mozeand P.Smolensky. Using relevance to reduce network

size automatically.connectionScience,1(1):3–16, 1989.

[4] X.Yao and Y.Liu. Towards designing artificial networks by

evolution.AppliedMathematicsandComputation,91(1):83–

90,1998

[5] G.F.Miller, P.M.Todd, and S.U.Hegde. Designing neural

networks using genetic algorithms. In J.D.Schaffer, editor,

ProceedingsoftheThirdInternationalConferenceonGeneticAlgor

ithm,pages379–384,1989

 [6] D.Whitley, T.Starkweather, and C.Bogart. Genetic algorithms and

neural networks: Optimizing connections and connectivity.

Parallel computing, 14:347–361, 1993.

[7] P.J.B.Hancock. Genetic algorithms and permutation problems:

A comparison of recombination operators for neural net

structure specification. In L.D.Whitleyand J.D.Schaffer,

editors, Proceedings of the Third International Workshop on

Combinations GeneticAlgorithmsNeuralNetworks,pages108–

122,1992GeneticAlgorithms,pages379–384,1989

[8] X. Yao and Y. Liu, “EPNet for chaotic time-series

prediction,” in Select. Papers 1st Asia-Pacific Conf.

Simulated Evolution and Learning (SEAL’96), vol. 1285

of Lecture Notes in Artificial Intelligence, X. Yao, J.H.

Kim, and T.Furuhashi, Eds. Berlin, Germany: Springer-

Verlag, 1997, pp. 146–156

Parameter
Pima-India Diabetes data
set

SPECT Heart Data
set

Number Of Runs 10 10

Number Of Generations 102 90

Number of Training patterns used 500 200

Average Training Set Accuracy 76.0 86.0

Number of Test patterns used 268 67

Average Test Set Accuracy 81.5 85.2

Initial Number of Hidden layers / Nodes 2 / [4 5] 2 / [4 5]

Final Number of Hidden layers / Nodes 1 / [2] 1 / [3]

Population size 50 50

Number of inputs 09 14

Number of outputs 01 01

Table 5.2 Results of Real time dataset classifiers problems.

Table 5.3: Comparison of classification performance on the Pima India Diabetes and SPECT Heart problems

Author & year Method

Pima India

Diabetes

Accuracy in

Percentage

SPECT Heart

Accuracy in

Percentage

H. A. Abbass 2003

Multiobjective EA:

MPANN 74.9 74.9

SPANN 70.7 70.7

J. Basak 2006

 77.49 77.49

ExOADT-K-NN 70.4 70.4

K-NN 75.78 75.78

Naïve Bayes

SVM 73.3 73.3

X. Yao et al 1997 EPNET 77.6 77.6

X. Yao et al 2003 CNNE 77.8 77.8

A. Azzini et al 2006 Neuro genetic approach 75.5 75.5

 Proposed EA 82.5 85.85

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.4, September 2012

28

[9] Y. Liu and X. Yao, “A population-based learning

algorithmwhich learns both architectures and weights of

neural networks,” Chinese J. Advanced Software

Res., vol. 3, no. 1, pp.54–65, 1996.

[10]D. B. Fogel, “Phenotypes, genotypes, and operators in

Evolutionarycomputation,” in Proc. 1995 IEEE Int.Conf.

EvolutionaryComputation (ICEC’95), Perth, Australia,

pp. 193–198.

[11]D. G. Stork, S. Walker, M. Burns, and B. Jackson,

“Preadaptationin neural circuits,” in Proc. Int. Joint

Conf. Neural Networks, vol. I, Washington, DC, 1990,

pp. 202–205.

[12] D. White and P. Ligomenides, “GANNet: A genetic

Algorithmfor optimizing topology and weights in neural

network design, ”in Proc. Int. Workshop Artificial

Neural Networks (IWANN’93),Lecture Notes in

Computer Science, vol. 686. Berlin,Germany: Springer-

Verlag, 1993, pp. 322–327.

[13] K.Stanley and R.Miikkulainen. Evolving neural networks

through augmenting topologies. Evolutionary

omputation,10(2):99–127,2002.

[14] K.O.Stanley and R.Miikkulainen. Efficient evolution of

neural network topologies. In Proceeding of the Congress on

Evolutionary Computation, CEC’02, pages1757–1762.

IEEEComputerSocietyPress, 2002.

[15] Daniel Rivero, Julian Dorado, Juan R, and Rabunal,

“Artificial neural Network Development by means of

genetic programming with graph codification”,

Proceedings of world academy of science,

engineering and technology, Vol:15, pp 209-214, 2006.

[16] Dario Floreano Æ Peter Du¨rr Æ Claudio Mattiussi , “

Neuro-evolution: from architectures to learning,”

Springer-Verlag, January 2008.

[17] G.V.R. Sagar, et al. “Evolutionary Algorithm for

Optimal Connection weights in Artificial Neural

Networks,” IJE, vol. 5, Issue: 5, 2011.

[18] G.V.R. Sagar, S.V. Chalam “Evolutionary ANN Learning

algorithm on Benchmark andReal time dataset

Classification problems,” Current Development in

Artificial Intelligence (CDAI), Aug 2012

