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ABSTRACT 

The important issue for Designing architecture isthe evolution 

of Artificial Neural Network (ANN). There is no systematic 

method to design a near-optimal architecture for a given 

application or task. The pattern classification methods are 

used to design the neural network architectures and efforts 

towards the automatic design of network topologies, 

constructive and destructive algorithms can be used. In the 

proposed work the optimization of architectures and 

connection weights uses the evolutionary process. A single-

point crossover is applied with selective schemas on the 

network space and evolution is introduced in the mutation 

stage so that an optimized ANNs are achieved.  

Keywords: Artificial neural network, topology mutation, 

schema theory 

1. INTRODUCTION 

Designing architecture is an important issue in the evolution 

of ANN. Constructive and destructive algorithms can be used 

[1] in design of network architectures. The constructive 

algorithm begins with a small network, and hidden nodes, 

layers and connections are added to the network dynamically 

[2], but in the destructive algorithm starts with large network 

and hidden nodes and connections are deleted to construct the 

network dynamically [3]. The above two algorithms are called 

as incremental and decremental algorithms. Yao [4], has 

pointed out that the performance method of equation, MSE, 

Learning speed, reduced complexity about architectures are 

represented as a search problem in the architecture space. 

Each performance level of all these, forms a surface in the 

architecture design space. Finding the optimal architecture 

design is the highest point on this surface. There are several 

surface methods considered by using EAs for finding the best 

network topology which gives the better solution rather than 

incremental and decremental algorithms. Network topology 

characteristics presented by miller [5] refer to the surface of 

possible solutions. 

 

2. ENCODING METHODS: 

The efficiency of feed-forward network depends on the 

topology of the networks size and structures. The EAs have 

been used two major ways for searching network topologies  

i) Direct encoding. 

ii) Indirect encoding. 

2.1 Direct Encoding Method:  
In this process the direct transformation of genotypes into 

phenotypes [8], [9] [17], [18], and the connection topology is 

represented by means of a adjacency matrix and many 

examples of this method are given in [5], [6], [10]. This 

encoding is easy to implement, but it does not scale well. As a 

consequence, the training the entire populations by using 

Back-Propagation method can be extremely slow. 

2.2 Indirect Encoding Method: 
The scalability problem in direct method will be overcome by 

this method. This method requires a considerable effort for 

neural network decoding. But sometimes, the network can be 

pre-structured architectures, which makes the search space is 

very much smaller. In this method some network parameters 

like number of layers, the size of the layers, the bias etc. may 

also defined for optimal architectures.The genetic 

programming [15], [16] has be changed in order to work with 

graph programming has to be changed in order to work with 

graph structures, So that ANNs can be developed, this also 

allowed the obtaining of simplified network that solve the 

problem with a small group of neurons. This system achieves 

good results. The drawback of this system has an over fitting 

problem 

 

3. SIMULTANEOUS EVOLUTION OF 

ARCHITECTURE AND WEIGHTS: 
The ANNs structure optimization to tackle the effects of noisy 

fitness evolution problem is to consider mapping between 

genotypes and phenotypes of each individual [7]. This is 

possible by simultaneous evolution of connection weights and 

architecture of the network structures. This results the fully 

functioning network can be evolved without any intervention 

by an expert. The evolutionary genetic operators implemented 

in this work consider crossover as the predominant operator 

and mutation is defined as the secondary operator, only 

responsible for slight qualitative changes in the ANNs 

features. Neuro-evolutionary method using augmenting 

topologies (NEAT) was presented by Stanley and 

Mikkulainen [13], [14]. 

 

4. PROPOSED EVOLUTIONARY 

ARTIFICIAL NEURAL NETWORKS: 
The evolutionary operators, discussed in [17] only 

Recombination (Crossover) and topology mutation are 

discussed here. In this work for an ANN optimization two 

types of activation functions are used to define the fitness 

evaluation, one is log sigmoid and other is tangent sigmoid 

activation functions. 

 

4.1 ANN Recombination (Crossover): 

The evolutionary algorithms to improve the behavior between 

parents and off-springs we use two types of crossovers one is 

the single-point crossover in which, (single-point crossover) 

different cutting points for each of the two parents in the 

population and the second one is the vertical crossover, here 

merging of the two parents between the topology and weight 

matrices of the two parent’s in order to create the off-spring. 

The proposed work uses the single point or cutting point 

crossover, where cutting points are independently extracted 
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for each parent because the genotype lengths of individuals 

are variable. The cutting point is taken only between the one 

layer and the next layer (for two hidden layer between second 

layers of two network parents). A new evolutionary weight 

matrix has created to make connection between two layers at 

the cutting points in the parents producing the two off-springs, 

so that the population is maintained constant. 

 

4.2 Topology Mutation: 

The function of this operator is to introduce the new genetic 

information and to keep diversity in the population. The 

weight mutation is applied first given in [17], [11], [12].  

Based on the concept of evolutionary algorithm, topological 

mutations are applied after evolution of weights. This 

mutation operator affects the network architecture size. This 

means that the number of neurons or nodes in each layer and 

number of hidden layers are changed. The mutation process 

uses the different activation functions. Based on the activation 

functions response, four types of architecture mutations are 

used they are insertion of a new hidden node, or a new hidden 

layer, elimination of hidden node or hidden layer. 

 

4.3 Pseudo code of Evolutionary 

Architecture and connection weights 

algorithm: 
 
% initialization of population 
1. sz = total weights and architecture; 
2. Fori = 1: popsize; 
3.     pop(i)=sz number of random number; 
4.  End 

% Evaluating optimal connection weights 
5.   For j=1: popsize/2; 
6.  pickup two parents randomly through  
uniform distribution; 
7 cp=weight cross over position defined by  
randomly pickup any  active node  position;        

8. To create offspring, exchange all incoming  
weights to selectednodes cp between parents; 
9.   For  each offspring; 
10 place of mutation, mp = randomly selected  
active node; 
11.        For all incoming weights w to selected  
nodemp; 
12.                                  w=w+N (0, 1); 
13.                          End 
14.               End 
15.  End 
16.  Optimal Connection weights 
17.  Use these connections to establish the ANN  
in the architecture  space 

% offspring population creation  
(Architecture) 
18 An crossover of ANNs using single point  
method and assigningthe evolved  
connection weights and activation functions. 
19.  For j=1: popsize/2; 
20.  pickup two parents randomly through  
uniform distribution 
21.  Train each ANN with decoded  
architectures by evolutionary  
 learning rule with optimized weights. 
22.  compute the fitness of each individuals  
based on the MSE. 

23.   Apply the search operator to the parents  

and generate the off-springs. 
24.  To create offspring network exchange all   
second layer and output layer nodes  
between two parent networks and   
assign the evolved weights to establish  
connections. 
25. End  

%  Topology Mutation 
26.For  each offspring network; 
27.      place of mutation, am = randomly  
selected hidden active layer; 
28.                      For  all the neurons in the  
active layer find the neuron which is  
not contributing to the network                                     

efficiently, delete the node and    
duplicatethe highest efficientneuron 
in the same layer; 
29.                   If  layer contains less than  
one neuron delete the layer and add  

thenew layer randomly with                                    
weight matrix in the same layer  
30.          End        
31.                  End 
32.          End 
33. Offspring population, off_pop available; 
34. npop= [pop; off_pop]; 
% Define fitness of each solution, 
35.  Fori=1:2*popsize; 
36.      wt=npop(i); 
37.      an=npop(i); 
38.      applywt to ANN architecture to get error  
value; 
39.  ANNs to get error value; 
40.      define fitness as fit(i)=1/error; 
41.   End 

% Tournament selection 
42. Apply schema theory on Architectures and  
selects the schemata based on fitness 
43. For  r =1:2*popsize; 
44. pick P number of Challengers in each  
schemata based on the fitness, where P =  

10% of popsize; 
45.  arrange the tournament w.r.t fitness  
between schemata  and selected P  
challengers.; 
46. End 
47. Arrange score of all solution in ascending  
order; 
48. sp=pick up the best half score position ; 
49. select next generation solution as solution  
corresponding to position sp; 
50. repeat the process from step 5 until  
terminating criteria does not satisfy 

51. final solution=solution with maximum  
fitness  and minimum nodes and  
connectionsin last generation. 
 

5. EXPERIMENTAL SETUP: 

A new evolutionary system developed for evolving feed-

forward ANNs from architecture space. The evolutionary 

process attempts to crossover and mutate weights before 

performing any structural or topology crossover and mutation. 

The evolutionary process is involved in mutation of weights 

and topology. Weight mutation is carried out before structural 

or topology mutation. Population size in EA taken as 20 and 
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10 independent trails have given to get the generalize 

behavior. Condition of terminating criteria is taken as fixed 

iteration and it is equal to 100 for EA. Table 5.1 gives all the 

parameters of the algorithm and default setting values are 

taken for considered problem.  

 

5.1 Performance of N-Bit Parity (XOR) 

classification Problem: 
 

5.1.0 2-Bit parity classification Problem: 
For 2-bit parity, all networks in the space has a maximum of 

10 nodes including 2 inputs and 1 output node i.e. the size is 

[2 3 2 1 2]. This allowed for hidden layer configurations up to 

5 nodes to be evolved. The average and best generation over 

all runs that found a solution for parity-2 using accuracy 

fitness function and the smallest architecture size found. The 

optimized network contains one hidden layer of two nodes 

with uni-model sigmoid activation function and all possible 

optimal connections between nodes. The mean square error 

(MSE) with minimum value over 10 trail runs is 1.3265e-18 

and the performance of 5 runs are shown in Fig (1) and the 

run 3,4, & 5 completed in 50 generations and  run1&2 

completed in 20 generations. 

 

The average number of hidden nodes over 10 successful trail 

runs is 2.1 and the average number of connections is 7.9. 

Similarly, for 4-bit parity shown in Fig (2) the average 

number of hidden nodes over 10 trail runs is 2.3 and average 

number of connections is 14.7 with a minimum MSE is equal 

to 2.1219e-026. 

 

Table: 5.1Default parameters. 
 

 
 
 
 
 
 

 

 
FIGURE 1 Performance of Evolutionary ANN for 2-bit 

parity with initial sizes of [2 3 2 1 2].  

 

 

 

 
FIGURE 2 Performance of Evolutionary ANN for 4-bit 

parity with initial size of [4 5 4 1 2].  

 

 

 
 

 

FIGURE 3 Performance of Evolutionary ANN for  

Pima India diabetes with initial size of [9 4 5 1 2].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol Parameter 
Default 

value 

N Population size 20 

Seed Previously saved population none 

      
  Probability of inserting a hidden 

layer 
0.1 

      
  Probability of deleting a hidden 

layer 
0.05 

  
  Probability of inserting a neuron 

in hidden layer 
0.05 

  
  Probability of deleting a neuron  

hidden layer 
0.05 

       Probability of crossover 0.1 

    Number of network inputs 
Prob. 

specific 

   Number of network outputs 
Prob. 

specific 

K MSE in the range      
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The minimum mean square error value was found in the 5th 

trail and is equal to 2.1219e-026 for 2-bit parity and is equal 

to 9.2154e-026 for 4-bit parity has given in the Table 5.2. 

 

5.2.0 Performance of Real-Time dataset 

classification Problems: 
In the real time dataset classification problems, only two 

classification problems are considered for result verification 

of the proposed algorithm. One is Pima India Diabetes and 

second one is the SPECT Heart dataset problems which were 

discussedin [8]. 

 

5.2.1 Pima India Diabetes:  
The Training, Test and number of instance are discussed in 

[8]. The first 400 instances were used to process the training 

and the remaining 240 instances were used to test. The 

evolutionary process initialized with all the networks in the 

architecture space with an defend architecture size, example 

of size [9 4 5 1 2] i.e. 9 inputs, 4 hidden nodes in 1st hidden 

layer, 5 hidden nodes in second hidden layer, one output layer 

with one node and last digit 2 represents the number of layers 

(but the maximum number of hidden neurons allowed is (2N 

+ 1)). After the evolutionary ANN process the optimized 

network consists of only 3 hidden nodes in a single hidden 

layer with uni-model sigmoid activation function and the 

result of the Pima India diabetes for ten trail runs are executed 

and the average percentage error values of the training and 

test process are summarized in Table 5.2 and 5 trail runs are 

shown in Fig (3) except trail 1 remaining all shows minimum 

mean square error. The average mean square error is 8.6214e-

03.  

 

5.2.2 SPECT Heart Classification problem: 
 

The first 200 instances were used to process the training and 

the remaining 67 instances were used to test. The evolutionary 

process initialized all the network space with a defined 

structure an example architecture size of [14 4 5 1 2]. After 

the evolutionary ANN process the optimized network consists 

of only 3 hidden nodes in layer 1 and 2 hidden nodes in layer2 

with all nodes contain the uni-model activation function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of the heart dataset are as shown in Table 5.2 for 

ten trail runs are executed and the average percentage error 

values of the training and test process are summarized in 

Table 5.2 and 5 trail runs are shown in Fig (4) with an average 

mean square error of 7.7264e-003. 

 

 
FIGURE 4 Performance of Evolutionary ANN for  

SPECT Heart dataset with initial size of [14 4 5 1 2]. 

 

5.2.3 Comparison to the Literature: 

In order to better validate the proposed work in this thesis, a 

comparison with a list of some, more recent works presented 

in the literature is given in the Table 5.3. All these works has 

used the Pima Indian Diabetes and SPECT heart problem as 

benchmark. The proposed EA approachcompares well with 

respect to the other works, obtaining good consistency and 

accuracy. 

 

6. CONCLUSION: 

Determination of optimal architecture and weights in ANN in 

the phase of learning has obtained by using the concept of 

evolutionary genetic algorithm. Proposed method of both 

architecture and weights adjustment has shown outperform at 

every level for 2-Bit, 4-bit parity compared to the fixed 

architecture back-propagation algorithm given in [17],[18] 

and in the case of real dataset classification problems an 

excellent percentage of accuracy is achieved with minimized 

network size. 

 
 
 
 

Trail 

No. 

2-Bit Parity 4-Bit Parity 

MSE([2 3 2 1 2]) MSE([2 2 3 1 2]) MSE([4 5 4 1 2]) MSE([4 4 5 1 2]) 

1 9.0084e-003 4.6115e-006 3.2548e-006 6.2587e-014 

2 2.1219e-026 9.4020e-028 1.3548e-002 7.6584e-005 

3 2.0416e-014 9.6960e-032 6.3254e-011 9.4851e-021 

4 1.3406e-003 6.0631e-037 5.4856e-019 1.9562e-019 

5 2.1219e-026 6.9969e-019 9.2154e-026 1.7541e-003 

6 9.0084e-003 4.6115e-006 9.3554e-004 6.4851e-006 

7 2.1219e-026 9.4020e-028 2.8754e-014 5.9745e-023 

8 2.0416e-014 9.6960e-032 9.2365e-013 4.1254e-016 

9 1.3406e-003 6.0631e-037 3.4587e-001 5.4216e-014 

10 3.2323e-022 6.9969e-019 8.2657e-016 8.6541e-020 

Table 5.2 Performance of ANN shown by GA fordifferent trails 
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