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ABSTRACT 

This paper introduces an Advanced Artificial Potential Field 

(AAPF) controller which is used to control the robot’s motion 

in cluttered environments. The proposed approach gives less 

computation and increases the reaction speed of the robot at 

obstacle avoidance situations. The increasing of robot's 

reaction speed doesn't affect on the smoothness of its path due 

to the use of Genetic algorithms (GA) which select the 

optimum factors of the forces applied to the robot. A measure 

of smoothness is used to guide the genetic algorithm to select 

forces’ factors with minimum smoothness. Of course more 

smoothness means less distance and more speed to reach the 

goal. The Advanced controller using GA is simulated with 

different cases on Windows Vista using Matlab Software. 

These cases include environments with single obstacle up to 

three obstacles and multi-knee corridor. Results are compared 

to previous works.  

General Terms 

Genetic Algorithm, Robot Motion. 

Keywords 

Artificial Potential Field, Obstacle Avoidance, Virtual Sensor.  

1. INTRODUCTION 
Mobile robots is improved from path guidance methods to 

autonomous mobility, resulting on obstacle avoidance of 

robots have emerged steadily over the years including 

directional command methods, such as artificial potential 

fields [1-5] and speed-space commands, such as the curvature 

foundation system [6-9]. However, most previous results 

remain a challenging problem as most existing methods have 

not considered the mobility of robots and obstacles. These 

algorithms cause a robot to move very slowly for obstacle 

avoidance. If a robot moves very slowly, most of the 

established algorithms can be applied to avoid obstacles. As it 

moves faster and faster, avoidance control is more difficult 

and the robot tends to collide more frequently with obstacles. 

The virtual sensor concept that was introduced in [10] is used 

in our work. This concept is similar to that of the Doppler 

Effect. When a robot heads to an obstacle, the distance on the 

robot sensor is longer than the virtual sensor. Likewise, the 

physical distance on the robot sensor is shorter than the virtual 

one when it goes away from an obstacle. 

The philosophy of the artificial potential field (APF) approach 

is described in [1].  

In this paper, a modification of the artificial potential field 

equations will be demonstrated. This modification gives high 

reaction speed of the robot without any abrupt changes in 

robot path. Efficiency of robot obstacle avoidance will be 

regarded too. The Genetic Algorithm (GA) is used also to 

select the optimum factors of the repulsive and the attractive 

forces in the offline state which can be then applied on the 

robot in the online state as in [11]. The optimum factors are 

those who make the robot motion much smoother. Simulation 

on Matlab is executed for testing the performance of the 

AAPF controller in the task of robot obstacle avoidance. The 

simulation is done at four workspaces as at [10],[11]. The 

simulation results are then used to compare the performance 

of the proposed system and the established system in [10], 

[11] to evaluate the proposed system effectiveness. The 

odometry of the robot is calculated using the angle approach 

[12]. 

This paper is organized as follows. Section 2 illustrates the 

Advanced Artificial Potential Field (AAPF). Section 3 

explains the determination of the optimum factors of the 

potential field controller forces using GA and illustrates the 

GA fitness function which is used in our work. Section 4 

shows the performance of the proposed system by simulation 

in four different cases. In addition, comparison with the 

established system in [10], [11] will be reviewed. Conclusion 

and future work are given in Section 5. 

2. ADVANCED ARTIFICIAL 

POTENTIAL FIELD (AAPF) 
As the robot approaches the obstacle the repulsive force 

Fo(Pr(t)) increases. On the other hand, the attractive force to 

the goal Fg(Pr(t)) will be decreased as it approaches its goal. 

Therefore, the net forces obtained from the artificial potential 

fields equations is noted in [1], [10].  

Where, the repulsive force is inversely proportional to the 

distance between the robot and the obstacles. And the 

attractive force is proportional to the distance between the 

robot and the goal. This logic rule led us to reform the 

equation of the repulsive part in the APF which becomes 

much simple to be computed as in equation (1). 

  (  ( )   ( ))   {
    ( )                    
                                 

          (1) 

 

Where:    ( ) is the position of the robot which is calculated 

by using the angle approach as in [12],    ( ) is the position 

of the obstacle,    is the repulsive force factor,   is the virtual 

sensor reading of the distance between the robot and the 

obstacle which is calculated as in [10], and    is the threshold 

distance between the robot and the obstacle. 

So, the repulsive force equation Fo(Pr(t)) which represents the 

first derivative of equation (1) becomes 
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Where,   (  ( ))  is the repulsive force at x-axis. Of course 

the less computation gives high speed reaction to the robot. 

While attractive force computation remains as in [10]. 

3. DETERMINING THE OPTIMUM 

FACTORS AND FITNESS FUNCTION 
The attractive and repulsive coefficients Ka, Kr of the forces 

are determined empirically in [10], that shouldn't grantee a 

fast and smooth robot path. To overcome that empirical 

factors determination, one of the optimization techniques such 

as (GA) can be used to better determine those factors. 

The fitness function which is used in GA optimizer is the 

smoothness (SM) that is defined as a criterion of the 

evaluation to measure the various robot trajectories as: 

 

                          ∑ (       )
 
                       (3) 

 

                            
         

       
                         (4) 

 

Where     = the last pose number of robot trajectory,     and 

   represent the robot position at nth sampling time.    is the 

angle between current and former position at nth sampling 

time. 

First the optimum parameters for the potential field controller 

are obtained in offline state. It includes guided random search 

operation using GA to determine the optimum factors for Kr 

and Ka which are the factors of the repulsive and the 

attractive forces respectively. Four different environments for 

testing the improved potential field controller are used. The 

first environment has one obstacle, the second environment 

has two obstacles, the third one has three obstacles, finally the 

fourth has multi-knee corridor. The start point of the robot at 

the first three workspaces are (0,0), while at the fourth, the 

start point of the robot is (2,0). The end points (goals) at the 

four workspaces are (4,2), (4,3), (4,3) and (6.5,6.5) 

respectively. These cases are those typically used in [10]. Ka 

and Kr values for each workspace according to using GA are 

denoted in Table 1.  

Table 1. The optimum values of forces factors at the four 

cases 

 Case 1 Case 2 Case 3 Case 4 

Ka 15.203 23.5582 16.5519 16.7876 

Kr 1.1741 0.2756 0.1094 0.0502 

4. SIMULATION RESULTS 
This section shows the simulation results of robot motion in 

four different environments at two states. The first state is the 

robot motion to go to a static goal at each environment using 

its Ka and Kr values. The second state is the robot motion to 

go to a static goal at each environment using the average 

values of Ka and Kr of the four environments. To show the 

optimization achieved in the performance of the proposed 

method, it is compared with the results in [10-11].  Sections 

4.1 and 4.2 show the simulation results at these two states 

respectively. 

4.1 Robot Motion to reach a Static Goal 

using AAPF controller with optimum Ka 

and Kr 
The motion paths at the four cases are shown in Fig. 1, 2, 3, 4, 

respectively. Where: Fig. 1.a, Fig. 2.a, Fig. 3.a and Fig. 4.a 

represent the simulation results in [10] using APF without 

GA. Fig. 1.b, Fig. 2.b, Fig. 3.b and Fig. 4.b represent the 

simulation results in [11] using APF with GA. Fig. 1.c, Fig. 

2.c, Fig. 3.c and Fig. 4.c represent the simulation results of the 

proposed system using AAPF with GA. The motion paths (a) 

at each figure of figures 1, 2, 3, 4 for the four cases present 

that the robot with empirical values of Ka and Kr displays 

slower evasive action than (b), (c). The robot in (a) of each 

figure makes abrupt changes in its paths while the robot at (b), 

(c) display smoother changes. The smoothness achieved with 

the proposed system is better than that achieved with the 

previous work. The smoothness achieved at each case is 

compared with the previous works and is shown in Table 2. 

As shown from the Table 2 a large optimization of the 

smoothness is occurred with the proposed approach. When the 

path of the robot is smoother it means that the robot takes a 

short path and less time to go to the goal. And the reaction 

speed of the robot will be higher at the proposed system than 

[10], [11]. 

 

(a) 

 

   (b) 
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  (c) 

Fig 1: Robot paths in Case 1 with different systems. (a) 

using APF without GA in [10], (b) using APF with GA in 

[11], and (c) the proposed system using AAPF with GA. 

 
(a) 

 

 (b) 

 
    (c) 

Fig 2: Robot paths in Case 2 with different systems. (a) 

using APF without GA in [10], (b) using APF with GA in 

[11], and (c) the proposed system using AAPF with GA. 

 
(a) 

 

     (b) 
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(c) 

Fig 3: Robot paths in Case 3 with different systems. (a) 

using APF without GA in [10], (b) using APF with GA in 

[11], and (c) the proposed system using AAPF with GA. 

 
(a) 

 

(b) 

 
(c) 

Fig 4: Robot paths in Case 4 with different systems. (a) 

using APF without GA in [10], (b) using APF with GA in 

[11], and (c) the proposed system using AAPF with GA. 

4.2 Robot Motion to reach a Static Goal 

using     AAPF controller with the average 

values of Ka  and Kr at the four 

workspaces 
The average values of Ka and Kr at the previous four cases 

are 18.0252, 0.4023, respectively. These two average values 

are applied again onto the four cases. The paths of the robot at 

these four cases with these average values are shown in Fig. 5. 

The smoothness achieved at each case using the average 

values of Ka and Kr is shown also in Table 2. The comparison 

between  the results of the existing techniques and the 

proposed scheme is supported by a graphical data in Fig.6. 

 

 
(a) 
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(b) 

 
(c) 

 

(d) 

Fig 5: Robot paths with the average values of Ka and Kr 

 

Table 2. The comparison of smoothness between the 

proposed method using AAPF with GA and the previous 

works 

Smooth-

ness 
Case 1 Case 2 Case 3 Case 4 

APF 

Without 

GA [10] 

133.7309 303.4949 510.1164 1420.295 

APF With 

GA [11] 
0.6268 0.9614 0.9803 54.0509 

AAPF With 

GA 

[proposed] 

0.6503 1.0329 0.9088 17.9618 

AAPF 

Using 

Average 

Factors 

0.6876 22.224 13.9563 96.2064 

 

 

Fig 6: A graphical data illustrates the comparison in table 

2. 

5. CONCLUSION 
In this paper, Modification of artificial potential field equation 

is introduced. Of course this modification gives less 

computation. Then, the reaction of the robot will achieve 

higher speed than the robot that uses a traditional artificial 

potential field controller. GA optimizer is used in different 

robot environments to select the optimum factors of the forces 

to reach the goal while avoiding obstacles. The optimized 

parameters are tested in four different environments. The 

results show the superiority of the proposed controller 

generally and inclusively compared to the work in [10]. The 

average of the computed factors by GA optimizer for the four 

cases is applied again onto the same cases, while the 

smoothness in our work remains better than the results in [10]. 

Graceful optimization regarding the path motion is achieved. 

The potential fields controlling the robot motion are: attractive 

one (from the goal), and repulsive one from the obstacles. The 

real implementation of the proposed work and robots 

formation can be done as a future work. 
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